Bureaucrats, emailconfirmed, Administrators
5,664
edits
No edit summary |
|||
(7 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
</gallery> | </gallery> | ||
* Physarum Polycephalum exhibit a form of intelligence | * "Physarum Polycephalum exhibit a form of intelligence | ||
* When separated they will pull themselves back together | * When separated they will pull themselves back together | ||
* They also exhibit self-sacrifice | * They also exhibit self-sacrifice | ||
* They will gather and form a stalk and then a fruiting body | * They will gather and form a stalk and then a fruiting body | ||
* Those self making up the stalk will die. Those at the top will clump into a ball made of life spores (Bonner) | * Those self making up the stalk will die. Those at the top will clump into a ball made of life spores" (Bonner) | ||
https://www.youtube.com/watch?v=bkVhLJLG7ug&list=PLb14u5e_rEcSVd0ZjgEFHuggA6y7ozQQI | https://www.youtube.com/watch?v=bkVhLJLG7ug&list=PLb14u5e_rEcSVd0ZjgEFHuggA6y7ozQQI | ||
== Physarum Experiments == | == Physarum Experiments == | ||
Adamatzky (2010). Chapter 2 | HOWTO @ Adamatzky (2010). Chapter 2 | ||
<gallery> | <gallery> | ||
Line 33: | Line 33: | ||
== Physarum Machine == | == Physarum Machine == | ||
* [https://www.youtube.com/watch?v=2UxGrde1NDA Toshiyuki Nakagaki. 3-5 min | * [https://www.youtube.com/watch?v=2UxGrde1NDA Toshiyuki Nakagaki. 3-5 min] | ||
"Unconventional computing is an interdisciplinary of science where computer scientists, physicists, mathematicians, apply principles of information processing in natural systems to design novel computer devices and architectures" (Adamatzky 2007) | "Unconventional computing is an interdisciplinary of science where computer scientists, physicists, mathematicians, apply principles of information processing in natural systems to design novel computer devices and architectures" (Adamatzky 2007) | ||
Line 55: | Line 55: | ||
=== Kolmogorov Machine === | === Kolmogorov Machine === | ||
"Kolmogorov, or Kolmogorov-Uspensky, machines [Ko1, KU, US] are similar to Turing machines except that the tape can change its topology."(Gurevich) Also, as far as I understand, Kolmogorov Machine isn't described by discrete 0 and 1 values. Also its functions could be updated in real time over the recursive method. On the other hand both Turing Machine and Kolmogorov machine, could emulate each other, so at the end the difference is just in the way how the machines compute their functions. | |||
"Kolmogorov, or Kolmogorov-Uspensky, machines [Ko1, KU, US] are similar to Turing machines except that the tape can change its topology."(Gurevich) | |||
"Мы остановимся на следующих вариантах математического опреде ления вычислимой функции или алгоритма: | "Мы остановимся на следующих вариантах математического опреде ления вычислимой функции или алгоритма: | ||
Line 69: | Line 63: | ||
Г) Вычислительная машина Тьюринга [ И ] 3 ) . | Г) Вычислительная машина Тьюринга [ И ] 3 ) . | ||
Д) Финитный комбинаторный процесс Поста [13]. | Д) Финитный комбинаторный процесс Поста [13]. | ||
Е) Нормальный алгорифм А. А. Маркова [1], [2]." | Е) Нормальный алгорифм А. А. Маркова [1], [2]." (Колмогоров & Успенский 1958) | ||
"Kolmogorov machines tape similarly to Schönhage’s tape is a finite connected graph with a distinguished (active) node. They work upon partly recursive function, changing instructions in real time." (Gurevich) | "Kolmogorov machines tape similarly to Schönhage’s tape is a finite connected graph with a distinguished (active) node. They work upon partly recursive function, changing instructions in real time." (Gurevich) | ||
Line 93: | Line 87: | ||
https://www.youtube.com/watch?v=4sp9Efokv4o | https://www.youtube.com/watch?v=4sp9Efokv4o | ||
3. Toshiyuki Nakagaki. 3-5 min | 3. Toshiyuki Nakagaki. 3-5 min https://www.youtube.com/watch?v=2UxGrde1NDA | ||
== References == | == References == |