(add sections) |
|||

Line 77: | Line 77: | ||

* [http://www.instructables.com/id/Make-a-Kumihimo-Disk-Out-of-a-CD/ How to make a Kumihimo Disk out of a CD] (braiding) | * [http://www.instructables.com/id/Make-a-Kumihimo-Disk-Out-of-a-CD/ How to make a Kumihimo Disk out of a CD] (braiding) | ||

== Knots and Splices == | == Knots and Splices == | ||

+ | === Classification === | ||

+ | ... | ||

+ | === History of Knots === | ||

+ | ... | ||

+ | === Knot Theory === | ||

+ | ... | ||

=== Links === | === Links === | ||

==== How are threads made? ==== | ==== How are threads made? ==== |

We explored what kind of geometric constructions we can do with thread, chalk and the help of several people...

- how to draw a line
- how to draw a circle ( d = const.)
- how to draw an ellipse ( a + b = const.)
- how to draw multifocal ellipses (a + b + c = const.)
- how to draw egg-shaped curves (3 * a + b = const.)
- how to measure the circumference of a circle
- how to calcualte pi using only thread (See also here)

We explored how our thread-based drawing tools could be used to identify points on the surface of shapes in 3 dimensions.

- We discovered the 3d ellipsoid (a + b = const.)
- We found that multifocal 3d ellipsoids have a doughnut-topology.
- We found two different ways to create ellipsoid shapes:
- the polygon method, where the thread forms a polygon going through the focal points and the drawing point
- the star method where the thread is alternately visiting each focal point and the drawing point

- Geometric knowledge from school only got us so far ...
- There is a whole universe of "new" shapes and forms

- Questions regarding surface of different shapes popped up
- We discussed different methods of measuring the surfaces using thread

- What could an Experimentier-Baukasten / a kit / a sandbox for computing with thread look like?

Do some research on other kinds of kits! - Do some thread-based geometry at home. Pick a parameter such as the thread-length and vary it systematically
- Document your thread-art in the wiki

Some links to classics of compass + straightedge geometry

as well as the thread-based geometry we explored in our class.

- Tim Ingold:
*Lines: a brief history*, ISBN 978-0415424271 (hint: google it) - Kandisky:
*Punkt und Linie zu Fläche*

- Ellipse on Wikipedia
- Multifocal oval curves on Wikipedia
- On the description of oval curves by James Clerk Maxwell
- Semidefinite Representation of the k-Ellipse

- Compass and straightedge construction on Wikipedia
- Byrne's version of Euclid's elements using coloured shapes (very bauhaus)
- 3D Sculptures by Helen Friel

Here are some links to all kinds of kits.

May they serve as inspiration for creating your own textile computing kits.

- Anker-Steinbaukasten
- LECTRON Elektrobaukasten
- LEGO, KNEX, LEGO-Mindstorms ...

- Sewing Box with Implements
- Sewing Box Cabinet by Kiki van Eijk

- Survival Kit
- Dentist Toolkit
- Pictures of surgical sets and tool boxes

- The Charkha (spinning)
- Hexagonal Weaving loom (hexagonal weaving)
- Tablet Weaving (weaving/braiding)
- How to make a Kumihimo Disk out of a CD (braiding)

...

...

...

- Teslaphoresis (self-assembly of threads)
- Spontaneous Patterns in vibrated Ball Chains: Knots and Spirals

- Animated Online Encyclopedia of Knots
- Encylopedia of Knots and Fancy Rope Work ISBN 978-0870330216

- Gordian Knot (mythology)
- Harry Houdini (magician)
- Abbot's encylopedia of rope tricks for Magicians ISBN 978-0486232065
- Self-Working Rope Magic: 70 Foolproof Tricks ISBN 978-0486265414
- Seil-Salabim

- Splicing Animated.

- Knot Theory Videos by Numberphile
- How Mathematics gets into Knots
- Alexei Sossinsky,
*Mathematik der Knoten: Wie eine Theorie entsteht*ISBN 978-3499609305 - The Knot Atlas

- Manipulation of Deformable Linear Objects feat. Un-Knotting Bot
- Knotting/Unknotting: Manipulation of Deformable Linear Objects

...