61
edits
No edit summary |
(Text about coding stuff) |
||
| (5 intermediate revisions by one other user not shown) | |||
| Line 16: | Line 16: | ||
==Technical implementation== | ==Technical implementation== | ||
[[File:Seminar 2.jpg|left|thumb| | [[File:Seminar 2.jpg|left|thumb|396x396px]] | ||
===Embedded systems development === | ===Embedded systems development === | ||
During our project, we used Visual Studio Code and Arduino to program and control motors based on sensor data. Our first challenge was to determine how the motor should move. We aimed to ensure that the motors moved only once per activation, producing a single tone. To achieve this, I created an initial test code to establish how to instruct the motor to move right when it was on the left and vice versa. | |||
Next, we needed to develop a pattern to simulate incoming sensor data. The second test code introduced random numbers to help us simulate a trigger value for the motors. This was combined with our previous motor movement code to create a preliminary response system. | |||
I then worked on enabling two motors to move independently. To accomplish this, I implemented two different random numbers so that each motor would move at a different "trigger value". Adjustments were made to delay times to introduce a more natural, randomized effect. | |||
To acquire real sensor data, we opted for an MQ-2 gas sensor, which detects combustible gases. We initially attempted to retrieve analog output values from one sensor. Since the raw sensor data wasn’t as representative as we needed, I decided to convert the readings into ppm (parts per million) for more meaningful analysis. | |||
The next step was to replace our previously used random numbers with actual gas concentration values measured by the sensor. I then expanded the system to incorporate six sensors and six motors, which required multiple iterations to perfect. A major challenge was implementing all sensor values, motors, and their corresponding variables into a function that allowed each sensor-motor pair to operate independently. We replaced the general delay time in the loop with millis() to enhance achieve that. | |||
[[File:SG90 9g Micro Servo.jpg|thumb|273x273px]] | |||
After measuring the gas concentrations produced by plants over time, I made several adjustments to optimize the installation. Each motor was assigned an individual trigger value based on the gas readings from its respective sensor. Since sensor readings were taken at short intervals and did not fluctuate significantly, motors would have been triggered too frequently, leading to excessive noise. To mitigate this, I introduced individual delay times for each motor before they could be triggered again. To create a more natural and less predictable sound pattern, I introduced a "random factor". The motor's delay time was then multiplied by this factor which was recalculated with each sensor reading, ensuring a more varied and pleasant auditory experience. | |||
Debugging print commands were added to the code to help monitor sensor functionality when connected to a computer. These were primarily for troubleshooting and not necessary for the final public installation. Although the code could have been optimized for brevity, I chose to keep it more detailed to maintain a clear overview of all sensors, motors, and timing adjustments. In the end, our system successfully produced tones in a random frequency, creating a dynamic and immersive experience. | |||
=== Technology === | |||
===Code=== | * ESP32 | ||
<small>(written by Hanna)</small> | * MQ-2 sensor for combustible gas | ||
* SG90 9g Micro Servo | |||
<gallery mode="packed"> | |||
File:Bread board.jpg | |||
File:SG90 9g Micro Servo 2.jpg | |||
File:SG90 9g Micro Servo 3.jpg | |||
File:Mq-2 sensor for combustible gas .jpg | |||
</gallery> | |||
=== Code === | |||
===== For the platformio.ini: ===== | |||
<syntaxhighlight lang="arduino"> | |||
[env:esp32dev] | |||
platform = espressif32 | |||
board = esp32dev | |||
framework = arduino | |||
lib_deps = roboticsbrno/ServoESP32@1.0.3 | |||
monitor_speed = 9600 | |||
</syntaxhighlight> | |||
===== Fort he main.cpp: ===== | |||
<syntaxhighlight lang="arduino"> | |||
#include <Arduino.h> | |||
