
VisualTracker – modular pd environment for sequencing events on timeline

Aleš ČERNÝ
Prague, Czech Republic
ales.cerny@gmail.com

Abstract

VisualTracker is linear sequencer built in pd
allowing users easily integrate their own time based
abstractions and execute them in compositions
graphically visualized on a timeline. Once this
abstraction (called module) is dynamically loaded into
environment a shared connector abstraction
automatically links the user program with essential
features of the VisualTracker environment and creates
its visual representation on gui[1] timeline[2] to control
its timing. Shifting these module representations in
separate window and grouping them into tracks
provides a very intuitive and user friendly way to
create compositions of various program events and
also control their output routing. Fully integrated
system for saving module data and compositions is
implemented.

Keywords

sequencer, gui, timeline, output routing, saving
system

 1 Introduction

The purpose of this paper is introduction of the
VisualTracker concept and its approach to potential
users and/or module developers. The few next
chapters explainthe main program parts with the focus
on understanding details important for module
development and their integration into larger program
structures. Knowledge of pd documentation[3] is
assumed in this text.

 2 VisualTracker environment (VTe)

VTe is global program part responsible for essential
features shared by user modules loaded as discrete
abstractions.

 2.1 Program location

The main program code of VTe is placed and
logically sorted in [pd program] subpatch. Although
this part of VTe is meant not to be accessed by regular
“production” users it is recommended to explore it to
understand the processes and logic of the program.
Note any changes in these parts will be lost when

upgrading to the next versions of VisualTracker.

 2.2 User Interface

VTe is built as standard pd abstraction with
basic Graph On Parent providing access to
main user parts of the program. Each [bng]
opens a corresponding subpatch window with
detailed gui or program code providing
functionalities of VTe and maintaining the
modules.

fig. 1 VisualTracker abstraction

 2.2.1 Control windows

Sequencer_controls + Composition_storage
are just simple gui windows with controls
triggering other VTe program subpatches and
functions described later. Their content is
hopefully self- explanatory.

fig. 2 Composition storage window

fig. 3 Sequencer controls window

 2.2.2 Module_library window

This window contains abstraction
[vt_module_launcher] located in main abstraction
folder providing easy one-click loading of listed
modules. As the module launcher is kept outside the
main patch it can be easily refilled by desired modules
or even distributed within separate module packs (see
6.2 Module pack)

fig. 4 Module library window

 2.2.3 Composition_timeline window

 Composition_timeline window is the main VTe user
interface where module canvases are placed and
composed into the compositions (see 2.4.1 Module
canvas position and manipulation). It contains bar grid
constructed from [cnv] object, time scale, simple loop
range controls and 36 instances of [track] abstraction
responsible for routing of data and signal of particular
modules. The window is divided into three sections -
track controls & settings (left side), time scale &
selection control (upper side) and time grid in the rest
of the window (see 2.4 Timeline)

fig. 5 Composition timeline window

 2.2.4 Loaded_Modules window

 Loaded_Modules window is a container for
the functional Module abstractions currently
integrated (loaded) into VTe (see 3 Modules)
Each module can vary in its size, gui and may
contain other sub windows according to its
functionality. Modules are created in this
window in three main ways:

•by simple manual object box creation and
typing module abstraction name (for example
[vt_line]). Abstraction must be located in
VisualTrackler folder or global pd path

•by [vt_Module_launcher.pd] abstraction
triggered from Module_library containing
predefined Modules (see 6.2 Module pack)

•by Storage system (see 2.5 Composition
storage)

Modules created from Module_library or by
Storage system are automatically aligned
according to their predefined size. Manually
created modules are aligned after hitting
Reload_composition in Composition_storage
window (see 2.5.7 Reload composition).

fig. 6 Loaded modules window

 2.3 Sequencer

Sequencer is obviously core of VTe. It is
based on [line] object which is sequenced using
[div] and [change] objects.

