Prof. Klaus Gürlebeck

Univ. Prof. Dr. rer. nat. habil. Klaus Gürlebeck

 

Coudraystraße 13B, Zimmer 104

99423 Weimar

Tel.: +49 3643 58 4274

E-Mail: klaus.guerlebeck[at]uni-weimar.de

Arbeits- und Lehrgebiete

  • Lineare Algebra
  • Analysis
  • Partielle Differentialgleichungen
  • Numerik
  • Algebra/Zahlentheorie
Nach oben

Forschung

     

  • Quaternionenanalysis
  • Diskrete Funktionentheorie
  • Numerische Analysis partieller Differentialgleichungen der mathematischen Physik und der klassischen Mechanik

Publikationen

Bücher

[1] K. Gürlebeck, W. Sprößig: Quaternionic Analysis and Elliptic Boundary Value Problems, Akademieverlag Berlin, Math. Research 56, 1989
[2] K. Gürlebeck, W. Sprößig: Quaternionic Analysis and Elliptic Boundary Value Problems, ISNM 89, Birkhäuser-Verlag Basel 1990 (Lizenzausgabe von 1.)
[3] K. Gürlebeck, W. Sprößig: Quaternionic Calculus for Engineers and Physicists, John Wiley & Sons, Chichester 1997
[4] K. Gürlebeck, W. Sprößig: Introduction in analytical and numerical methods in Clifford Algebras. Dep. de Matematica da Universidade de Coimbra, Textos de Matematica, Serie B (2000)
[5] K. Gürlebeck, K. Habetha, W. Sprößig: Funktionentheorie in der Ebene und im Raum, Birkhäuser Verlag, Basel – Boston – Berlin, 2006
[6] K. Gürlebeck, K. Habetha, W. Sprößig: Holomorphic Functions in the Plane and n- dimensional Space, Birkhäuser Verlag, Basel – Boston – Berlin, 2008

Bücher/Tagungsbeiträge (Editor)

[1] W. Sprößig, K. Gürlebeck (Editors): Analytical and Numerical Methods in Quaternionic and Clifford Analysis, Proceedings of the Seiffen-Symposium1996, TU-BA Freiberg, ISBN 3-86012-041-7
[2] K. Gürlebeck, L. Hempel, C. Könke (Editors): Proceedings 16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, ISSN 1611-4086, Weimar 2003
[3] K. Gürlebeck, C. Könke (Editors):17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, ISSN 1611-4086, Weimar 2006
[4] K. Gürlebeck, C. Könke (Editors):17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, ISSN 1611-4086, Weimar 2009

Kapitel in Büchern

[1] K. Gürlebeck : Lower and upper bounds for the first eigenvalue of the Lame' system, in: R.Kühnau and W.Tutschke: Boundary value and initial value problems in complex analysis: Studies in complex analysis and its applications to partial differential equations 1, Pitman Research Notes in Math. Series 256, Longman Publ. 1991, 184-193
[2] K. Gürlebeck and W. Sprößig: Application of Quaternionic Analysis on Generalized Non-linear Stokes Eigenvalue Problems, in: H.Begehr, A.Jeffrey: Partial Differential Equations With Complex Analysis; Pitman Research Notes 262, Longman 1992, 52-60
[3] K. Gürlebeck , W. Sprößig : On Eigenvalue Estimates of Nonlinear Stokes Eigenvalue Problem, in: A.MICALI: Clifford Algebras and their Applications in Mathematical Physics, Fundamental Theories of Physics, Vol. 47, Kluwer Acad. Publ. 1992, pp. 327-333
[4] K. Gürlebeck : Quaternionic Analysis and Transmission Problems, in: F. BRACKX, R. DELANGHE and H. SERRAS: Clifford Algebras and their Applications in Mathematical Physics, Fundamental Theories of Physics, Vol. 55, Kluwer Acad. Publ. 1993, pp. 101-108
[5] K. Gürlebeck and W. Sprößig: Clifford Analysis and Elliptic Boundary Value Problems, in: R.Ablamowicz and P.Lounesto (eds.): Clifford Algebras and Spinor Structures, Kluwer Acad. Publ. (1995), 325—334
[6] W. Sprößig, K. Gürlebeck, On the treatment of fluid problems by Methods of Clifford Analysis In: Deville, Gavrilakis, Ryhming: Computation Three-Dimensional Complex Flows, Notes on Numerical Fluid Mechanics, Vol 53, Vieweg &Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden (1996), 304-310
[7] K. Gürlebeck: Some applications of the biharmonic equation, in: Fundamental Theories of Physics, Vol. 94, Ed. V. Dietrich, K. Habetha, and G. Jank: Clifford Algebras and their Applications in Mathematical Physics, Kluwer Acad. Publ., 1998, pp. 109—128
[8] K. Gürlebeck: On some classes of Pi-operators, in Dirac operators in analysis, (eds. J. Ryan and D. Struppa), Pitman Research Notes in Mathematics, No 394, 1998
[9] W. Sprößig, K. Gürlebeck, Methods of Quaternionic Analysis for the Treatment of Non-Linear Boundary Value Problems, in: T.M.Rassias (ed.), Mathematical Analysis and Applications, Hadronic Press, Inc., Florida, USA, 1999
[10] K. Gürlebeck: On weighted spaces of monogenic quaternion-valued functions, in F. Brackx et. al. (eds.), Clifford Analysis and Its Applications, Kluwer Acad. Publ. (2001), 81—89
[11] K.Gürlebeck and A. El-Sayed, On B^q spaces of hyperholomorphic functions and the Bloch space in R^3, Finite or Infinite Dimensional Complex Analysis and Applications, Le Hung Son (Ed.), W. Tutschke (Ed.), C.-C. Yang (Ed.), ADVANCES IN COMPLEX ANALYSIS AND ITS APPLICATIONS – 2, ISBN: 1-4020-7658-4, 2003, 395 pp.
[12] K. Gürlebeck, A. Hommel: On Discrete Stokes and Navier-Stokes Equations in the Plane, CLIFFORD ALGEBRAS: Application to Mathematics, Physics, and Engineering", Rafal Ablamowicz, Ed., Progress in Mathematical Physics, Birkhäuser, Boston, 2003; pp. 35—58
[13] K. Gürlebeck and W. Sprößig: Galpern-Sobolev Type Equations with Non-constant Coefficients, Trends in Mathematics: Advances in Algebra and Geometry, 301--310, Birkhäuser Verlag Basel, 2004
[14] K. Gürlebeck and A. El-Sayed Ahmed: On Series Expansions of Hyperholomorphic Functions, Trends in Mathematics: Advances in Algebra and Geometry, 113--129, Birkhäuser Verlag Basel, 2004
[15] I. Cacao, K. Gürlebeck, and S. Bock: Complete Orthonormal Systems of Spherical Monogenics - A Constructive Approach, in: Le H. S., W. Tutschke, S. Jain (Eds.), Methods of Complex and Clifford Analysis, SAS International Publications, Delhi, India, ISBN: 81-88296-01-5, 255—274
[16] Y. Makino, C. Hadlich, K. Gürlebeck, A. Kimura and O. Suzuki: Iteration Dynamical Systems of Discrete Laplacians on the Plane Lattice, in: A. Kameyame and H. Kokubu (Eds.), Recent Developments in Dynamical Systems, RIMS Kokyuroku 1552, Kyoto 2007, p.107-115
[17] K. Gürlebeck and Tran Quoc Viet: On some complete systems of monogenic rational functions, in: Le Hung Son, Wolfgang Tutschke (Eds.) Function Spaces in Complex and Clifford Analysis, Nat. Univ. Publ. Hanoi 2008, p. 156-169
[18] K. Gürlebeck and J. Morais, Geometric characterization of M-conformal mappings, accepted by Springer
[19] K. Gürlebeck and W. Sprößig, Fluid flow problems with quaternionic analysis – an alternative conception, accepted by Springer

