

Smartphone Hardware Sensors

M.Sc. Maximilian Schirmer Jun.-Prof. Dr.-Ing. Hagen Höpfner

Overview

- Accelerometer
- GPS
- Gyroscope
- Magnetometer
- Luxmeter
- Microphone
- Proximity Sensor

Accelerometer

 Measures proper acceleration (acceleration it experiences relative to freefall), felt by people or objects

▶ **Units**: m/s² or g

Most smartphone accelerometers trade large value range for high precision, iPhone 4 range: ±2g, precision

0.018g

Example	G Force
Standing on earth at sea level	lg
Bugatti Veyron from 0 to 100 km/h (2.4s)	1.55g
Space Shuttle, maximum during launch and reentry	3g
Formula I car, peak lateral in turns	5-6g
Death or serious injury	50g
Shock capability of mechanical Omega watches	5000g

Accelerometer

Acceleration is measured on 3 axes

 Orientation of sensor (and coordinate system) varies among different devices

Accelerometer

Space flight accelerometer:

Smartphone accelerometer (piezoelectric):

GPS

- Location sensors detect the location of the smartphone using either
 - **GPS**
 - Lateration/Triangulation of cell towers or wifi networks (with database of known locations for towers and networks)
 - Location of associated cell tower or wifi network

GPS

- Connection to 3 satellites is required for 2D fix (latitude/ longitude), 4 satellites for 3D fix (altitude)
- More visible satellites increase precision of positioning
- ▶ Typical precision: 20-50m, maximum precision: 10m

GPS

Caveats

- GPS will not work indoors
- GPS quickly kills your battery
- A location fix takes a long period of time (30s...12m), A-GPS helps
- Buildings reflect and occlude satellite signals thereby reducing precision of positioning in urban environments
- Smartphones can try to automatically select the bestsuited alternative location provider (gps, cell towers, wifi), mostly based on desired precision

Gyroscope

- Detects the current orientation of the device, or changes in the orientation
- Precisely: orientation can be computed from the angular rate that is detected by the gyroscope, expressed in rad/s on 3 axis:

Gyroscope

▶ iPhone 4: MEMS (microelectromechanical system) gyro:

displacement of vibrating proof mass

Source: http://www.ifixit.com/Teardown/iPhone-4-Gyroscope-Teardown/3156/1

Magnetometer

- Measures the strength of earth's magnetic field
- Strength is expressed in tesla [T]
- ▶ iPhone 4 magnetometer range: ±2mT

Example	Field strength
Earth's magnetic field on the equator (0° latitude)	31µT (0.00031T)
Typical fridge magnet	5mT (0.005T)
Strong neodymium magnet	1.25T
MRI system	1.5T – 3T

Pro tip: prolonged exposure to a fridge magnet decalibrates your iPhone 4's magnetometer for at least a week;-)

Magnetometer

 Smartphones provide raw magnetometer data and a computed compass bearing

Applications

- Compass, of course rotate maps/interfaces/graphics according to bearing
- Tricorder, detect magnets, force fields, klingon shield strength;-)

Demo