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Information Quality in Wikipedia

Situation

q extremely varying content quality

– everyone can edit Wikipedia, even anonymously

– heterogeneous community of Wikipedia authors

– edits are not reviewed before publication

q comprehensive manual quality assurance is unfeasible

– large data volumes, constantly evolving contents
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Situation
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– everyone can edit Wikipedia, even anonymously

– heterogeneous community of Wikipedia authors

– edits are not reviewed before publication

q comprehensive manual quality assurance is unfeasible

– large data volumes, constantly evolving contents

Previous work

q research question: “Is an article featured or not?”
[Hu et al., CIKM’07] [Blumenstock, WWW’08] [Dalip et al., JCDL’09] [Lipka and Stein, WWW’10]

Ü no practical support for Wikipedia’s quality assurance process

Ü less than 0.1% of the English Wikipedia articles are featured
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Quality Flaw Prediction in Wikipedia

Question

q How to improve the 99.9% non-featured Wikipedia articles?

Central idea

q automatic exploitation of human-defined cleanup tags [Anderka et al., WWW’11]
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Quality Flaw Prediction in Wikipedia

Question

q How to improve the 99.9% non-featured Wikipedia articles?

Central idea

q automatic exploitation of human-defined cleanup tags [Anderka et al., WWW’11]

– each tag defines a specific quality flaw

– tagged articles serve as human-labeled examples

– machine learning is used to predict flaws in untagged articles

Existing flaw prediction approaches

q one-class classification [Anderka et al., WWW’11, SIGIR’12]

q binary classification [Ferschke et al., CLEF’12, ACL’13]

q PU learning [Ferretti et al., CLEF’12]
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Problem Statement
Quality flaw prediction in Wikipedia [Anderka et al., SIGIR’12]

q 3.8 M English Wikipedia articles Ü D

q 445 quality flaws (cleanup tags) Ü F

q Build a classifier c : D → {1; 0} for each flaw f ∈ F ,
given a sample of articles containing f .
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Problem Statement
Quality flaw prediction using PU learning [Ferretti et al., CLEF’12]

q exploit untagged articles to improve the effectiveness of a classifier c

untagged Wikipedia articles? articles tagged with a flaw

– in Wikipedia, it is more than likely that many flaws are not yet identified

Ü PU learning: learning from Positive and Unlabeled examples [Liu et al., ICML’02]

– positive examples = articles tagged with a flaw

– unlabeled examples = untagged articles (either flawed or flawless)
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Problem Statement
Background: PU learning [Liu et al., ICML’02]

q set P of positive examples

q set U of unlabeled examples (containing both positive and negative examples)

q Build a classifier using P and U that can identify positive examples in U or
in a separate test set.

q two-stage approach:

1. identifying reliable negatives
– train a binary classifier using P and U

– apply this classifier to the examples in U

– consider all examples not classified as “positive” as reliable negatives

2. building the final classifier (non-iterative version)
– train a binary classifier using P and the set of reliable negatives
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Problem Statement
Crucial aspects in the Wikipedia setting

1. unknown (flaw-specific) class imbalances

q 1st stage: ratio between P and U

q 2nd stage: ratio between P and the set of reliable negatives

2. effects of sampling (essential in practice due to the large number of existing
Wikipedia articles)

q 1st stage: U is very large for most flaws

q 2nd stage: the set of reliable negatives can become considerably large

q have not—or only partially—addressed by Liu et al. and Ferretti et al.

Ü we show where in the PU learning procedure sampling is useful

Ü we analyze how different sampling strategies affect the flaw prediction
effectiveness
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Quality flaw prediction using PU learning
1st stage: identifying reliable negatives

Positive examples

P

Unlabeled examples

U1

Unlabeled examples

Training

U \ U1

Un

Up

q U1 is a sample from U

q training set is balanced, |P | = |U1|

Ü sampling strategy does not affect the flaw prediction performance

Ü random sampling
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Quality flaw prediction using PU learning
2st stage: building the final classifier

P

Training

Un U2
Sampling

q using U2 = Un worsened the performance by up to 50% [Ferretti et al., CLEF’12]

q sampling strategies:

M1 selecting |P | articles by random from Un

M2 selecting the |P | best articles from Un

(those assigned the highest confidence values by the first-stage classifier)

M3 selecting the |P | worst articles from Un

(those assigned the lowest confidence values by the first-stage classifier)
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Analysis and Empirical Evaluation
Experimental design

q evaluation corpus of the “1st international competition on quality flaw
prediction in Wikipedia”

– 1,592,226 English Wikipedia articles

– 208,228 tagged to contain one of ten important quality flaws

q 1st stage classifier: Naïve Bayes

q 2nd stage classifier: Support Vector Machine (SVM)

q balanced training sets: |P | = |U1| and |P | = |U2|

q random sampling in the 1st stage

q M1, M2, and M3 in the 2nd stage
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Analysis and Empirical Evaluation
Selecting reliable negatives (2nd stage sampling)

q flaw Unreferenced: |Un| = 29,635, |P | = |U2| = 1,000
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Analysis and Empirical Evaluation
Selecting reliable negatives (2nd stage sampling)

q flaw Unreferenced: |Un| = 29,635, |P | = |U2| = 1,000

low confidence high confidencesub sets
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M3 M2

Ü strategy M3 outperforms M2

Ü differences between M3 and M1 (random) are not statistically significant
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Analysis and Empirical Evaluation
Flaw prediction effectiveness

effectiveness of PU learning in terms of F1 score for the ten quality flaws

flaw name baseline proposed approach
[Ferretti et al., CLEF’12] using strategy M3

Advert 0.8214 0.9440 (+14.93%)
Empty section 0.8216 0.9394 (+14.34%)
No footnotes 0.8264 0.9826 (+18.90%)
Notability 0.7944 0.9886 (+24.45%)
Orphan 0.8986 0.9960 (+10.84%)
Original research 0.7638 0.9338 (+22.26%)
Primary sources 0.8068 0.9891 (+22.60%)
Refimprove 0.8362 0.9382 (+12.20%)
Unreferenced 0.8365 0.9432 (+12.76%)
Wikify 0.7396 0.9818 (+32.75%)

averaged over all flaws 0.8145 0.9637 (+18.31%)

18 September 4th 2014



Outline

q Motivation

q Problem Statement

q Quality Flaw Prediction Using PU Learning

q Analysis and Empirical Evaluation

q Summary

19 September 4th 2014



Summary
What we have done

1. shed light on the effects of sampling in PU learning

Ü sampling is necessary (in both stages)

Ü in general, sampling strategy M3 is favorable

2. improved PU learning approach for quality flaw prediction in Wikipedia

Ü average improvement of 18.31% compared to the baseline
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Summary
What we have done

1. shed light on the effects of sampling in PU learning

Ü sampling is necessary (in both stages)

Ü in general, sampling strategy M3 is favorable

2. improved PU learning approach for quality flaw prediction in Wikipedia

Ü average improvement of 18.31% compared to the baseline

Current work

q comparative study of the existing flaw prediction approaches
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Appendix



Article representation

q 65 state-of-the-art features, 30 new features

content characters, words, syllables, sentences, readability,
parts of speech, closed-class word sets, . . .

structure sections, tables, images, references, categories,
templates, lists, specific sections, . . .

network internal-, external-, interwiki-, broken links, PageRank,
citation measures, . . .

edit history age, currency, connectivity, revisions, reverts, editors,
cooperation, . . .
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