Dr. Jahed Naghipoor

Contact

Address    Marienstraße 15, Room 012

                99423 Weimar

Phone     +49 3643 584512    

Email       jahed.naghipoor[at]uni-weimar.de

Website   sites.google.com/site/jahednaghipoor1361

 


 


 

Research Interests

  • Mathematical Modeling of Controlled Drug Delivery System
  • Non-Fickian Reaction-Diffusion Equations
  • Application of PDE's in Biology and Medicine

Academic CV

2000 - 2004     Bachelor Degree in Applied Mathematics, University of Mazandaran, Iran

2005 - 2008     Master Degree in Applied Mathematics, University of Sistan and Baluchestan, Iran

2010 - 2014     Ph.D. Degree in Applied Mathematics, University of Coimbra, Portugal

Doctoral thesis "Non-Fickian Models for Biodegradable Drug Eluting Stents
Supervised by Prof. Jose Augusto Ferreira and Prof. Paula de Oliveira 

2014 - 2015      Researcher at Department of Mathematics, University of Coimbra, Portugal

2015 - today     Alexander von Humboldt postdoctoral researcher at Bauhaus University of Weimar

Mathematical Analysis and Numerical Simulation of Bioabsorbable Stents

Publication List

  1. [1] J. A. Ferreira, L. Gon ̧calves, J. Naghipoor, P. de Oliveira, and T. Rabczuk. The influence of atherosclerotic plaques on the pharmacokinetics of a drug eluted from bioabsorbable stents. Math. Biosci., 283:71–83, jan 2017.

    [2] J. A. Ferreira, J. Naghipoor, and P. de Oliveira. Analytical and numerical study of a cou- pled cardiovascular drug delivery model. J. Comput. Appl. Math., 275(Preprint Number 13– 43):433–446, feb 2015.

    [3] J. A. Ferreira, J. Naghipoor, and P. de Oliveira. The effect of reversible binding sites on drug release from drug eluting stents. Proceeding 14th Int. Conf. Math. Methods Sci. Eng., pages 519–530, 2015.

    [4] J. Naghipoor, J. A. Ferreira, P. de Oliveira, and T. Rabczuk. Tuning polymeric and drug properties in a drug eluting stent: A numerical study. Appl. Math. Model., 40(17-18):8067– 8086, sep 2016.

    [5] A. R. Soheili, J. Naghipoor, and S. A. Ahmadian. A gradient weighted moving finite-element method with polynomial approximation of any degree. Math. Probl. Eng., 2009(May):1–2, 2009.