GMU:CyberSpace/electrochemical closed circuit system: Difference between revisions

From Medien Wiki
mNo edit summary
No edit summary
Line 21: Line 21:
For this work i was inspired by the thinking of how a complex system could find a way to organize itself and pay demand to the everchanging environment that it is in and also part of. Important works works for my context were done by Gordon Pask and Roman Kirschner. Gordon Pask was trying to find a system that could possibly assemble itself and adapt to stimuli of its surrounding. With his "Ear" he found a way to differentiate between two different audio frequencies through an electrochemical device. Roman Kirschner with "Roots" was especially interested in what transformations emergence can bring forward in a sufficiently open system.<br>
For this work i was inspired by the thinking of how a complex system could find a way to organize itself and pay demand to the everchanging environment that it is in and also part of. Important works works for my context were done by Gordon Pask and Roman Kirschner. Gordon Pask was trying to find a system that could possibly assemble itself and adapt to stimuli of its surrounding. With his "Ear" he found a way to differentiate between two different audio frequencies through an electrochemical device. Roman Kirschner with "Roots" was especially interested in what transformations emergence can bring forward in a sufficiently open system.<br>


For my work the emergence is an important aspect. Although each unit is a rather simple system with simple rules, the fractal structure that arises cannot be predicted. Still the result can be interpreted very easily. Either the gap is open or closed - zero or one. With this work i want emphase on the state in between two states. Virtually every process can be broken down to a composition of atomic decisions. When is the tipping point reached? When does a neuron "decide" to fire? When is a category not fitting any longer? In general: how does decision making look like?<br>
For my work the emergence is an important aspect. Although each unit is a rather simple system with simple rules, the fractal structure that arises cannot be predicted. Still the result can be interpreted very easily. Either the gap is open or closed - zero or one. With this work i want to emphasise the state in between two states. Virtually every process can be broken down to a composition of atomic decisions. When is the tipping point reached? When does a neuron "decide" to fire? When is a category not fitting any longer? In general: how does decision making look like?<br>


Another important aspect is the constantly growing fractal structure in each unit. It resembles a simplified process of a system to respond to its environment. The structure is the result of the system paying demand to the electric stimuli. It tries to find the most - energy - efficient way to close the gap. The "better" the structure the higher the current running through the unit the faster the growth. But faster growth also results in a faster wear off of the electrodes.<br>
Another important aspect is the constantly growing fractal structure in each unit. It resembles a simplified process of a system to respond to its environment. The structure is the result of the system paying demand to the electric stimuli. It tries to find the most - energy - efficient way to close the gap. The "better" the structure the higher the current running through the unit the faster the growth. But faster growth also results in a faster wear off of the electrodes.<br>