 2.3.1 Sequence division

Due to user interface optimization main time
sequence unit of VTe sequencer and therefore
minimal time resolution of particular module
event is one bar[3]. Further division to smaller
time parts such as beats or even their divisions

(used in samplers or piano rolls) should be
implemented directly in Module program using time
related objects such as [line] or [delay] (actually
creating sub-sequencers). Module events may also be
synchronized by global VTe receives (see 3.2.1 lobal
receives). Default sub-sequencer interface is in
development (see 4 Future development)

 2.3.2 Tempo

Speed of the sequencer is defined by BPM[4]

controlled in Sequencer_controls window.

 2.3.3 Selection

The selection feature is controlled by toggles in
Sequencer_controls window and visualized in
Composition_Timeline window limits the range of
main sequencing [line] and forces the sequencer to not
start from 0.

 2.3.4 Sequencer looping

Looping within global time of sequencer is time
based - provided by [delay] depending on BPM and
controlled by two vsliders setting the looping points in
Composition_timeline window

 2.3.5 Sequencer Controls

Except the main sequence output sent into modules,
VTe sequencer also provides control values displayed
in Sequencer_controls window such as beat counter or
time position. Sequencer can be controlled by default
keyboard shortcuts (space for play/stop, L for looping
and S for selection) after checking the toggle
shortcuts enable. Shortcuts can be changed in [pd
key_shortcuts] subpatch (see 2.1.1 Program location)

 2.4 Timeline

Timeline is the main VisualTracker gui where the
module canvases (see 3.1.1 Module canvas) are
placed and handled.

 2.4.1 Module canvas position and manipulation

Module canvases can be moved freely by mouse or
keyboard in pd edit mode and they automatically snap
to the bars and tracks so the composition always stays
neat. The section above the time scale can be used as a
swap place for currently unused, though loaded,
modules respective to their representations. The
position of module canvas on the timeline determines
the time when the module program is triggered
(horizontal position) and to which output of VTe is its
output data/audio sent (vertical position).

 2.4.2 Composition time (horizontal grid
division)

Horizontal grid division is currently based on
musical segmentation for 4/4 time signature. It
means the basic horizontal unit (gray line
distance) is one bar. Further visual grouping to
phrases[5] is indicated by a red line. As the
distance between bars is graphically fixed to 8
pixels, the variable dependent on the BPM of
sequencer is bar duration [vt_bartime]. Actual
composition time is visually indicated by time
scale above the grid section and speed of the
timeline cursor. Note the bar is fundamental
and minimal unit used by VTe (see 3.1.2 Single
execution points).

 2.4.3 Tracks (vertical grid division)

Thegrid is vertically divided into tracks.
Properties of each track (horizontal strip) is
controlled by track abstractions on the left side
of the grid. Track abstraction can hold its color,
name and primarily sets the output routing for
modules placed into it. 0 means the output is
sent nowhere (unconnected outlet)

It is important to understand the visual
concept of Module canvases composed into
tracks is strictly virtual. No module data or
audio is actually sent through track
abstractions - the relation of Module canvas
position and track output selection leads just
into setting routing switch in connector
abstraction (details of solution using [route]
and [mux] objects in each [track] abstraction
in combination with [demux~] object in
connector abstraction is beyond focus of this
text).

Track abstractions are individualized
by numboxes at the far right of the grid. They
can be replicated (CTRL+D) and their number
is (theoretically) infinite. Number of separate
outputs is in current release (1.x) limited to 12.
Output of each track is set equally for data and
audio (you can not send data and audio signals
of one module to different outputs. If module is
using stereo output, the first channel is routed to
the track defined in track abstraction and
second one to track number + 1.

 2.5 Composition storage

Obviously no complex software would make
sense without the possibility of saving the state
of ongoing work and various compositions
across workstations or even software versions.

Due to lack of native storage solution in pd,
VisualTracker is using its own system allowing
storage of user data.

