Scalable Recursive Top-Down Hierarchical Clustering Approach with implicit Model Selection for Textual Data Sets

Markus Muhr, Vedran Sabol, Michael Granitzer
Know-Center GmbH & Graz University of Technology

http://www.know-center.at
Outline

- Motivation
 - Facetted Retrieval
 - Scatter/Gather
 - Visual Analysis of unstructured document sets

- Clustering Approach
 - Overview
 - Growing k-means
 - Modifications

- Experiments
 - Visual Analysis
 - Inex
Motivation

Facetted Retrieval
Motivation

Scatter/Gather [Cutting et. al. 1992]
Motivation

Motivation
InfoSky + Scatter/Gather

- Automatic creation of the cluster hierarchy while retaining InfoSky’s analysis capabilities

Questions
- What is an efficient hierarchical clustering algorithm therefore?
- How to combine statistical data set properties with visual requirments?
Hierarchical, top-down, polythetic, document clustering approach

Dynamic cluster structure on each level of the hierarchy supporting splitting and merging of clusters.

Constraints on the maximum and minimum number of elements per hierarchy level

Resulting reduced computational costs of the layout algorithm

Scalable to datasets consisting of millions of documents with a reasonable trade-off between runtime and accuracy

Top-Down, scalable clustering algorithm for creating a topical hierarchy
Clustering Overview

Divide and conquer: decompose into tasks starting at the root node

For every task

- **Step 1**: Preprocess documents to be clustered
 - Bag-of-Words, BM 25, cosine inner product
- **Step 2**: Cluster documents using a flat clustering algorithm
- **Step 3**: Split and merge clusters till constraints are met
- **Step 4**: Recursion: Evaluate the stopping criterion for dividing into further sub-tasks
- **Step 5**: Cluster Labeling
- **Step 6**: Project clusters into a 2 dimensional space
Clustering
Step 2: Clustering Algorithm (1/4)

Given a set of documents X, find a set of K groups of similar documents (clusters)

- Utilize existing clustering methods
 - HAC, DBScan or Chameleon $> O(n^2)$
 - BIRCH fast and storage efficient, but order dependent

- Growing k-means -
 - Online Competitive Learning with Winner-takes it all approach
 - trade-off between runtime and accuracy [Zhao and Karypis 02]
 - Allows for efficient model selection (determine k)
Clustering
Step 2: Clustering Algorithm (2/4)

Algorithm 1: Growing Spherical K-Means

input:
\(\mathcal{X} = \{x_1, \ldots, x_N\} \) with \(x_i \in \mathbb{R}^d \), \(K \), \(l \), \(\eta \), \(\nu \)
output:
\(\mathcal{C} = \{c_1, \ldots, c_K\} \), \(\mathcal{Y} = \{y_1, \ldots, y_N\} \) with \(y_n \in \{1, \ldots, K\} \)

steps:

1. Initialize centroids \(c_1 \) and \(c_2 \) by a seeding mechanism.
2. For \(m = 2 \) to \(K \) do:
 - For \(n = 1 \) to \(N \) do:
 - \(y_p = y_n \)
 - \(y_n = \arg \max_{1 \leq k \leq m} x_n^T c_k \)
 - \(c_{y_n} = c_{y_n} + \eta x_n \)
 - \(c_{y_p} = c_{y_p} - \nu x_n \)
 - If \(\|c_{y_n}\| = 1.0 > l \) then
 - \(c_{y_n} = \frac{c_{y_n}}{\|c_{y_n}\|} \)
 - For \(n = 1 \) to \(N \) do:
 - \(y_n = \arg \max_{1 \leq k \leq m} x_n^T c_k \)
 - \(s_k = s_k + \max_{1 \leq k \leq m} x_n^T c_k \)
 - If \(m < K \) then
 - \(c_i = \arg \min_{1 \leq k \leq m} S(c_k) \)
 - \(x_j = \arg \min_{x \in \mathcal{X}_i} x^T c_i \) with \(\mathcal{X}_i = \{x_n | y_n = i\} \)
 - \(c_t = \frac{c_i - x_j}{2}, \mathcal{C} = \mathcal{C} \cup \{c_t\} \)