// include the servo library | |||
#include <Servo.h> | |||
// timing | |||
unsigned long currentTime = 0; | |||
unsigned long lastTimeA = 0; | |||
unsigned long lastTimeB = 0; | |||
unsigned long lastTimeC = 0; | |||
unsigned long lastTimeD = 0; | |||
unsigned long lastTimeE = 0; | |||
unsigned long lastTimeF = 0; | |||
const int baseServoDelayTimeA = 17300; | |||
const int baseServoDelayTimeB = 11020; | |||
const int baseServoDelayTimeC = 15400; | |||
const int baseServoDelayTimeD = 12800; | |||
const int baseServoDelayTimeE = 8400; | |||
const int baseServoDelayTimeF = 6300; | |||
float randMultiplier = 1.0; | |||
long randNumber; | |||
//sensors | |||
const float sensorTriggerValueA = 700; | |||
const float sensorTriggerValueB = 520; | |||
const float sensorTriggerValueC = 650; | |||
const float sensorTriggerValueD = 880; | |||
const float sensorTriggerValueE = 950; | |||
const float sensorTriggerValueF = 1100; | |||
float getSensorValuePpm (int sensorPin); | |||
const int sensorA = 36; | |||
const int sensorB = 39; | |||
const int sensorC = 34; | |||
const int sensorD = 35; | |||
const int sensorE = 32; | |||
const int sensorF = 33; | |||
float gasValueSensorA = getSensorValuePpm (sensorA); | |||
float gasValueSensorB = getSensorValuePpm (sensorB); | |||
float gasValueSensorC = getSensorValuePpm (sensorC); | |||
float gasValueSensorD = getSensorValuePpm (sensorD); | |||
float gasValueSensorE = getSensorValuePpm (sensorE); | |||
float gasValueSensorF = getSensorValuePpm (sensorF); | |||
//servos | |||
const int servoPinA = 19; | |||
const int servoPinB = 18; | |||
const int servoPinC = 05; | |||
const int servoPinD = 17; | |||
const int servoPinE = 16; | |||
const int servoPinF = 04; | |||
Servo servoA; | |||
Servo servoB; | |||
Servo servoC; | |||
Servo servoD; | |||
Servo servoE; | |||
Servo servoF; | |||
boolean isLeftA; | |||
boolean isLeftB; | |||
boolean isLeftC; | |||
boolean isLeftD; | |||
boolean isLeftE; | |||
boolean isLeftF; | |||
//function declarations | |||
void playSound(unsigned long &lastTime, int sensorPin, Servo &servo, float &gasValueSensor, boolean &isLeft, int baseServoDelayTime, float sensorTriggerValue); | |||
float getSensorValuePpm (int sensorPin); | |||
void setup() { | |||
analogSetAttenuation(ADC_11db); | |||
Serial.begin(9600); | |||
servoA.attach(servoPinA); | |||
servoA.write(30); | |||
isLeftA = true; | |||
servoB.attach(servoPinB); | |||
servoB.write(30); | |||
isLeftB = true; | |||
servoC.attach(servoPinC); | |||
servoC.write(30); | |||
isLeftC = true; | |||
servoD.attach(servoPinD); | |||
servoD.write(30); | |||
isLeftD = true; | |||
servoE.attach(servoPinE); | |||
servoE.write(30); | |||
isLeftE = true; | |||
servoF.attach(servoPinF); | |||
servoF.write(30); | |||
isLeftF = true; | |||
} | |||
void loop() { | |||
currentTime = millis(); | |||
playSound(lastTimeA, sensorA, servoA, gasValueSensorA, isLeftA, baseServoDelayTimeA, sensorTriggerValueA); | |||
playSound(lastTimeB, sensorB, servoB, gasValueSensorB, isLeftB, baseServoDelayTimeB, sensorTriggerValueB); | |||
playSound(lastTimeC, sensorC, servoC, gasValueSensorC, isLeftC, baseServoDelayTimeC, sensorTriggerValueC); | |||
playSound(lastTimeD, sensorD, servoD, gasValueSensorD, isLeftD, baseServoDelayTimeD, sensorTriggerValueD); | |||
playSound(lastTimeE, sensorE, servoE, gasValueSensorE, isLeftE, baseServoDelayTimeE, sensorTriggerValueE); | |||
playSound(lastTimeF, sensorF, servoF, gasValueSensorF, isLeftF, baseServoDelayTimeF, sensorTriggerValueF); | |||
} | |||
//functions | |||
void playSound(unsigned long &lastTime, int sensorPin, Servo &servo, float &gasValueSensor, boolean &isLeft, int baseServoDelayTime, float sensorTriggerValue){ | |||
//generate multiplier and adjust delaytime | |||
randMultiplier = 0.7 + (random(0, 341) / 100.0); | |||
int adjustedDelayTime = baseServoDelayTime * randMultiplier; | |||
if (currentTime - lastTime >= adjustedDelayTime){ | |||
// check if timing works | |||
Serial.print("Random delayTime"); | |||
Serial.println(adjustedDelayTime); | |||
Serial.println("Triggering sensor reaading"); | |||
gasValueSensor = getSensorValuePpm(sensorPin); | |||
// check sensor value | |||
Serial.print("Sensor Value: "); | |||
Serial.println(gasValueSensor); | |||