Zeitschriftenbeiträge

[1] K. Gürlebeck: Zur optimalen Interpolation verallgemeinert analytischer Funktionen, WZ d. TH Karl-Marx-Stadt, 25 (1983), H.3, 324-325 (Depotinformation)
[2] W. Sprößig, K. Gürlebeck: A Hypercomplex Method of Calculating Stresses in Three-dimensional Bodies, Suppl. Rend. Circ. Mat. Palermo, Serie II, num 6, 1984, 271-284
[3] K. Gürlebeck: Interpolationsmethoden zur näherungsweisen Lösung elliptischer Randwertprobleme zweiter Ordnung, WZ d. TH Karl-Marx-Stadt, 26 (1984), H.2, 216-220
[4] K. Gürlebeck: Faktorisierung elliptischer Randwertprobleme und klassische Ansätze, WZ d. TH Karl-Marx-Stadt 27 (1985), H.1, 48-52
[5] K. Gürlebeck: Hypercomplex Factorization of the Helmholtz Equation, ZAA Bd. 5 (2) 1986, 125-131
[6] K. Gürlebeck, U. Lösch: Zur numerischen Lösung von Randwertproblemen für die biharmonische Gleichung, WZ d. TU Karl-Marx-Stadt 29 (1987) H.2, 200-203
[7] K. Gürlebeck, A. Schürer, W. Sprößig: Application of Boundary Collocation Methods in Physics and Engineering, WZ d. TU Karl-Marx-Stadt, 29 (1987), H.2, 168-174
[8] K. Gürlebeck, W. Sprößig: An application of quaternionic analysis to the solution of time-independent Maxwell equations and of Stokes' equation, Suppl. Rend. Circ. Mat. Palermo, Serie II, num. 14 (1987), 61-76
[9] K. Gürlebeck, W. Sprößig: A Leibniz rule and foundation of a discrete quaternionic analysis, Suppl. Rend. Circ. Mat. Palermo, Serie II, num. 16 (1987), 43-64
[10] K. Gürlebeck, W. Sprößig: A Unified Approach to Estimation of Lower Bounds for the First Eigenvalue of Several Elliptic Boundary Value Problems, Math. Nachr. 131 (1987), 183-199
[11] K. Gürlebeck : Interpolation and best approximation in spaces of monogenic functions, WZ d. TU Karl-Marx-Stadt, 30 (1988), H.1, 38-41
[12] K. Gürlebeck , W. Sprößig : A Quaternionic Treatment of Navier-Stokes Equations, Suppl. Rend. Circ. Mat. Palermo, Serie II, num. 22, 1989, 77-95
[13] K. Gürlebeck : Approximative solution of the stationary Navier-Stokes equations, Math. Nachr., 145 (1990), 297-308
[14] K. Gürlebeck , W. Sprößig, and U. Wimmer: Hypercomplex Function Theory for Consideration of non-linear Stokes Problems with variable viscosity, Complex Variables 22, 1993, pp. 195-202
[15] K. Gürlebeck: Zur Berechnung von Fundamentallösungen diskreter Cauchy-Riemann-Operatoren, ZAMM 74 (1994) 6, T 625-627
[16] K. Gürlebeck and A. Hommel: On Fundamental Solutions of the Heat Conduction Difference Operator, Z. Anal. Anw. (13) 1994, No.3, 425--441
[17] K. Gürlebeck und A. Hommel: Elemente einer diskreten Potentialtheorie, ZAMM 75 (1995) S II, 463—464
[18] K. Gürlebeck : Zur Theorie der Differenzenpotentiale, ZAMM 75 (1995) S II, 461—462
[19] K. Gürlebeck, F. Kippig: Complex Clifford Analysis and Boundary Value Problems, Advances in Applied Clifford Algebras, Vol. 5, No.1 (1995), 51—62
[20] K. Gürlebeck, U. Kähler: On a spatial generalization of the complex Pi-operator, Z. Anal. Anw. (15), 1996, 283-297
[21] K. Gürlebeck: On some operators in Clifford analysis, Contemporary Mathematics (212), 95—108
[22] W. Sprößig, K. Gürlebeck, On the treatment of fluid problems by methods of Clifford analysis, Mathematics and Computers in Simulation Vol. 44, No. 4, 1997, Elsevier Science, pp. 401—414
[23] K. Gürlebeck and U. Kähler: On a boundary value problem of the biharmonic equation, Math. Meth. Appl. Sci., Vol. 20, 867--883 (1997)