Init and loop for maximum \(k \)-clusters

Update cluster hypothesis

Runtime improvement of centroid update

Assign documents and average similarity

Create \(m \)-th centroid
Model Selection methods

Obtain fitness criterion for different number of clusters (Bayesian Information Criterion (BIC), Stability based approaches)

Monotonical increasing/decreasing

Overtraining on the data

Determine the "best cluster number" using knee-point detection [Zhao et. al. 2008]

Efficient calculation for the growing k-means by simply calculating the fitness criterion for each new centroid
Heuristics

Efficient update rules [Zhong 2005]

Move a fraction of the distance between sample and centroid

Simply update the angle and ignore non unit length

Track norm changes and rescale after norm exceeds numerical boundaries

\[c_{yn} = c_{yn} + \eta x_n \]
\[c_{yp} = c_{yp} - \nu x_n \]
\[\text{if } ||c_{yn}|| - 1.0 > l \text{ then } \]
\[c_{yn} = \frac{c_{yn}}{||c_{yn}||} \]

Decreasing learning rate with the size of the cluster for balancing

\[\eta = 1/|\sqrt{\lambda_k(x)}| \]
Split and Merge Clusters to fulfill the following constraints

- **# Cluster at one level**
 - Merge the most similar cluster if \#cluster > maximum number of clusters
 - Split the least coherent or biggest cluster if \#cluster < minimum number of clusters

- **# documents in a cluster**
 - Below the Maximum number of documents for a cluster → cluster size for browsing
 - More than 1.5 times the upper limit to ensure meaningful clustering at next hierarchical level

If all clusters fulfill this constraint, cluster recursively (Step 4)
Clustering
Step 5&6: Labeling & Projection

Labeling via Jensen Shannon Divergence

- JSD best suited
- Exploit hierarchical structures (not focus of this work)

Projection [Andrews et. Al. 2004]

- Force directed placement $O(n^3)$
- Recursive application on cluster hierarchy using document and cluster centroids as points to layout
- Due to the constraints we achieve a runtime of roughly $O(n\times\log(n))$
- Voronoi inscription of rectangular Layout
Experiments

Clustering based Visualisation
Experiments
Clustering based Visualisation

Preliminary user evaluation

Combination of visualisation and standard components helpful for explorative tasks [Andrews et. Al. 2002]

Improved interaction and navigation paradigms to support explorative search tasks

Patent analysis tasks improved in real world use case

Suitable for high recall search tasks

Detailed evaluation still missing.
Experiments
INEX Clustering

- Initiativ for Evaluation of XML Retrieval
- XML Mining Track – Cluster the English Wikipedia
 - Small data set 54k documents
 - Large data set 2.6 Million Documents
 - Preprocessed document vectors (uni and bi-grams)
- Ground truth provided by YAGO ontology, but no hierarchical structure
- Document assigned to each cluster on the path to facilitate multi cluster assignment as it is the case in Wikipedia
Experiments
INEX Clustering

- 10,467 Clusters for the small data set
 - 4 Minutes to compute on a 16GB Quad Core including I/O

<table>
<thead>
<tr>
<th>MacroPurity</th>
<th>BIC</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>73k Categories</td>
<td>0.4959</td>
<td>0.4945</td>
</tr>
<tr>
<td>12k Categories</td>
<td>0.5473</td>
<td>0.5303</td>
</tr>
</tbody>
</table>

- 133,704 Clusters on the large data set
 - Runtime 2 hours
 - 348 k Categories: Macro Purity of 0.4457
 - 12k Categories: Macro Purity of 0.5359

Clusters appear to be reasonable, but good evaluation strategy remains an open issue

- High level clusters are more important
- Accurate ground truth reflecting good browsing strategies
Summary & Conclusion

Motivation: Support explorative search tasks via Retrieval by browsing

Needed: Scalable Clustering algorithm
- Hierarchie Layout as constraint
- Model selection

Top-down, recursive algorithm with different model selection strategy

Experiments
- Used in visual analysis application
- INEX Clustering evaluation

Evaluation for explorative analysis task remains an open problem
Thanks for your attention

Questions?

Michael Granitzer
Scientific Director
Know-Center Graz
Inffeldgasse 21a
8020 Graz

+43 316 873 9263
mgrani@know-center.at
www.know-center.at