 2.5.1 Saving main VisualTracker abstraction

Although it is necessary to modify core abstraction
during the work (module abstractions are created in
Loaded_modules window, module canvases are
shifted in Composition_timeline window) all user data
are stored in external storage and patch itself should
stay unmodified. If the user needs to modify core code
it is recommended to hit clear_composition [bng] in
Composition_sorage window before saving and check
if Loaded_modules window is completely empty and
Composition_timeline window contains no module
canvases. After regular “production” use of
VisualTracker (composing the modules) and saving
user data through storage system when asked to save
patch (“Do you want to save the changes you made in
….. ?”) just click "NO"

 2.5.2 Storage system

VTe storage system is based on [coll] object[6] using
the advantage of its indexed txt rows. Composition is
saved by hitting save_composition [bng] in
Composition_storage window. These selected data are
fed into [coll] and then dumped into a text file.
Theactual storage program is located in [pd
data_storage] subpatch. The storage file contains
selected global values (BPM, track names, track
colors and track outputs) and user defined values of
each currently loaded module. The save/load process
is delivered through the storage abstraction [storage]
respective [mstorage] connected to desired value and
equipped by correct abstraction creation arguments
(see tables). There are two approaches to saving data
in VTe different for VTe and modules:

 2.5.3 Global values storage

Global value is any data type (number or symbol)
used outside the module abstraction. Typically it is
BPM of VTe or track name or track color. But it can be
also value used completely outside VisualTracker in
any patch opened in current instance of pd. The only
requirements are to access [storage] abstraction
located in /abs folder and user assurance of unique
identifier within parameter syntax (due to reserved
identifiers it is recommended to use identifiers 400 -
500 when saving values outside VTe). Values are
stored in [coll] object respective text file in tagged
rows and loaded back using routed output of [storage]
abstraction.

Note the [storage] abstraction can´t be simply used
inside another abstraction due its requirement for

unique identification. This can be resolved by
abstraction individualization using numbox
inlet or variable abstraction creation aegument
($1)

 2.5.3.1 [storge] abstraction arguments

1.[integer > 0] identifier - unique global
number

2.[integer or symbol] actual stored value or
symbol (according to switch argument 3)

3.[keyword "number", "symbol" or
"end"]data type switch

fig. 7 - storage abstraction

 2.5.4 Module values storage

Although using similar concept the approach
to saving module values within VisualTracker
storage system is completely different. Due to
requirement to not modify the main
VisualTracker patch (see 2.5.1Saving main
VisualTracker abstraction) modules are not
saved itself, but there is only creation data
saved into external file including the file name
of particular module abstraction. Then during
load process all modules are re-created from
scratch using [obj(message and stored module
values are loaded through creation arguments
and transferred to certain numboxes using $
variables. This solution leads to two very
interesting user features:

•module can be simply “replicated”
(CTRL+D) including its all on the fly changed
user values while maintaining its independent
abstraction status (see 2.5.7 Reload
composition)

•[mstorage] abstraction can be used for
defining the initial values of newly created
modules. Desired creation value is hard set as
part of [mstorage] creation arguments (see
syntax table)

 2.5.4.1 [mstorge] abstraction arguments

1.[$0] module ID variable

2.[integer > 0] identifier - unique global
number

3.[integer or symbol] actual stored value or
symbol (according to switch argument 4)

4.[keyword "number", "symbol" or "end"]

data type switch

5.[integer > 0 or 0] initial value if switch is set to
"number"- if switch is set to "symbol" this argument
must be 0

6.[symbol] initial symbol - relevant only when
switch is set to "symbol"

fig. 8 - mstorage abstraction

 2.5.5 External storage file

Each global and module value is stored in a separate
row of external text file. Rows are indexed according
to value type and module affiliation and. module
values are moreover divided into sections. Each
section starts with the name of particular module and
is complemented by end identifier following by
module canvas height (see tagged obligatory parts in
vt_template_module.pd)

fig. 9 - External storage file content

 2.5.6 Auto save

Auto save functionality provides automatic saving
of running work to automatic_save.tmp file located
in /storage folder. Saving is executed every 300
seconds and indicated in Composition_storage
window. Interval can be changed in [pd
data_storage] subpatch.