[24] K. Gürlebeck, U. Kähler, J. Ryan, and W. Sprößig: Clifford Analysis over unbounded domains, Advances in Applied Mathematics 19, 216--239 (1997)
[25] S. Bernstein, K. Gürlebeck: On a higher dimensional Miura transform, ``Complex Variables'', Vol. 38, 1999, pp. 307—319
[26] K. Gürlebeck, U. Kähler, M. Shapiro: On the Pi-operator in hyperholomorphic function theory, Advances in Applied Clifford Algebras, Vol. 9(1), 1999, pp. 23—4
[27] K. Gürlebeck, U. Kähler, M. Shapiro, L.M. Tovar: On Q_p-spaces of quaternion-valued functions, Complex Variables, Vol. 39, 1999, pp. 115—135
[28] K. Gürlebeck, H.R. Malonek: A hypercomplex derivative of monogenic functions in R^{n+1} and its applications, Complex Variables, Vol. 39, 1999, pp. 199--228
[29] J. Cnops, R. Delanghe, K. Guerlebeck, M.V. Shapiro: Qp-spaces in Clifford analysis, Adv. Appl. Clifford Algebras, 11(S1), 2001, 201-218
[30] Gürlebeck, A. Hommel: On Finite Difference Dirac Operators and Their Fundamental Solutions. Advances in Applied Clifford Algebras 11(S2) 89-106
[31] Cacao, K. Gürlebeck, and H. Malonek:, Monogenic Polynomials and L_2-Approximation, Advances in Applied Clifford Algebras 11(S2) , 47-60
[32] P. Cerejeiras, K. Gürlebeck, U. Kähler, and H.R. Malonek, A quaternionic Beltrami-Type equation and the existence of local homeomorphic solutions, ZAA 20(2001)1, 17—34
[33] K. Gürlebeck and H. R. Malonek: On strict inclusions of Q_p-spaces of quaternion-valued functions, Bull. Austral. Math. Soc., Vol. 64 (2001), 33—50
[34] H. Bahmann, K. Gürlebeck, M. Shapiro, and W. Sprößig: On a Modified Teodorescu Transform, Integral Transforms and Special Functions, Vol. 12, Number 3, pp.213-226
[35] K. Gürlebeck, M. Shapiro, W. Sprößig: On a modified Teodorescu transform for metaharmonic functions, J. Nat. Geom. 21, No.1-2, 17-38 (2002)
[36] K. Gürlebeck, A. Hommel: Finite Difference Cauchy--Riemann Operators and Their Fundamental Solutions in the Complex Case, Operator Theory, Vol. 142, 101-115
[37] K. Gürlebeck and A. Hommel, On Finite Difference Potentials and their Applications in a Discrete Function Theory, Math. Meth. Appl. Sciences, Vol. 25, Issue 16-18, pp. 1563-1576
[38] K. Gürlebeck and W. Sprößig, Representation theory for classes of initial value problems with quaternionic analysis, Math. Meth. Appl. Sciences, Vol. 25, Issue16-18, pp. 1371-1382
[39] O. Kornadt, R. Rudolph und K. Gürlebeck, Absenkung von Raumlufttemperaturen in Hitzeperioden, Zeitschrift für Wärmeschutz, Kälteschutz, Schallschutz, Brandschutz, 49/2002, 7-12
[40] H. Pastohr, O.Kornadt und K.Gürlebeck: Numerische Modellierung der Strömung im Aufwindkraftwerk, Bauphysik, Jg. 25 (2003), Nr.5, S.279-284
[41] H. Pastohr, O. Kornadt and K. Gürlebeck: Numerical and Analytical Calculations of the Temperature and Flow Field in the Upwind Power Plant, International Journal of Energy Research, Volume 28 Issue 6, pp. 495-510, (2004)
[42] K. Gürlebeck, A. Hommel: Discrete Vekua equations with constant coefficients In the complex and quaternionic case, Bull. Belg. Math. Soc. – Simon Stevin 11, No.5, 689-703 (2004)
[43] S. Bernstein, K.Gürlebeck, L. Resendis, L.M. Tovar: -functions and their harmonic majorants, Trends in Mathematics: Advances in Algebra and Geometry, 51—63, Birkhäuser Verlag Basel, 2004
[44] K. Gürlebeck, A. Hommel, On the Solution of Discrete Vekua Equations, Comput. Methods Funct. Theory 5 (2005), No. 1, 89—110
[45] S. Bernstein, K. Gürlebeck, L. F. Resendis O., and L. M. Tovar S.: Dirichlet and Hardy spaces of harmonic and monogenic functions, ZAA Vol. 24 (2005), No. 4, 635—662