if (gasValueSensor > sensorTriggerValue){ | |||
Serial.println("Triggering servo"); | |||
// move servo to play sound | |||
if (isLeft == true){ | |||
servo.write(0); | |||
isLeft = false; | |||
Serial.println("right"); | |||
} | |||
else{ | |||
servo.write(30); | |||
isLeft = true; | |||
Serial.println("left"); | |||
} | |||
Serial.println("Servo moved. Last Time updated."); | |||
} | |||
// update lastTime | |||
lastTime = currentTime; | |||
} | |||
} | |||
float getSensorValuePpm (int sensorPin) { | |||
float voltage = analogRead(sensorPin) * (5.0 / 1023.0); | |||
float RS_air = 10.0; | |||
float RL = 2.0; | |||
float ratio = RL / RS_air; | |||
float RS = ((5.0 / voltage) - 1.0) * RL; | |||
float ppm = 1000.0 * pow((RS / RS_air), ratio); | |||
return ppm; | |||
} | |||
</syntaxhighlight><small>(written by Hanna)</small> | |||
==Manual construction == | ==Manual construction == | ||
[[File: | [[File:Construction plan for the motor mount.jpg|thumb|340x340px]] | ||
I was responsible for the structural and mechanical implementation of the project since my strengths lie far more in this area than in writing computer code. Additionally, unlike Hanna, I have the necessary resources at home to craft. | I was responsible for the structural and mechanical implementation of the project since my strengths lie far more in this area than in writing computer code. Additionally, unlike Hanna, I have the necessary resources at home to craft. | ||
We needed a mount that would allow the servo motors to hover above the guitar strings so they could pluck them individually. The servo motors had to be positioned at a certain distance from each other to avoid interfering with one another when striking the strings. We had already identified this issue through a cardboard prototype. Since guitar picks were to be attached to the motors, increasing the radius of the strike, it made sense to always leave two strings between those being played. | We needed a mount that would allow the servo motors to hover above the guitar strings so they could pluck them individually. The servo motors had to be positioned at a certain distance from each other to avoid interfering with one another when striking the strings. We had already identified this issue through a cardboard prototype. Since guitar picks were to be attached to the motors, increasing the radius of the strike, it made sense to always leave two strings between those being played.[[File:Soldering.jpg|thumb|315x315px|left]] | ||
I decided to attach two motors to one bar. The construction sketch can be seen here: | I decided to attach two motors to one bar. The construction sketch can be seen here: | ||
| Line 84: | Line 281: | ||
===Winterwerkschau=== | ===Winterwerkschau=== | ||
The Winterwerkschau was a great success for our project. Contrary to our initial concerns, the adhesive held up perfectly, keeping the picks securely attached to the motors for both days of the exhibition. As a result, all the strings could be continuously played without any issues.<gallery mode="packed"> | The Winterwerkschau was a great success for our project. Contrary to our initial concerns, the adhesive held up perfectly, keeping the picks securely attached to the motors for both days of the exhibition. As a result, all the strings could be continuously played without any issues. | ||
When Hanna and I took our turn overseeing the exhibition, we were met with an incredible amount of interest and enthusiasm. Visitors were fascinated by our work, showering us with questions and curiosity. It was an incredibly rewarding experience that filled us with pride and reinforced our excitement about what we had created. | |||
All the hard work had truly paid off, and seeing our project resonate with others made the effort even more worthwhile. | |||
<small>(written by Fiene)</small><gallery mode="packed"> | |||
File:The Verdant Symphony 1.jpg | File:The Verdant Symphony 1.jpg | ||
File:The Verdant Symphony 2.jpg | File:The Verdant Symphony 2.jpg | ||
| Line 92: | Line 295: | ||
File:The Verdant Symphony 6.jpg | File:The Verdant Symphony 6.jpg | ||
File:Hanna and Fiene next to their work.jpg | File:Hanna and Fiene next to their work.jpg | ||
</gallery | </gallery> | ||
edits