 2.5.7 Reload composition

After hitting corresponding [bng] in

Composition_storage window whole
composition is saved to /storage/reload.tmp
file and immediately loaded back. This
operation leads to two main results in
Loaded_modules window:

•user values connected to [mstroage]
abstraction are transferred into creation
arguments of loaded module abstractions and
module can be simply replicated (CTRL+D).
This is useful when working with module
containing a lot of user options (such as
sequencers or samplers) and new module
instance should use a similar setup.

•manually created modules abstraction are
automatically aligned.

 3 Modules

Modules are functional parts of
VisualTracker actually performing program
actions triggered by VTe sequencer. They are
built as discrete abstractions and can contain pd
code playing sound samples or video files,
triggering midi notes or operating external
hardware according to the flexibility of whole
pd environment. Note the purpose of
VisualTracker is not to provide a large variety
of terminal module functions but rather to
develop an open environment prepared for
imagination of module developers. The aim is
to provide an easy way to integrate any
program into VTe - all you need is to paste your
program into module template (see 3.4 Module
template) and use some predefined sends,
receives and other features providing
communication with VTe and delivering
essential features described in this paper.
Modules are handled (but not stored) in
Loaded_modules window.

 3.1 Visualtracker connector

[visualtracker_connector] abstraction
located in /abs folder is one of obligatory parts
of each Module. This abstraction is shared by
all the modules and opening a pd patch
containing this abstraction causes actual
“loading” of the module into VTe (of course if
main VisualTracker patch is running). Instances
of connector abstraction are individualized by
their creation arguments respective they
assuming unique local variable ($0) of each
module abstraction.

 3.1.1 Module canvas

Module canvas created in Composition_timeline
window upon each module loading process is the most
essential feature of connector and VisualTracker in
general. Module canvas is a visual representation of
module event on timeline defining its execution time.
It is connected to module program through its name
reference and also visualizes some module properties
such as duration, name or color. Module canvases can
be freely moved across timeline by mouse (in pd edit
mode) or can be moved by the module programs
themselves generating dynamic compositions.

 3.1.2 Single execution points

As described above the position of module canvas
on a timeline defines the time point when the module
program is triggered. Practically it means once the
sequencer positions, counted in bars, equals the
position of module canvas on timeline corresponding
module receives the bang [r $0-EXECUTE] which is
further processed in module program.

 3.1.3 Multiplication

Multiplication allows continuous repetition of a
program event within the one module canvas (module
canvas resizes dynamically according to number of
multiplications).

It is important to understand the difference between
multiplication and looping. While looping is the
repetition of program code inside the module program
(such as [phasor] based sample player) multiplication
generates multiple execution points triggering the
event according the global tempo and eliminating the
time inaccuracy in module event duration.

 Practically it means that if the module duration is 3
bars, multiplication is set to 4 and the module canvas
is placed to position 5 (fifth bar from beginning).
Thegiven module program is then executed when VTe
sequencer reaches numbers 5, 9, 13 and 17. If VTe
speed is set to 80 BPM (duration of one bar is 4 beats
= 3000 ms) then module program is executed exactly
15, 27, 39 and 51 seconds from the start of the
composition.

 3.1.4 Module duration

When the Module program is correctly
implemented into VTe, its duration can be dynamically
changed to synchronize loaded events with one
another. This feature, known as time warp or fit in
tempo, is performed by the program placed in
connector abstraction and controlled by predefined
module gui switch:

 3.1.4.1 no fit

This option is default and just performs the
module program in its original duration. This
duration can be hard set by $0-
ORIG_DURATION variable or calculated by
module program (for example sample length).
Event duration is independent from the VTe
global speed and visualized by the length of
corresponding module canvas. Note the module
canvas then is VTe speed dependent and its
length vary according the current VTe BPM
showing real duration of event on timeline.

 3.1.4.2 fit to bars

Switching to this option the $0-
ORIG_DURATION is sent for recalculation
according current VTe speed and selected
number of bars. The new event duration is
delivered by $0-DURATION variable for
further program processing (can be fed for
example into [delay] or [line]). This feature is
indispensable when working with audio
samples prepared for looping. Only in this
option multiplication is supported. Module
canvas displays module event aligned to bars so
as real event time is.

