GMU:BioArt WS15/Iremnur Tokac: Difference between revisions

From Medien Wiki
Line 5: Line 5:


==First Experiments==
==First Experiments==
[[File:BioArt-1-petri-dish.png]]
[[File:BioArt-1-petri-dish.png]]
:an illustration of the experiment medium
:an illustration of the experiment medium
===The Chart of First Experiments===
===The Chart of First Experiments===
[[File:BioArt-2-Chart.png]]
[[File:BioArt-2-Chart.png]]
====Solutions with different type and amount of components were experimented and distinct crystallization morphologies were observed. According to the results, crystallization morphology was affected by the height of the solution, which contains water and MgSO4, in identical petri dishes. If ”h” increases, the bigger, rectangular prism shaped crystals appear. On the other hand, if “h” decreases, relatively a thin and linear crystal network occurs.====





Revision as of 22:51, 5 April 2016

Crystallization Morphology affected by Space

The Concept

<This project is an attempt to explore the crystallization process of MgSO4 and discuss whether it is affected by physical environment or not in terms of 3D geometries. The main concern of the project is to examine ways to manipulate the structure of output pattern of crystallization. Previous studies hinted that crystallization morphology differs based on the distinct height of the solution in identical containers. Therefore, the idea of testing different geometrical shapes as containers and observing the variety of crystallization outcomes as a project was occurred. The overall concept is to analyze complex structures like crystals by intervening the formalization process and evaluate the outcomes in comparison. After several experiments, we might able to unveil some computational system behind the crystal growth morphology.>

First Experiments

BioArt-1-petri-dish.png

an illustration of the experiment medium

The Chart of First Experiments

BioArt-2-Chart.png

Solutions with different type and amount of components were experimented and distinct crystallization morphologies were observed. According to the results, crystallization morphology was affected by the height of the solution, which contains water and MgSO4, in identical petri dishes. If ”h” increases, the bigger, rectangular prism shaped crystals appear. On the other hand, if “h” decreases, relatively a thin and linear crystal network occurs.

[1]