[46] A. El-Sayed Ahmed, K. Gürlebeck, L. F. Resendis, and Luis M. Tovar S.: Characterizations for Bloch space by spaces in Clifford Analysis, Complex Variables and Elliptic Equations, Vol. 51, No. 2, February 2006, 119–136
[47] S. Bock, M. I. Falcao, K. Gürlebeck and H. Malonek: A 3-dimensional Bergman Kernel method with applications to rectangular domains, Journal of Computational and Applied Mathematics 189 (2006),67-79
[48] I. Cacao, K. Gürlebeck, and S. Bock:: On Derivatives of Spherical Monogenics, Complex Variables and Elliptic Equations, Vol. 51, Nos. 8–11, August–November 2006, 847–869
[49] N. Faustino, K. Gürlebeck, A. Hommel and U. Kähler: Difference potentials for the Navier-Stokes equations in unbounded domains, Journal of Difference Equations and Applications 12 (2006) 6, 577-596
[50] I. Cacao, K. Gürlebeck: On monogenic primitives of monogenic functions, Complex Variables, Volume 52, Issue 10 & 11, pages 1081 – 1100, October 2007
[51] K. Gürlebeck and J. Morais, On the Calculation of Monogenic Primitives, Advances in Applied Clifford Algebras, 17, No. 3, 481-496 (2007)
[52] K. Gürlebeck and R. Rudolph, Das Temperaturfeld – Grundlage für fundierte thermische Aussagen, Teil I, Zeitschrift für Wärmeschutz, Kälteschutz, Schallschutz, Brandschutz, (60) 2008, p. 37—47
[53] K. Gürlebeck, J. Morais, P. Cerejeiras, Borel-Caratheodory Type Theorem for Monogenic Functions, submitted to Complex Analysis and Operator Theory, Volume 3, Number 1 / März 2009, 99-112
[54] K. Avetisyan, K. Gürlebeck and W. Sprößig: Harmonic conjugates in weighted Bergman spaces of quaternion-valued functions, Computational Methods and Function Theory 9 (2009), No. 2, 593—608
[55] K. Gürlebeck, J. Morais, Bohr Type Theorem for Monogenic Power Series, Comput. Methods Funct. Theory 9 (2009), No. 2, 633—651
[56] K. Gürlebeck and S. Bock: On a Spatial Generalization of the Kolosov-Muskhelishvili Formulae, Math. Meth. Appl. Sciences 32 (2009), 223-240
[57] K. Gürlebeck and J. Morais, On mapping properties of monogenic functions, CUBO A Mathematical Journal, Vol.11, No. 01, (73–100). March 2009
[58] S. Bock and K. Gürlebeck: On a Polynomial Basis generated from the Generalized Kolosov-Muskhelishvili Formulae, Adv. Appl. Cliff. Alg. 19 (2009), 19,191-209, (DOI 10.1007/s00006-009-0156-5)
[59] K. Gürlebeck und R. Rudolph, Das Temperaturfeld – Grundlage für fundierte thermische Aussagen, Teil II, Zeitschrift für Wärmeschutz, Kälteschutz, Schallschutz, Brandschutz, (62), 2009, 46-56
[60] S. Bock and K. Gürlebeck: On a Generalized Appell System and Monogenic Power Series, Math. Meth. Appl. Sciences 2010, 33, 394-411, (online www.interscience.wiley.com DOI: 10.1002/mma.1213)
[61] Klaus Gürlebeck, Zhang Zhongxiang: Some Riemann Boundary Value Problems in Clifford Analysis, Math. Meth. Appl. Sciences 2010, 33, 287-302, (www.interscience.wiley.com DOI: 10.1002/mma.1168)
[62] K. Gürlebeck, Zhang Zhongxiang: Generalized integral representations for functions with values in C(V3;3), accepted by Chinese Annals of Mathematics, Series B. 2
[63] J. Morais, K. Gürlebeck: Real-Part Estimates for Solutions of the Riesz System in R^3, submitted to Complex Variables and Elliptic Equations
[64] K. Gürlebeck, J. Morais: On orthonormal polynomial solutions of the Riesz system in R^3, submitted to the Journal of the European Academy of Sciences on Computational and Applied Mathematics