 3.1.4.3 fit to bpm

This lfinal option is useful for longer events
which are not loop based, but have their own
tempo (typically a cappella song versions or
soundscape samples) . The length of event is
calculated according to the $0-ORIG_BPM
variable. To fit the event into VTe tempo
correctly, this feature should be used in
combination with starting point alignment.

 3.1.5 Creation bang

Due to using [obj(function of pd (see 2.5.4
Module values storage) for dynamic module
creation, all modules present in
Loaded_modules window during creation of
new module receive loadbang when any
module is loaded. To avoid repetitive
loadbanging of modules,receive channel is
implemented which eliminates this behavior by
blocking follow-up bangs. Creation bang
receive should be always used instead of
[loadbang] in module program.

 3.2 Sends/receives

The sections below summarize send and
receive channels connecting the module

program with VTe through connector abstraction.
Properly named [send] and [receive] objects are
prepared in module template and connection can be
established just by cord connections.

 3.2.1 Module receives

List of channels sending data FROM connector
abstraction TO user program:

•$0-CREATIONBANG : Sends bang only once
when module instance is created.

•$0-EXECUTE : Sends bang at the beginning of
every module event according to the horizontal
position of module canvas on time line.

•$0-DURATION : Duration of module in
milliseconds according to the switch "fit" (original or
fited to current BPM). Rely on global BPM and "bars"
value. Multiplication does not affect this value.

•$0-GET_POSITION : Horizontal position of
module canvas on timeline.

•$0-GET_TRACK : Vertical position of module
canvas on timeline. Could be used for sending data to
different outputs according to the particular track
settings.

•$0-ID : Number generated uniquely for each
instance of any module. Could be used for referring to
particular module. Module ID is dependent on unique
abstraction variable ($0)and can´t be changed.

•$0-OUTPUT_TRACK : Number of output module
output (audio1 or data) is sent to. Audio2 (if
presented) is sent to output+1.

 3.2.2 Module sends

List of channels sending data FROM user program
TO connector abstraction:

•$0-SET_TRACK : Moves corresponding module
canvas to a particular track on timeline (vertical
move). Analogical to manual canvas moving. Module
audio and data outputs may be affected by track
change.

•$0-SET_POSITION : Moves corresponding
module canvas to a particular bar on timeline
(horizontal move). Analogical to manual canvas
moving.

•$0-COLOR : Color of module background and
appropriate module canvas. Color is defined by preset
- see color table subpatch. Module is created in light
gray color by default.

•$0-FIT : Time stretch switch. 0: duration of module
event is original, 1: duration is calculated according to
set original BPM of event, 2: duration is calculated

according to set number of bars and
multiplication in conjunction with current bar
duration.

•$0-BARS : Defines how many bars the
module event will last. Active only when fit
switch is on. Duration of module event is
stretched to time? x of bars?

•$0-MULTI : Defines multiplication of
module event. Active only when fit switch is set
to 2. Each next event starts from beginning
right after another.

•$0-NAME : Name of each module instance.
It appears also in module canvas. Usually typed
manually or generated for example from file
name. IMPORTANT: do not use spaces !

•$0-ORIG_DURATION : Original duration
of module event in milliseconds. Set manually
or calculate for example from sample table.

•$0-ORIG_BPM : Original BPM of module.
For example BPM of audio loop.

•$0-MODULE_FILENAME : Filename of
module without .pd extension. Used for module
creation during loading saved composition.

•$0-AUDIO1 : Address module audio output
nr. 1 to the audio channel defined in vt track
properties (track properties are set in timeline
window) according to the module canvas
vertical position.

•$0-AUDIO2 : Address module audio output
nr. 2.

•$0-DATA : Address module data output
(stream of numbers) to the data channel defined
in vt track properties (track properties are set in
timeline window) according to the module
canvas vertical position.

•$0-RESET_CNV_POSITION : Resizes
current module canvas to default (create) size
(= 0).Usually used when unloading/reset
module

•$0-GOP SIZE : Height of Graph On Parent
of module in pixels - used during loading for
graphical module sorting.

