Intrinsic Plagiarism Analysis with Meta Learning

Benno Stein and Sven Meyer zu Eissen
Bauhaus University Weimar
Web-Technology and Information Systems
On Plagiarism Analysis

“Plagiarism refers to the use of another’s ideas, information, language, or writing, when done without proper acknowledgment of the original source.” [Wikipedia]

Fact: About 40% of the students admit to plagiarize from Internet documents (study on 50,000 students). [McCabe 2005]

Plagiarism analysis:

Given. A suspicious document.

Task. Find copied parts

(and, if possible, provide references to original sources).
Plagiarism Forms

Plagiarism may happen in manyfold variants:

- **Plagiarism delict**
 - Accurate copy
 - **Identity analysis**
 - Modified copy
 - Local identity analysis
 - Transformation
 - Similarity analysis

- Large part of document
 - Global identity analysis: Document model comparison (suffix-tree)
 - with reference corpus: Chunk identity (MD5-Hash)
 - w/o reference corpus: Style analysis

- Small part of document
 - Local identity analysis
 - Language translation
 - Structure analysis
 - Transformation
 - Similarity analysis

- Large part of document
 - Global analysis: Document model comparison (vsm)
 - with reference corpus: Fuzzy-Fingerprint
 - w/o reference corpus: Style analysis
 - w/o reference corpus: Style analysis
Current research is mainly corpus-oriented.

e.g. [Stein et al. 2004-2006, Monostori et al. 2001-2004].

Given. A suspicious document \(d\) and a corpus of original documents.

Task. Find potentially copied parts from \(d\) in the corpus, and provide references to original sources.
Intrinsic Plagiarism Analysis

What can be done if sources are *not available* in digital form?

Research focus:

Given. A suspicious document and a corpus of original documents.

Task. Find potentially copied parts.
Intrinsic Plagiarism Analysis

Goal. Model the human capabilities in detecting “somewhat different” sections.

Method. Quantify changes in writing style.

[Metz zu Eissen and Stein 2006]

Operationalization.

- **style markers** for the entire document (global)
- **style markers** for a single paragraph (local)
Intrinsic Plagiarism Analysis

Algorithm for intrinsic analysis:

1. Let $\sigma_1, \ldots, \sigma_m$ denote style markers.
2. For each section $s \subseteq d$:
3. compute style model $s = \begin{pmatrix} \sigma_1(s) \\ \vdots \\ \sigma_m(s) \end{pmatrix} \in \mathbb{R}^m$
4. compute relative deviations $s_\Delta = \begin{pmatrix} \frac{\sigma_1(s)-\sigma_1(d)}{\sigma_1(d)} \\ \vdots \\ \frac{\sigma_m(s)-\sigma_m(d)}{\sigma_m(d)} \end{pmatrix} \in \mathbb{R}^m$
5. use instances of s_Δ for an outlier analysis.
Intrinsic Plagiarism Analysis

Distribution of 10 style markers:
16,000 non-plagiarized sections (green)
1,500 plagiarized sections (red)

1. KL-divergence of POS features
2. avg. word frequency class
3. avg. # adverbs
4. avg. # demonstrative pronouns
5. avg. # possessive pronouns
6. avg. # substantives
7. avg. # full stops
8. avg. # dashes
9. avg. # verbs
10. avg. # numbers
Intrinsic Plagiarism Analysis

Success using a discriminant analysis on the s_Δ on a hand-made corpus:

About 70% in precision, 80% in recall.

Improvement if the fraction θ of plagiarized passages is known.

Challenge:
Find style markers that are reliable for short texts.

<table>
<thead>
<tr>
<th>style marker σ_i</th>
<th>unit of measure</th>
<th>reliability level</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg. paragraph length</td>
<td>paragraph</td>
<td>document</td>
</tr>
<tr>
<td>Flesch index</td>
<td>document</td>
<td>document</td>
</tr>
<tr>
<td>avg. sentence length</td>
<td>sentence</td>
<td>paragraph?</td>
</tr>
<tr>
<td>avg. word length</td>
<td>word</td>
<td>paragraph</td>
</tr>
<tr>
<td>avg. word frequency class</td>
<td>word</td>
<td>paragraph</td>
</tr>
</tbody>
</table>
Intrinsic Plagiarism Analysis

Success using a discriminant analysis on the s_Δ on a hand-made corpus:
About 70% in precision, 80% in recall.
Improvement if the fraction θ of plagiarized passages is known.

Challenge:
Find style markers that are reliable for short texts.
Intrinsic Plagiarism Analysis

An intrinsic analysis (as shown)

- is very useful for preselecting suspicious sections (for human inspection, for Web search)
- is ambitious from the modeling perspective.

An intrinsic analysis can be used to answer the following question (with high probability):

Is a given document d written by a single author?
Meta Learning

Meta Learning: Method for authorship verification.

[Koppel and Schler 2004]

Authorship verification:

Given. \(d_1, d_2 \).

Task. Decide whether \(d_1, d_2 \) are written by the same author.

Procedure:

1. **Chunking.** Decompose \(d_1, d_2 \) into sets of chunks \(D_1, D_2 \).
2. **Model fitting.** Build a VSM for each chunk in \(D_1, D_2 \).
 The VSM includes only the 250 most frequent words.
 Learn a function that discriminates between \(D_1 \) and \(D_2 \).
3. **Impairing.** Drop the 3 most discriminating features from the VSMs.
4. Goto Step 2 until feature space is sufficiently reduced.
5. **Meta Learning.** Analyze the degradation in the quality of model fitting.
Meta Learning

Expected outcome:

Rationale:

- A large fraction of the 250 words are function/stop words.
- Only some of the words are related to topic.
- Only some words do the discrimination job (e.g. these topic words).
- Different authors can be distinguished by their use of function words.
Meta Learning

Problem: Länge der Texte unklar.

Meta learning cannot be applied directly (there is a combinatorial problem)

The proposed process:

```
Suspicious document \( d \) \( \rightarrow \) Hypothesis selection \( P(S^-) = \theta, \theta \in [0.05; 0.5] \) \( \rightarrow \) Outlier detection with style marker analysis \( \rightarrow \) Auxiliary documents \( d^+, d^- \) \( \rightarrow \) Unmasking \( \rightarrow \) [hypothesis generation completed]
```

[else]
Case study

Setting:

- Given: A German habilitation thesis from the 1980s.
- The habilitation was suspected to be plagiarized.
- Related books are not available in electronic form.

Procedure:

- The thesis was scanned.
- It was converted to plain text using OCR technology.
- It was decomposed into 138 natural sections.
- 13 suspicious sections were identified as d^-
 (using intrinsic plagiarism analysis).
- (Three of them are confirmed to be plagiarized)
- Meta learning was applied:
 d^- versus randomly drawn sections, d^+, from the remainder.
Case study

Results of the meta learning approach:

Clear indication that d^- contains plagiarized passages.
Thank You!

Questions?