Konferenz- und Tagungsbeiträge

[1] K. Gürlebeck, W. Sprößig, M. Tasche: Numerical realization of boundary collocation methods; Int. Series of Num. Math., Vol. 75, Birkhäuser-Verlag Basel, 1985, 206-217
[2] K. Gürlebeck: Application of Quaternionic Analysis to the Solution of Higher Order Elliptic Systems, in Proceedings des Symposiums ``Analytical and Numerical Methods in Quaternionic and Clifford Analysis'', Seiffen, 5.6.-7.6.96
[3] K. Gürlebeck, On some weighted spaces of quaternion-valued functions, Proceedings of the Second ISAAC Congress Vol. 2, (ed. H. Begehr, R.P. Gilbert, J. Kajiwara), Kluwer Acad. Publ. (2000), pp. 1387—1401
[4] K. Gürlebeck, A. Hommel, K. Volke: Beitrag zur mathematischen Modellierung der Zementhydration. Tagungsbericht zur 14. Internationalen Baustofftagung in Weimar, S. 2-0405—2-0414
[5] K. Gürlebeck, On polynomial approximations of monogenic functions, Memoria 3er Congreso Internacional de Ingeneria Electromecanica y de Sistemas, 25.--29.11.2002, IPN, Mexico City, pp.126—130
[6] K. Gürlebeck and A. El-Sayed, Integral norms for hyperholomorphic Bloch-functions in the unit ball of R^3, PROGRESS IN ANALYSIS, Proceedings of the 3rd International ISAAC Congress, Volume I, Editors H. Begehr, R. Gilbert, M.W. Wong, World Scientific, New Jersey, London, Singapore, Hong Kong, 2003
[7] K. Gürlebeck and A. Hommel, On Discrete Stokes and Navier-Stokes Equations in the Plane, PROGRESS IN ANALYSIS, Proceedings of the 3rd International ISAAC Congress, Volume I, Editors H. Begehr, R. Gilbert, M.W. Wong, World Scientific, New Jersey, London, Singapore, Hong Kong, 2003
[8] Cacao and K. Gürlebeck, A complete system of homogeneous monogenic polynomials and their derivatives, PROGRESS IN ANALYSIS, Proceedings of the 3rd International ISAAC Congress, Volume I, Editors H. Begehr, R. Gilbert, M.W. Wong, World Scientific, New Jersey, London, Singapore, Hong Kong, 2003
[9] H. Pastor, O.Kornadt und K.Gürlebeck: Numerische Untersuchungen zum Thermischen Strömungsverhalten im Aufwindkraftwerk, in: K. Gürlebeck, L. Hempel, C. Könke (Editors): Proceedings 16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar 2003, ISSN 1611-4086
[10] A. Hommel and K. Gürlebeck, Finite Difference Approximations of the Cauchy-Riemann Operators and the Solution of Discrete Stokes and Navier-Stokes Problems in the Plane, in: K. Gürlebeck, L. Hempel, C. Könke (Editors): Proceedings 16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar 2003, ISSN 1611-4086
[11] S. Bock, M. I. Falcao and K. Gürlebeck, Applications of Bergman kernel functions, in: K. Gürlebeck, L. Hempel, C. Könke (Editors): Proceedings 16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar 2003, ISSN 1611-4086
[12] K. Gürlebeck and I. Cacao: Monogenic Primitives of Monogenic Functions, in: Simos, T.E. (ed.); Tsitouras, Ch. (ed.): ICNAAM 2004. International conference on numerical analysis and applied mathematics 2004, Chalkis, Greece, September 10--14, 2004. Official conference of the European Society of Computational Methods in Science and Engineering (ESCMSE). [B] Weinheim: Wiley-VCH. (2004)
[13] S. Bock and K. Gürlebeck, A coupled Ritz-Galerkin approach using holomorphic and anti-holomorphic functions, 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, K. Gürlebeck and C. Könke (eds.), Weimar, Germany, 12–14 July 2006
