i0-4 = Rechner, i5 = Zentralstation (bei Stern und Rad)
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
Für alle Ausdrücke gilt, wobei n die Anzahl an Vertices und b bzw. h die Breite bzw. Höhe eines Gitters, gemessen in Vertices, ist:
Verwendete Integer-Variablen: i, j, c, p, n, b, h for(i = 0; i < n; i++){ for(j = 0; j < n; j++){ c = i – j; p = 0; BEDINGUNG System.out.println(p); } System.out.println(""); } wobei BEDINGUNG stellvertretend steht für: Bus: if( c != 0 ) p = 1; Ring: if( c == 1 | c == -1 | i == n-1 & j == 0| j == n-1 & i == 0) p = 1; Rad: if( c == 1 | c == -1 | i == n-2 & j == 0| j == n-2 & i == 0 | (i == n-1 ^ j == n-1)) p = 1; Vollständiger Graph: if( c != 0) p = 1; Vollständiges Gitter: if( (c == -1 & j%b!=0) | (c == 1 & (j+1)%b!=0) | (c == -b ) | (c == b )) p = 1;
Stern e = v - 1 Bus e = v - 1 Ring e = v Rad (Stern + Ring) e = (2 * v) - 1 Binärbaum e = v - 1 Vollständiger Graph e = v * (v - 1) / 2 Vollständiges Gitter e = (b - 1) * h + (h - 1) * b für b = Breite und h = Höhe des Gitters Quadratisches Gitter e = 2 * (v - sqrt(v)) Toroid e = 2 * b * h für b = Breite und h = Höhe des Toroid-Gitters Quadratischer Toroid e = 2 * v
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
V | E01 | E02 | E03 | E04 | E05 | E06 | E07 | E08 | E09 | E10 | E11 | E12 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |