On the Use of Reliable-Negatives Selection Strategies in the PU Learning Approach for Quality Flaws Prediction in Wikipedia

Edgardo Ferretti and Marcelo Errecalde

Universidad Nacional de San Luis {ferretti,merreca}@unsl.edu.ar Maik Anderka

University of Paderborn maik.anderka@uni-paderborn.de

Benno Stein

Bauhaus-Universität Weimar benno.stein@uni-weimar.de

11th International Workshop on Text-based Information Retrieval, TIR'14 Munich, Germany

Information Quality in Wikipedia

Situation

- extremely varying content quality
 - everyone can edit Wikipedia, even anonymously
 - heterogeneous community of Wikipedia authors
 - edits are not reviewed before publication

large data volumes, constantly evolving contents

Information Quality in Wikipedia

Situation

- extremely varying content quality
 - everyone can edit Wikipedia, even anonymously
 - heterogeneous community of Wikipedia authors
 - edits are not reviewed before publication

large data volumes, constantly evolving contents

Previous work

- research question: "Is an article featured or not?"

 [Hu et al., CIKM'07] [Blumenstock, WWW'08] [Dalip et al., JCDL'09] [Lipka and Stein, WWW'10]
- no practical support for Wikipedia's quality assurance process
- → less than 0.1% of the English Wikipedia articles are featured

Quality Flaw Prediction in Wikipedia

Question

How to improve the 99.9% non-featured Wikipedia articles?

Central idea

automatic exploitation of human-defined cleanup tags [Anderka et al., www'11]

Quality Flaw Prediction in Wikipedia

Question

□ How to improve the 99.9% non-featured Wikipedia articles?

Central idea

- automatic exploitation of human-defined cleanup tags [Anderka et al., www'11]
 - each tag defines a specific quality flaw
 - tagged articles serve as human-labeled examples
 - machine learning is used to predict flaws in untagged articles

Existing flaw prediction approaches

- one-class classification [Anderka et al., WWW'11, SIGIR'12]
- binary classification [Ferschke et al., CLEF'12, ACL'13]
- □ **PU learning** [Ferretti et al., CLEF'12]

Outline

- Motivation
- Problem Statement
- Quality Flaw Prediction Using PU Learning
- Analysis and Empirical Evaluation
- Summary

Quality flaw prediction in Wikipedia [Anderka et al., SIGIR'12]

- $exttt{ iny}$ 3.8 M English Wikipedia articles $exttt{ o}$ D
- lue 445 quality flaws (cleanup tags) widtheta F
- □ Build a classifier $c: D \to \{1; 0\}$ for each flaw $f \in F$, given a sample of articles containing f.

Quality flaw prediction using PU learning [Ferretti et al., CLEF'12]

 $lue{}$ exploit untagged articles to improve the effectiveness of a classifier c

- in Wikipedia, it is more than likely that many flaws are not yet identified

- → PU learning: learning from *Positive* and *Unlabeled* examples [Liu et al., ICML'02]
 - positive examples = articles tagged with a flaw
 - unlabeled examples = untagged articles (either flawed or flawless)

Background: PU learning [Liu et al., ICML'02]

- \Box set *P* of positive examples
- \Box set U of unlabeled examples (containing both positive and negative examples)
- $exttt{ iny Build}$ a classifier using P and U that can identify positive examples in U or in a separate test set.
- two-stage approach:
 - 1. identifying reliable negatives
 - train a binary classifier using P and U
 - apply this classifier to the examples in U
 - consider all examples not classified as "positive" as reliable negatives
 - 2. building the final classifier (non-iterative version)
 - train a binary classifier using P and the set of reliable negatives

Crucial aspects in the Wikipedia setting

- 1. unknown (flaw-specific) class imbalances
 - \Box 1st stage: ratio between *P* and *U*
 - \square 2nd stage: ratio between P and the set of *reliable negatives*
- 2. effects of sampling (essential in practice due to the large number of existing Wikipedia articles)
 - \Box 1st stage: *U* is very large for most flaws
 - □ 2nd stage: the set of *reliable negatives* can become considerably large
 - have not—or only partially—addressed by Liu et al. and Ferretti et al.
- → we show where in the PU learning procedure sampling is useful
- we analyze how different sampling strategies affect the flaw prediction effectiveness

