
Using Pd to create a visualization instrument for percussion

John Harrison
Hack.Art.Lab (HAL)

Wichita State University
824 W. University Ave.

Wichita, KS 67213
john.harrison@alum.mit.edu

Abstract

In June of 2010 Michael Holland, director of Vortex
Percussion Ensemble, approached Wichita-based art
collective Hack.Art.Lab and contemporary composer
Mary Ellen Childs to explore what synergy might
exist between us through collaboration. To open this
conversation, we targeted an earlier work of the
composer's, Still Life, to build a live video element
which might add another dimension to her piece. We
chose Pd-extended as our engine to interpret sensor
data from the performers, then manipulate the live
video. In this paper I explore both the process and
product of creating the visual element..

Supporting documents, including a video of a
performance of the work, interviews of the creators,
and links to all software used, are available at
http://hackartlab.org/pg/groups/139/vanderbilt-
collaboration/.

Keywords

wiimote, ps3eye, collaboration, video

1 Introduction

Hack.Art.Lab (HAL)[1] is an art collective based in
Wichita, Kansas USA. Formed in 2008, group
membership consists of about a dozen artists,
engineers, and computer programmers. We have
shown work throughout the US as well as at the 2009
Pd Convention in São Paulo. One of the strengths and
challenges of HAL is that our individual members do
not come together as a unified voice, so collaboration
is not easy for us. At the same time, the group defines
itself and its work through collaboration; most of the
work we show was both born and exists because
because of cooperation among several members and is
work that could not have been realized by a single
member. Resultantly, a main focus in our work is the
collaborative process of the work itself.

Mary Ellen Childs[2] is an established Minneapolis-
based composer. Although her works are typically for
traditional western instruments, she also incorporates
strong visual and theatrical components. Mary Ellen
Childs is also known for forming and directing the

percussion ensemble CRASH[3]. CRASH is a
percussion ensemble with a strong theatrical
element. Instruments may be played in unusual
ways, stage props may be added, and the
motions of the players are all a significant part
of CRASH's performances.

Former member of CRASH and current
director of VORTEX percussion ensemble,
Michael Holland contacted Mary Ellen Childs
and HAL to explore the possibilities of
collaboration. To open this exploration, we
chose her 10-minute work, Still Life, written in
1986. Using Pd-extended, I elected to program
the new visual elements. Other members of
HAL worked with me to generate the initial
ideas and help develop the hardware needed.
Mary Ellen Childs and I refined the final
presentation and named the new work Still Life:
Revisited.

Still Life: Revisited was performed by
VORTEX on April 3, 2011 and the Wichita State
University Percussion Ensemble on May 4, 2011.
The performance at Wichita State University,
along with interviews of the creators and
performers, was archived by Wichita State
University and is available with our supporting
documents referenced in the abstract..

2 Video Elements

2.1 Artistic Challenge

Adding live video to a pre-existing audio
work turned into more of a significant challenge
than HAL initially anticipated. How could any
video truly extend the work rather than being a
tacky add-on without significant artistic merit?
We certainly did not want our video to offer any
analogy to any of the empty visualizations
already offered in already-existing media
players, such as Windows Media Player. At the
same time, we recognized that the work was
complete already and did not need a live visual
element to succeed. How could we add video to
the work in a way that connects to the

http://hackartlab.org/pg/groups/139/vanderbilt-collaboration/
http://hackartlab.org/pg/groups/139/vanderbilt-collaboration/

performers meaningfully and did not compete?

2.2 Exploration

To explore this question I initially made videos
compiling some of the many manipulations possible
in Pd-extended and uploaded them to YouTube for
others to review. However, our conversations proved
most productive when we switched to focusing on
other live video works rather than a discussion of
possible video effects.

Eventually, inspired in part by the work of Cyrille
Henry[4], we chose to explore a completely
synthetically generated environment, non-
deterministic in nature, and yet with organic, natural
qualities of motion. We wished to stay away from
obvious visual associations, preferring instead to
explore abstract qualities so as not to have content that
was too specific.

We wanted to create something which felt “alive”
and which would offer unpredictable variety within a
tight set of constraints. In this way, our visualization
instrument might be considered analogous to a more
traditional acoustic instrument.

3 pmpd

Perhaps for his own artistic exploration, Cyrille
Henry developed Physical Modeling for Pure Data
(pmpd)[5]. In Cyrille's words: “pmpd is a collection of
[...] objects [which] provide real-time simulations,
specially physical behaviors. pmpd can be used to
create natural dynamic systems, like a bouncing ball,
string movement, Brownian movement, chaos, fluid
dynamics, sand, gravitation, and more.”[6]

What seemed powerful about pmpd for us was that
we could create objects, relationships and an
environment with physical properties such as mass,
gravity, and spring damping. Then, by exerting forces
or otherwise altering the environment in some way,
we could create natural, fluid motions. Since we were
not describing the motions directly, the motions might
be more organic in their behavior and offer a certain
natural unpredictability or chaos within their ordered
motion.

Following Henry's model in his own works with
chdh such as Adaptations[7], we chose to work with
large numbers of primitive objects --- lines and
spheres in our case. Through simple manipulation of
the environment, we could create complex expressive
motion of these lines and spheres as a visual
contribution to the piece.

