Author Identification Using Semi-supervised Learning

Ioannis Kourtis and Efstatios Stamatatos

University of the Aegean
Outline

• Introduction
• The proposed method
 – Common n-grams
 – SVM
 – Semi-supervised learning
• Evaluation
 – Tuning the model parameters
 – Results
• Conclusions
Author Identification

• Authorship attribution vs. authorship verification
• Closed-set vs. open-set classification
• Text representation
 – Low-level (e.g., char n-grams) vs. high-level (e.g., syntactic) features
• Classification method
 – Profile-based vs. instance-based paradigm
One Text vs. Groups of Texts

• Most author identification methods are based on a fixed and stable training set
• There are many cases where we need to decide about the authorship of groups of texts
 – Alternatively, a long text (a book) of unknown authorship can be segmented into multiple parts
• Test sets can be used as unlabeled examples
• Semi-supervised learning methods can then be used

• Guzman-Cabrera et al. (2009) proposed the use of unlabeled examples found in the Web to enrich the training set
The Proposed Method

- We propose a combination of two well-known classification methods
 - Common n-grams
 - Support Vector Machines
- Both methods are based on character n-gram representation
- Test texts are used as unlabeled examples
- A semi-supervised learning method enrich the training set
- Applied to closed-set classification tasks
Common n-grams

- A profile-based method
- Originally proposed by Keselj et al. 2003
- Alternative dissimilarity measure proposed by Stamatatos, 2007

\[
d_1(P(x), P(T_a)) = \sum_{g \in P(x)} \left(\frac{2(f_x(g) - f_{T_a}(g))}{f_x(g) + f_{T_a}(g)} \right)^2
\]
SVM

- Well-known and effective algorithm
- Character 3-gram representation
- Number of features defined using *intrinsic dimension*

![Diagram](image_url)

Training texts

\[
\{ x_{11}, x_{12}, \ldots, x_{1d}, y_1 \} \\
\{ x_{21}, x_{22}, \ldots, x_{2d}, y_2 \} \\
\ldots \\
\{ x_{m1}, x_{m2}, \ldots, x_{md}, y_m \}
\]

Unseen text

\[
\{ x_{t1}, x_{t2}, \ldots, x_{td} \}
\]

SVM

Learned Model

Most likely author
Comparison

• CNG
 – Robust in class imbalance
 – Vulnerable when there are many candidate authors
 – Robust when distribution of training and test sets are not similar

• SVM
 – Vulnerable in class imbalance
 – Robust when there are multiple candidate authors
 – Robust when distribution of training and test sets are similar
 – Better exploitation of very high dimensionality
Semi-supervised Learning Algorithm

- Inspired by co-training (Blum & Mitchell, 1998)
- Given:
 - a set of training documents (labeled examples)
 - a set of test documents (unlabeled examples)
- Repeat
 - Train CNG and SVM models on the training set
 - Apply CNG and SVM models on the test set
 - Select test texts that CNG and SVM predictions agree
 - If text size is larger than a threshold move texts from test to training set
- Use SVM as default classifier for the remaining test texts
Comparison with Co-training

• Proposed algorithm:
 – Based on heterogeneous classifiers
 – Common feature types
 – Uses cases where the 2 classifiers agree

• Co-training:
 – Based on homogeneous classifiers
 – Non-overlapping feature sets
 – Uses cases where the 2 classifiers are most confident
Evaluation Corpora - Small

- 26 authors
- Imbalanced
- Similar distribution in training and validation sets
Evaluation Corpora - Large

- 72 authors
- Imbalanced
- Similar distribution in training and validation sets
Frequency Threshold (SVM model)

Small

Large
A threshold of 500 bytes excludes most of the cases where the two models agree but the predicted author is not the correct answer.
Settings

• Labeled examples:
 – Training and validation sets

• Unlabeled examples:
 – Test set

• CNG
 – $n=3$, $L=3,000$

• SVM
 – $n=3$, max intrinsic dimension
Performance

<table>
<thead>
<tr>
<th>Corpus</th>
<th>MacroAvg Prec.</th>
<th>MacroAvg Recall</th>
<th>MacroAvg F1</th>
<th>MicroAvg accuracy</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>0.476</td>
<td>0.374</td>
<td>0.38</td>
<td>0.638</td>
<td>7/17</td>
</tr>
<tr>
<td>Large</td>
<td>0.549</td>
<td>0.532</td>
<td>0.52</td>
<td>0.658</td>
<td>1/18</td>
</tr>
</tbody>
</table>
Conclusions

• First attempt to apply semi-supervised learning to author identification
• Encouraging results for closed-set tasks
• Character n-gram representation proves to be very effective
• More diversity is needed in the classifier decisions
• Plan to extend this approach to open-set tasks