Outline

- Motivation
- Problem Statement
- Quality Flaw Prediction Using PU Learning
- Analysis and Empirical Evaluation
- Summary

Quality flaw prediction using PU learning

1st stage: identifying *reliable negatives*

- \Box training set is balanced, $|P| = |U_1|$
- sampling strategy does not affect the flaw prediction performance
- random sampling

Quality flaw prediction using PU learning

2st stage: building the final classifier

- ullet using $U_2=U^n$ worsened the performance by up to 50% [Ferretti et al., CLEF'12]
- sampling strategies:
 - M_1 selecting |P| articles by random from U^n
 - M_2 selecting the |P| best articles from U^n (those assigned the highest confidence values by the first-stage classifier)
 - M_3 selecting the |P| worst articles from U^n (those assigned the lowest confidence values by the first-stage classifier)

Outline

- Motivation
- Problem Statement
- Quality Flaw Prediction Using PU Learning
- Analysis and Empirical Evaluation
- Summary

Experimental design

- evaluation corpus of the "1st international competition on quality flaw prediction in Wikipedia"
 - 1,592,226 English Wikipedia articles
 - 208,228 tagged to contain one of ten important quality flaws
- 1st stage classifier: Naïve Bayes
- □ 2nd stage classifier: Support Vector Machine (SVM)
- \Box balanced training sets: $|P| = |U_1|$ and $|P| = |U_2|$
- random sampling in the 1st stage
- \square M_1 , M_2 , and M_3 in the 2nd stage

Selecting *reliable negatives* (2nd stage sampling)

 \Box flaw *Unreferenced*: $|U^n| = 29,635$, $|P| = |U_2| = 1,000$

Selecting *reliable negatives* (2nd stage sampling)

 \Box flaw *Unreferenced*: $|U^n| = 29,635, |P| = |U_2| = 1,000$

- \rightarrow strategy M_3 outperforms M_2
- \rightarrow differences between M_3 and M_1 (random) are not statistically significant

Flaw prediction effectiveness

effectiveness of PU learning in terms of F1 score for the ten quality flaws

flaw name	baseline [Ferretti et al., CLEF'12]	proposed approach using strategy M_3
Empty section	0.8216	0.9394 (+14.34%)
No footnotes	0.8264	0.9826 (+18.90%)
Notability	0.7944	0.9886 (+24.45%)
Orphan	0.8986	0.9960 (+10.84%)
Original research	0.7638	0.9338 (+22.26%)
Primary sources	0.8068	0.9891 (+22.60%)
Refimprove	0.8362	0.9382 (+12.20%)
Unreferenced	0.8365	0.9432 (+12.76%)
Wikify	0.7396	0.9818 (+32.75%)
averaged over all flaws	0.8145	0.9637 (+18.31%)

Outline

- Motivation
- Problem Statement
- Quality Flaw Prediction Using PU Learning
- Analysis and Empirical Evaluation
- Summary

Summary

What we have done

- 1. shed light on the effects of sampling in PU learning
 - → sampling is necessary (in both stages)
 - \rightarrow in general, sampling strategy M_3 is favorable
- 2. improved PU learning approach for quality flaw prediction in Wikipedia
 - → average improvement of 18.31% compared to the baseline

Summary

What we have done

- 1. shed light on the effects of sampling in PU learning
 - → sampling is necessary (in both stages)
 - \rightarrow in general, sampling strategy M_3 is favorable
- 2. improved PU learning approach for quality flaw prediction in Wikipedia
 - → average improvement of 18.31% compared to the baseline

Current work

comparative study of the existing flaw prediction approaches

Thank you!

maik.anderka@uni-paderborn.de

Article representation

□ 65 state-of-the-art features, 30 new features

```
content characters, words, syllables, sentences, readability, parts of speech, closed-class word sets, . . .
```

structure sections, tables, images, references, categories, templates, lists, specific sections, . . .

network internal-, external-, interwiki-, broken links, PageRank, citation measures, . . .

edit history age, currency, connectivity, revisions, reverts, editors, cooperation, . . .