[14] D. Constales, K. Gürlebeck, R.S. Kraußhar, W. Sprößig, Applications of quaternionic analysis in engineering, Electronic Proceedings 17th IKM 2006, (K. Gürlebeck, C. Könke Editors), Weimar, 12-14 July 2006
[15] S. Bock and K. Gürlebeck: On Hypercomplex Differential and Primitivation Operators with Applications to Representation Formulae of Linear Elastostatics, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (Eds.), Numerical Analysis and Applied Mathematics, American Institute of Physics (AIP) Conference Series 936, p. 717-720 , 2007
[16] K. Gürlebeck and J. Morais, Bohr’s Theorem for monogenic functions, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (Eds.), Numerical Analysis and Applied Mathematics, American Institute of Physics (AIP) Conference Series 936, p. 750-753, 2007
[17] K. Gürlebeck and J. Morais, Hadamard’s Real Part Theorem for Monogenic Functions, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (Eds.), Numerical Analysis and Applied Mathematics, American Institute of Physics (AIP) Conference Series 1048, p. 654-657, 2008
[18] S. Bock and K. Gürlebeck: On Recurrence Formulae of Solid Spherical Monogenics, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (Eds.), Numerical Analysis and Applied Mathematics, American Institute of Physics (AIP) Conference Series 1048, p. 638-641, 2008
[19] Susanne Nikulla, Carsten Könke, Klaus Gürlebeck, Thomas Most: Influence of the abstraction level in kinematical models of finite element formulations, E. Onate and D.R.J. Owen (Eds), X International Conference on Computational Plasticity, COMPLAS X c CIMNE, Barcelona, 2009
[20] K. Gürlebeck, J. Morais: On the development of Bohr phenomenon in the context of Quaterninonic analysis and related problems, submitted to the Proceedings of the 17-th ICFIDCA, Ho Chi Minh City 2009
[21] S. Bock and K. Gürlebeck: On an Orthonormal Basis of Solid Spherical Monogenics Recursively Generated by Anti-Holomorphic -Powers, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (Eds.), Numerical Analysis and Applied Mathematics, American Institute of Physics (AIP) Conference Series 1168 (2009) Vol. 1,pp. 765-768
[22] K. Gürlebeck, R. S. Kraußhar, and S. Poedts; A Quaternionic Approach to Treat the Ideally Stationary Magnetohydrodynamic Equations, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (Eds.), Numerical Analysis and Applied Mathematics, American Institute of Physics (AIP) Conference Series 1168 (2009) Vol. 1,pp. 789-792
[23] K. Gürlebeck and J. Morais: Local Properties of Monogenic Mappings, in: Th. E. Simos, G. Psihoyios and Ch. Tsitouras (Eds.), Numerical Analysis and Applied Mathematics, American Institute of Physics (AIP) Conference Series 1168 (2009) Vol. 1, pp. 797-800

Sonstige Veröffentlichungen

[1] Autorenkollektiv: Mathematische Grundlagen zu Warmbehandlungstechnologien von Industriestählen, WSR d. TH Karl-Marx-Stadt, 10/1982 (Mitautor)
[2] K. Gürlebeck: Über Interpolation und Approximation verallgemeinert analytischer Funktionen, TH Karl-Marx-Stadt, Wiss. Informationen 34, 1982
[3] K. Gürlebeck and W. Sprößig: Methods of Quaternionic Analysis for the Analytical and Numerical Consideration of Boundary Value Problems, Seminar Analysis - Operator equat. and numer. anal. 1987/1988, K.-W.-Institut für Math., Berlin 1988, 14-42
[4] K. Gürlebeck, C. Hadlich and O. Suzuki: Fixed Point Theorem and Periodicity Theorem for Dynamical Systems of Iterated Discrete Laplacians on the Plane Lattice, submitted to RIMS (Research Institute for Mathematical Sciences), Kyoto, Japan.