Keyword Extraction using Word Co-occurrence
TIR 2010, Bilbao 31 August 2010

Christian Wartena (Novay)
Rogier Brussee (Univ. of Applied Sciences Utrecht, presenter)
Wout Slakhorst (Novay)
Problem description

- Keywords used for organising and retrieval of documents (including non textual ones)
- Problem:
 - Determine keywords automatically

- Operational problem:
 - Define relevance measure of terms
 - Select collection of terms based on relevance
 - Here, just rank
Keywords, world knowledge, informativity

- Relevance of term as keyword depends on:
 - **Importance** of term for the *document*
 - **Discriminative power** of term within *document collection*
 - **A priori criteria**
 - in a thesaurus
 - right word class,
 - non stopword,
 - ...
World knowledge from statistics

• Problem: What can we do if we **do** have access to large document collection?
 – assuming it is a natural document collection

• Importance in the doc collection is (hopefully) a proxy for the importance of terms in “the world”.
 – Importance w.r.t. everything

• Statistics of the collection becomes a source of world knowledge
 – OK to use broad external world knowledge
 • E.g. word class of terms
Predicting the term distribution

• **keyword** is short summary of content of a document

• Use **term distribution** of the document as proxy for the content
 – Bag words model.
 – Distributional hypothesis (Harris 1954)

• Good keywords should **predict** the term distribution of the document
Everything is a distribution

• **Term distribution** of a document:
 – $q_d(t)$ is the term distribution of d
 – “The fraction of term occurrences found in d, matching t”

• **Document distribution** of a term
 – $Q_z(d)$ is the document distribution of z
 – “The fraction of term occurrences matching z, found in d”

• **Background distribution** of the corpus
 – $q(t)$ is the fraction of term occurrences matching t
Co-occurrence distribution of a term

- Co-occurrence distribution of a term

\[
\bar{p}_z(t) = \sum_d Q_z(d)q_d(t)
\]

- Average distribution of terms co-occurring with \(t \)
Co-occurrence of tags
“average tag cloud”
Co-occurrence of tags
“average tag cloud”
Co-occurrence of tags
“average tag cloud”

\[Q(d_2|z) \]

\[q(t_3|d_1) \quad q(t_3|d_2) \]

\[q(t_1|d_1) \quad q(t_2|d_1) \]

\[Q(d_1|z) \]

\[q(t_4|d_2) \quad q(t_5|d_2) \]
Relevance measure for terms:

- Relevance measure for term z
 - Importance: __
 - Closeness of p_z to document distribution q_d
 - Specifity __
 - Awayness of p_z from background q

- \rightarrow need to specify distance measure!
Different distance measures for distributions

- **Kullback Leibler divergence** $D(p||q)$
 - #bits per term saved by compression on a term stream using true distribution p instead of estimate q.
 - Infinite if p is not divisible by q!

- **Jensen Shannon divergence** $JSD(p,q)$
 - #bits per term saved by compression using streams distributed like p and q separately instead of mixture

- **Naive correlation coefficient** $r(p,p';q)$
 - Cosine similarity of $(p-q)$ and $(p'-q)$
Relevance measures for terms

- Only weigh closeness of term to document distribution

\[jsd(z, d) = JSD(p_z, q_d) \]

- Weigh closeness of term to document and awayness to corpus

\[\Delta(z, d) = D(p_z || q_d) - D(p_z || q) = \sum_t p_z(t) \log \left(\frac{q_d(t)}{q(t)} \right) \]

- Correlate differences

\[r(z, d) = r(p_z, q_d ; q) \]
Evaluation

• Use 11000 ACM abstracts with keywords.
 – #keywords = 1—10, av = 4.5
 – 27336 distinct keywords,
 – 21634 used only once,
 – 2 used more than 100 times.
 – 21642, consists of more than one word.

• UIMA and GATE based pipeline
Multiword detection

• Imperative to detect multiwords as candidate terms!
 – Algorithm: detect superabundant combinations taking word class into account using t-test (see Manning and Schütze)
 – detection algorithm identified 4817 multiwords.
 – Results sensitive to multiword extraction algorithm ☹, but all methods evaluated suffer ☺.
 – Only 52% of articles has a keyword that is selected as a candidate term after preprocessing. 52% is optimal!
 – Selected terms may be perfectly acceptable keywords
Evaluation BBC dataset

- 2879 BBC Program descriptions (Many very short)
 - #keywords = 1 -- 22 keywords, av = 2.9
 - 1748 distinct keywords,
 - 898 used once
 - 8 used more than a 100 times,
 - 792 keywords consist of multi word.

- Multiword detection algorithm found 168 multiwords.

- 57% of articles has a keyword selected as a candidate term
11000 ACM abstracts
2879 BBC abstracts
Conclusion

• Using co-occurrence data improves on tf-idf
• Slightly naive correlation coefficient works best.
• There is room for improvement
 – Christian Wartena has recently gotten good results with recommendation by using some clustering, and with doc retrieval on keywords (CLEF).
 – Good multiword detection is really important.