Zur Seitennavigation oder mit Tastenkombination für den accesskey-Taste und Taste 1 
Zum Seiteninhalt oder mit Tastenkombination für den accesskey und Taste 2 
Switch to english language
Startseite    Anmelden     
Logout in [min] [minutetext]
WiSe 2025/26

AI Hacking / Post-Generative Strategies for Diffusion Models - Einzelansicht

  • Funktionen:
  • Zur Zeit keine Belegung möglich
Grunddaten
Veranstaltungsart Fachmodul SWS 3
Veranstaltungsnummer Max. Teilnehmer/-innen 15
Semester WiSe 2025/26 Zugeordnetes Modul
Erwartete Teilnehmer/-innen 10
Rhythmus einmalig
Hyperlink  
Sprache englisch
Termine Gruppe: [unbenannt]
  Tag Zeit Rhythmus Dauer Raum Raum-
plan
Lehrperson Bemerkung fällt aus am Max. Teilnehmer/-innen
-. 13:30 bis 15:00 wöch.        
Gruppe [unbenannt]:
Zur Zeit keine Belegung möglich
 


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Hintzer, Jörn Erich, Prof., Dipl.-Künstler/in verantwortlich
Studiengänge
Abschluss Studiengang Semester Leistungspunkte
Leer Alle Studiengänge - 3
Zuordnung zu Einrichtungen
Visuelle Kommunikation
Bewegtbild / crossmedial
Universitätsentwicklung
Inhalt
Beschreibung

Focusing on the inner mechanics of these systems, the course explores how noise injection, cross-modal input, and latent space manipulation become tools for creative disruption, while inviting a rethinking of randomness, error, unpredictability in computational creativity.

The course is an introduction to post-generative practices, which defines as creative strategies for engaging with generative AI beyond tool-use and output optimization. Instead of treating AI models as opaque machines of production, we approach them as systems open to intervention, reinterpretation, and misuse.

Interdisciplinarity | he course brings together approaches from media art, computer science, experimental informatics, philosophy of technology, and design-based experimentation and offers a space where technical experimentation and creative exploration inform one another.

Learning Objectives

  • Understand the basic architecture and functioning of diffusion-based generative models, with a focus on visual media synthesis.
  • Develop practical skills in package management for beginner-level participants and use of version control tools.
  • Technical and creative fluency in developing experimental generative systems. Learn to challenge the default logic of machine learning systems.
  • Work with the ComfyUI to build and customize diffusion pipelines for image/video generation. The ability to create and modify custom nodes in ComfyUI (e.g. samplers, noise modules) using Python and PyTorch for advance participants. Develop skills to noise injection, and latent space manipulation, test non-standard inputs to trigger unexpected model behaviors.
  • Reflect on the aesthetic and cultural significance of generative AI through hands-on projects and creative outputs.
  • Develop skills in research, teamwork, and critical analysis

Didactic Concept | The course follows a practice-based learning methodology that combines technical instruction with experimentation. Students engage with generative diffusion models through a series of structured exercises, guided experiments, and open-ended projects.

The course is structured around a combination of weekly lectures, lab sessions, student-led presentations and an intensive hacking weekend with the contribution of a software developer. Lectures introduce core concepts, lab courses offer technical instruction in tools, and student paper presentations provide a platform for individual research. The hacking weekend provides space for intense experimentation and collaborative prototyping. This session also provides real-time support for developing experimental pipelines.

Bemerkung

The course is conducted as a „Students' Bauhaus.Module" by Funda Zeynep Ayguler (stud. MA KG). The mentorship lies withProf. Jörn Hintzer (KG). 

Voraussetzungen

No formal prerequisites. The course is open to advanced bachelor and master’s students from all faculties. Students from technical disciplines are expected to be familiar with Python programming, while students from artistic fields should have an interest in experimental approaches to AI.

Leistungsnachweis

At the end of the course, every student, will complete an individual or small group project. Students are expected to actively participate in discussions and weekend workshop, present their ongoing experiments, contribute to the collective exhibition, and develop a final project that reflects both technical engagement and conceptual depth. The grading criteria are as follows: Attendance (10%), Presentations/Exercises (20%), Contribution to the exhibition (10%), and the Final work (60%).

Zielgruppe

The course is conducted as a „Students’ Bauhaus.Module” and open to all Master students of the faculties of Architecture and Urbanism, Civil and Environmental Engineering, Art and Design, and Media. Before registering, please consult your academic advisor and clarify whether this course can be credited to your curriculum. If required, you can conclude a learning agreement (DE/EN) before the start of the course.


Strukturbaum
Die Veranstaltung wurde 2 mal im Vorlesungsverzeichnis WiSe 2025/26 gefunden:

BISON-Portal Startseite   Zurück Kontakt/Impressum Datenschutz