Logo: Bauhaus-University Weimar
≡
  • go to main menu
  • jump to page menu
  • jump to breadcrumbs and menu
  • jump to subpage menu
  • jump to main content
  • jump to contacts and information
  • Webmail
    • for students
    • for staff (OWA)
  • Moodle
  • Course Catalogue
  • Message Boards
  • DE
  • EN
Shortcuts
  • Webmail
    • for students
    • for staff (OWA)
  • Moodle
  • Course Catalogue
  • Message Boards
  • Academic Advising
  • BAUHAUS.JOURNAL ONLINE
  • Calendar
  • University Library
  • Language Centre
  • Sports Centre
  • International Office
  • Digital Studieren (E-Learning)
  • Dining Menu
  • Emergency
  • Search people
  • DE
  • EN
Logo: Bauhaus-University Weimar Bauhaus-Universität Weimar
  • University
    • News
      • Saving Energy at the Bauhaus-Universität Weimar+
      • Aid for Ukraine from the Bauhaus-Universität Weimar+
      • Information regarding coronavirus
      • Bauhaus.Journal online
      • Bauhaus.Module
      • Academic Year
      • Fairs+
      • Current competitions
      • Job Openings+
      • Calendar+
      • Annual events+
      • Media Service+
      • Message Boards+
      • Course Catalogue
      • Wahlen an der Bauhaus-Universität Weimar+
      • Anniversary Publication
      -
    • Profile+
    • Structure+
    • Studies+
    • Teaching+
    • International+
    • Research and Art+
    • Transfer
    • Partners and Alumni+
    • Bauhaus100
    • Students Representatives
    • Mittelbauvertretung
    • Services+
    -
  • Architecture and Urbanism
    • News+
    • Profile+
    • Structure+
    • Studies+
    • Research and Art+
    • International+
    • Partners and Alumni
    • Services+
    +
  • Civil Engineering
    • News+
    • Profile+
    • Structure+
    • Studies+
    • Research+
    • International+
    • Partners and Alumni+
    • Services+
    +
  • Art and Design
    • News+
    • Profile+
    • Studies+
    • Structure+
    • Research and Art
    • International+
    • Partners and Alumni+
    • Services+
    +
  • Media
    • News+
    • Structure+
    • Studies+
    • Research+
    • International+
    • Partners and Alumni
    • 25-year anniversary
    • Services+
    +
  • {{link.title}}

nothing was found

WHAT WAS THE QUESTION?
  1. University
  2. News
  3. Bauhaus.Journal online
Contact and Information
  • Official Facebook account of the Bauhaus-Universität Weimar
  • Official Twitter page of the Bauhaus-Universität Weimar
  • Official instagram account of the Bauhaus-Universität Weimar
  • Official Vimeo channel of the Bauhaus-Universität Weimar
A healthy male test subject outfitted with an NHF therapy device sits in front of the Schlieren mirror. (Source: Bauhaus-Universität Weimar, photo: Amayu Wakoya Gena)
A healthy male test subject outfitted with an NHF therapy device sits in front of the Schlieren mirror. (Source: Bauhaus-Universität Weimar, photo: Amayu Wakoya Gena)
Schlieren imaging shows an exhalation with an NHF of 60 l/min. (Source: Bauhaus-Universität Weimar, photo: Amayu Wakoya Gena)
Schlieren imaging shows an exhalation with an NHF of 60 l/min. (Source: Bauhaus-Universität Weimar, photo: Amayu Wakoya Gena)
Published: 20 April 2021

COVID-19 Prevention: Investigating the Risk of Infection from Ventilated Patients

Together with intensive care physicians at the Kloster Grafschaft-Fachkrankenhaus, scientists at the Bauhaus-Universität Weimar are investigating how virus-infected air spreads among ventilated patients. The goal is to prevent the spread of infection in hospitals and care homes.

What happens when patients can no longer breathe on their own and need to be supported by machines? How far does infected air spread throughout a room? And what safety precautions do medical and nursing staff need to take? Respiratory specialists Dr. Dominic Dellweg and Dr. Jens Kerl together with Dr.-Ing. Conrad Völker, Amayu Wakoya Gena, and Dr. Hayder Alsaad from the Department of Building Physics are investigating these questions. Their research focusses on the procedures that are carried out on patients who are seriously ill with the coronavirus and require either full-face or nasal cannula breathing support (Nasal High-Flow Therapy).

Nasal High-Flow Therapy

In addition to conventional oxygen therapy using full-face masks, Nasal High-Flow Therapy (NHF) has become a widely accepted treatment for patients of all ages in recent years as it may prevent the need for invasive ventilation, which is associated with a high mortality rate in cases of the coronavirus. In NHF, the patient is administered warmed, humid, oxygen-enriched air through a nasal cannula. This forms strong air currents in front of the patient’s face.

The Air We Breathe Can Spread up to Four Metres across a Room

»Until now, it was uncertain how far exhaled air infected with pathogens could spread in a patient’s rooms with different airflows, putting medical staff at risk«, explains PD Dr. med. Dominic Dellweg, head physician of Pneumology I at the Fachkrankenhaus Kloster Grafschaft GmbH in Schmallenberg, one of the largest respiratory therapy centres in Germany. The experiment, which took place in the Schlieren Lab at the Bauhaus-Universität Weimar yielded new findings: With the help of the Schlieren mirror, the Weimar scientists are able to make even the smallest air currents in a room visible. Based on these details, the test series was repeated in studies with the physicians from North Rhine-Westphalia and modified to study various risk situations that occur in everyday intensive care medicine.

These studies showed that the range of infected exhaled air grows with increased ventilation pressure and can spread up to four metres across a room. Because of the potential increase in droplet-borne disease transmission, the safety distance was adjusted accordingly.

The study was conducted on a healthy male subject seated in front of the mirror and outfitted with an NHF therapy device. The subject’s breath was monitored with a standard sleep lab polygraph. The study looked at three scenarios with different NHF rates in addition to a comparison unassisted breathing scenario. The maximum aerosol dispersion for unassisted breathing without NHF was 0.99 metres; an NHF of 20 litres per minute resulted in a maximum dispersion of 2.18 m; an NHF of 40 l/min, 2.92 m; and an NHF of 60 l/min, 4.1 m.

It is important to note, however, that the Schlieren imaging technique shows only the density of fluids, in this case the exhalation cloud. This means that no conclusions can be made on the size and distribution of the various particles in the breath. Thus, further research is necessary to determine whether NHF simply increases the volume of the exhaled air, or whether NHF increases the absolute amount of virus expelled from the lungs.

The peer-reviewed study was recently accepted for publication in the prestigious journal Critical Care Medicine: https://journals.lww.com/ccmjournal/Abstract/9000/Exhalation_Spreading_During_Nasal_High_Flow.95277.aspx

Recently on 14 April 2021, researchers from the Department of Building Physics at the Bauhaus-Universität Weimar were awarded the 2021 »Thüringer Forschungspreis« in the category of »Angewandte Forschung« (applied research) for their work on »Optische Schlierenverfahren zur Visualisierung von Raumluftströmungen« (Schlieren method for the visualization of indoor airflow). 

Schlierenspiegel zeigt Ausbreitung von Atemluft bei der Beatmung

from Bauhaus-Universität Weimar

Click the Play button to load and view external content from Vimeo.com.

Automatically load and view external content from Vimeo.com (You can change this setting at any time via our »Data protection policy«.)

Related News

  • 07/08/2021Thüringens Ministerpräsident Ramelow besucht Bauhaus-Universität Weimar und informiert sich zum Forschungsthema »Optische Schlierenverfahren«
  • 07/07/2021Prime Minister of Thuringia Ramelow Visits the Bauhaus-Universität Weimar and Finds out More About Research into Optical Schlieren Methods
  • 04/14/2021Professorship of Building Physics Wins »Thüringer Forschungspreis 2021«
  • 03/20/2020Keep your distance: A new video from the Bauhaus-Universität Weimar illustrates how germs can spread through the air.
Back All News
  • Official Facebook account of the Bauhaus-Universität Weimar
  • Official Twitter page of the Bauhaus-Universität Weimar
  • Official instagram account of the Bauhaus-Universität Weimar
  • Official Vimeo channel of the Bauhaus-Universität Weimar
  • The Bauhaus-Universität Weimar uses Matomo for web analytics.
  • Print
  • Send by e-mail
  • Feedback this Page
  • Studies

    • Academic Programmes
    • Advising
    • Discover the university
    • Application
    • New Students
    • Course Catalogue
    • Moodle
  • Information

    • Alumni
    • Employees
    • Researchers
    • Visitors and Guests
    • Academic Staff
    • Emergency Information
    • Press and Media
    • Doctoral candidates
    • Students
    • Businesses
  • Services

    • Message Boards
    • Campus Maps
    • Sitemap
    • Media Service
    • Data Protection Policy
    • Accessibility Statement
    • Legal Notice
  • Contact

    • Contact form
  • Contact
  • Data protection policy
  • Accessibility Statement
  • Legal Notice
  • Sitemap
  • Internal
  • TYPO3
  • The Bauhaus-Universität Weimar uses Matomo for web analytics.
© 1994-2023 Bauhaus-Universität Weimar
  • Contact
  • Data protection policy
  • Accessibility Statement
  • Legal Notice
  • Sitemap
  • Internal
  • TYPO3

Accessibility panel

Simple language

Information about the Bauhaus-Universität Weimar in German.

Set contrast read more about this setting

changes from color to monochrome mode

contrast active

contrast not active

Darkmode for the lightsensitive read more about this setting

Changes the background color from white to black

Darkmode active

Darkmode not active

click- and focus-feedback read more about this setting

Elements in focus are visually enhanced by an black underlay, while the font is whitened

Feedback active

Feedback not active

Animations on this Website read more about this setting

halts animations on the page

Animations active

Animations not active