 3.2.1 Global receives

List of channels sending data FROM VTe TO
user program:

•vt_seq_stop: Sends bang when sequencer
stop button is pressed. Next "play bang" should
trigger the module to perform from beginning
(STOP is not PAUSE). All modules should
implement this immediate stop function

(Sequence number is set to 0 after STOP)
•vt_bpm: Receives global VisualTracker BPM. To

initiate the value send bang to vt_init_bpm channel.
•vt_bar: Receives number of current sequencer

position counted in bars. This value is used as main
trigger for module events.

•vt_beat: Receives number of current sequencer
position counted in beats. Subdivision is made directly
by sequencer.

•vt_time_sequence: Receives direct stream of
sequencer [line]

 3.3 Initial module values

Except default storage function [mstorage]
abstraction inside module deliver the init function.
Creation argument defines the number/symbol which
is loaded into connected numbox/symbol box upon
module loading. This feature works similarly to
module re-creation with arguments stored in an
external file relying on the fact that arguments which
are not present upon loading are 0.

 3.4 Module template

For easy user program implementation the main
features including the basic gui design and switches
described above are prepared in template module
vt_template_module.pd. The best way is to compare
further described basic modules with module template
and learn directly form program code.

 3.5 Basic Modules

Beside module template, there are three basic
modules included in the basic VisualTracker
installation which can be used as a base for further
module development.

 3.5.1 [vt_bang]

Easiest module which is performing [bang] on time
defined by module canvas. Duration of event is
irrelevant as so as it makes no sense to fit it in tempo
or multiply, so additional features are logically
missing. Values stored for this module are its position
on timeline (track, position), name and color.

 3.5.2 [vt_toggle]

Module operating [toggle]. The duration of the
event is relevant already, so corresponding controls
are present. Original duration is set by gui numbox
and recalculated duration is fed into [delay] according
to the fit switch. Storage abstractions are added to
store additional values.

 3.5.3 [vt_line]

Despite its simplicity, this module is using all
the current features of VTe. The output of [line]
sub-sequencer is prepared for controlling the
playback of samples, videos or any other time
based programs.

 4 Future development

VisualTracker is built with a focus on
continuity of development and the possibility to
migrate easily to new versions. Therefore the
program code and user data are strictly
separated and external file storage is
implemented (see 2.5 Composition storage).

In addition to regular testing of the current
version and incorporation of user feedback, the
following ideas are also planned

•Default sub-sequencer interface for Module
template allowing further sequence division
useful for samplers or pianoroll instruments.

•Composition_timeline facelift using
advanced dynamic features of data structures

•Recording pool implementation allowing to
record the output of VTe and share it across the
modules (live sampling)

•Interface and controls for dynamic
compositions where module canvases are
shifted on timeline according to certain
schemes (non linear timeline)

•Automation feature for value envelope
controls (using arrays or data structures)

 5 Documentation

 5.1 VisualTracker program

User documentation and current downloads
can be found at
http://code.google.com/p/visualtracker. As
VisualTracker is open source software, users are
welcome to participate using the community
features of the Google site like forums and
issue tracking.

 5.2 Module development

Detached page devoted to module
development is established at
http://code .google.com/p/vtmodules/

http://code.google.com/p/visualtracker
http://code.google.com/p/vtmodules/
http://code.google.com/p/vtmodules/

 6 Releases

 6.1 Program pack

The zipped program pack includes all main
VisualTracker abstractions, module template and basic
modules (see 3.5 Basic Modules).

 6.2 Module pack

The pack of user modules is released independently
from the main patch according to the growth of the
user base containing complex modules and tools. For
each pack, the module launcher is included to
integrate modules into Module_library. All modules
released as part of Module pack are reviewed by
VisualTracker developers to ensure their
compatibility.

 7 Licence

VisualTracker is developed as open source software
built in pure data environment (currently pd-extended
0.42.5, http://puredata.info/) and under GNU General
Public License (http://www.gnu.org/licenses/gpl.html)

 8 Conclusion

 9 VisualTracker is regularly developed and tested for
more than a year with the idea of cooperation and
open source evolution with hope to attract pd fans and
enthusiastic and tempt them to use VisualTracker as a
platform for their experiments, extend the library of
modules and come up with new ideas. The basic
functions featured are already seen in proprietary
software such as Ableton Live or ACID, but only in
open source and 100% readable environment of Pd
they can be really explored and used the way they
were never used before.

 10 Acknowledgements

The author would like to thank to whole pd

community freely sharing their ideas, the PURE
DATA forum (http://pured ata.hurleur.com)
contributors and namely to Bérenger Recoules
for his enthusiasm regarding this project, his
comments and above all the testing and early
module development.

 11 References
[1] Graphical user interface -

http://en.wikipedia.org/wiki/Graphical_user_int
erface

[2] Timeline -
http://en.wikipedia.org/wiki/Timeline

[3] PD documentation -
http://www.crca.ucsd.edu/~msp/Pd_documentat
ion/

[4] Measure -
http://en.wikipedia.org/wiki/Bar_(music)

[5] Beats per minute -
http://en.wikipedia.org/wiki/Tempo

[5] Phrase -
http://en.wikipedia.org/wiki/Phrase_(music)

[6] [coll] is part of cyclone library

http://en.wikipedia.org/wiki/Phrase_(music)
http://en.wikipedia.org/wiki/Tempo
http://en.wikipedia.org/wiki/Bar_(music)
http://www.crca.ucsd.edu/~msp/Pd_documentation/
http://www.crca.ucsd.edu/~msp/Pd_documentation/
http://en.wikipedia.org/wiki/Timeline
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://puredata.hurleur.com/
http://puredata.hurleur.com/
http://www.gnu.org/licenses/gpl.html
http://puredata.info/

	 1 Introduction
	 2 VisualTracker environment (VTe)
	 2.1 Program location
	 2.2 User Interface
	 2.2.1 Control windows
	 2.2.2 Module_library window
	 2.2.3 Composition_timeline window
	 2.2.4 Loaded_Modules window

	 2.3 Sequencer
	 2.3.1 Sequence division
	 2.3.2 Tempo
	 2.3.3 Selection
	 2.3.4 Sequencer looping
	 2.3.5 Sequencer Controls

	 2.4 Timeline
	 2.4.1 Module canvas position and manipulation
	 2.4.2 Composition time (horizontal grid division)
	 2.4.3 Tracks (vertical grid division)

	 2.5 Composition storage
	 2.5.1 Saving main VisualTracker abstraction
	 2.5.2 Storage system
	 2.5.3 Global values storage
	 2.5.3.1 [storge] abstraction arguments

	 2.5.4 Module values storage
	 2.5.4.1 [mstorge] abstraction arguments

	 2.5.5 External storage file
	 2.5.6 Auto save
	 2.5.7 Reload composition

	 3 Modules
	 3.1 Visualtracker connector
	 3.1.1 Module canvas
	 3.1.2 Single execution points
	 3.1.3 Multiplication
	 3.1.4 Module duration
	 3.1.4.1 no fit
	 3.1.4.2 fit to bars
	 3.1.4.3 fit to bpm

	 3.1.5 Creation bang

	 3.2 Sends/receives
	 3.2.1 Module receives
	 3.2.2 Module sends
	 3.2.1 Global receives

	 3.3 Initial module values
	 3.4 Module template
	 3.5 Basic Modules
	 3.5.1 [vt_bang]
	 3.5.2 [vt_toggle]
	 3.5.3 [vt_line]

	 4 Future development
	 5 Documentation
	 5.1 VisualTracker program
	 5.2 Module development

	 6 Releases
	 6.1 Program pack
	 6.2 Module pack

	 7 Licence
	 8 Conclusion
	 9 VisualTracker is regularly developed and tested for more than a year with the idea of cooperation and open source evolution with hope to attract pd fans and enthusiastic and tempt them to use VisualTracker as a platform for their experiments, extend the library of modules and come up with new ideas. The basic functions featured are already seen in proprietary software such as Ableton Live or ACID, but only in open source and 100% readable environment of Pd they can be really explored and used the way they were never used before.
	 10 Acknowledgements
	 11 References