4 Sensors

It was obvious to us that live sensor data from the

musicians was needed to effect the
environment. The question then became what
data we would collect, what sensors we might
use to collect that data, and how we could map
that data meaningfully for the work.

4.1 Accelerometers

Accelerometers attached to drum sticks
seemed like a powerful way to capture both the
motion of drum sticks and their impact on
drums. Moreover, various cookbook
implementations already exist to capture
accelerometer data into a computer using a
microcontroller such as an Arduino [8][9]. Even
commercial off-the-shelf products such as V-
beat Drumsticks[10] exist which could perhaps
be re-purposed to import data to a computer.

We quickly ruled out V-beat drumsticks after
trying a pair as our performers considered the
V-beats not of a quality acceptable for their use.
And, as wires connecting the performers to a
computer would limit the performers'
movement, we wanted to consider only wireless
implementation. It would be possible to connect
an Arduino and accelerometer to a wireless
transmitter such as an Xbee[11]. but perhaps an
easier and less expensive way to achieve similar
results might be to modify a Wii Remote
Controller (wiimote) and Wii Nunchuck[12] for
our purposes.

4.2 Wiimote and Nunchuck

A wiimote has a built-in accelerometer and a
Bluetooth transmitter which can send the
accelerometer data to a computer with a
Bluetooth receiver. A Nunchuck also has a
built-in accelerometer and physically attaches
to a wiimote so that the Nunchuck's
accelerometer data can also be sent through the
wiimote's Bluetooth transmitter. With one
wiimote and one Nunchuck, we could capture
accelerometer data from both hands of one
performer.

We could not capture meaningful
accelerometer data by attaching the wiimote
and nunchuck to the upper arms of the
performers. However, the devices were too
cumbersome to attach to the lower arms, hands
or sticks. To overcome this problem, we made a
small circuit board consisting only of pads for
the legs of the accelerometer IC itself. After
soldering new accelerometer ICs to our boards,
we then removed the original accelerometers
from their pads on the wiimote and Nunchuck

and soldered long wires to the original pads. We
soldered the other ends of the wires to our small board
so that the wiimote and Nunchuck would receive their
accelerometer data from our accelerometers outside of
the wiimote and nunchuck casing. Our board and IC
measured less than a centimeter and were extremely
light. We attached the accelerometers to the
performers' sticks, then ran the wires to the backs of
the performers were we strapped the wiimote and
Nunchuck.

4.2.1 [wiimote]

Initally we tried Pd's [wiimote] object[13] for
capturing accelerometer data from the wiimote and
Nunchuck. We found that object caused instability
with Pd when the instance was under moderate to
heavy CPU load. We then switched to Linux Laptop
Orchestra's [disis_wiimote][14], since it uses a
threaded implementation. Its performance was stable.

4.2.2 wiimote Accelerometer Hardware

The wiimote uses an ADXL330 accelerometer
which can measure between +/-3g. The Nunchuck
uses an LISL02AL accelerometer which can measure
between +/- 2g. However, both accelerometers are
pin-compatible with each other and are also
compatible with the ADXL326BCPZ, which can
measure +/-16g. We opted for this ADXL326 so that
we could measure significant drum impact.

Our alterations to the wiimote and Nunchuck along
with using the [disis_wiimote] object seem like a
successful way to capture the motion of drum sticks as
well as their impact on drums. However, there were
concerns about latency and sampling rates. We
continued exploring other methods and eventually did
not pursue this method for this project.

4.3 Multiple Microphones

Electret microphones are an inexpensive,
easy way to capture audio data when the audio
quality of the captured sound is not critical. To
capture both the attacks and resonances of the
individual instruments, we made a simple
circuit to power 6 electret microphones using
USB power. We connected the microphones to
a Delta 1010LT PCI sound card[15] and
experimented attaching the microphones to
different parts of the various percussive
instruments. We then had the performers
rehearse, observed them and compared what we
observed from the performers with the data
captured by the microphones.

We expected that we could detect what
instrument had been struck at a given time by
comparing the amplitudes of the microphones
and choosing the instrument whose microphone
showed the loudest amplitude, but this turned
out not to be the case. Perhaps due to room and
instrument resonances, we got inconsistent
results. Sometimes a nearby microphone would
show an initial amplitude higher than the
microphone attached to the instrument which
had been struck.

We might have solved this problem by
comparing the exact time at which each
microphone detected a sharp amplitude
increase. In theory the one showing the increase
first would be the one that was struck first.
Instead we chose to use only one electret
microphone placed near the performers. It
successfully captured the attacks and amplitude
of the entire ensemble. We also incorporated
other methods for capturing data for this
project.

4.4 ps3eye

The Ps3eye camera has become extremely
popular in the hacker community because of its
low price and excellent performance. Using
open source drivers, it is possible to get this
camera to capture 320x240 resolution at 125
fps. For our computer, an i7 running 32-bit
Ubuntu 11.04 (Natty), it was necessary to
recompile the provided webcam drivers to
achieve these performance results[16].

4.4.1 Near-infrared Tracking

Looking for a way to more accurately track
the exact motion of the sticks, we attached four
infrared LEDs around the diameter of the sticks
and modified the webcams to detect only near-

Illustration 1: Wiimote with external
accelerometer

infrared light1[18]. Using Gem's [pix_multiblob] and
one webcam we could track a performer's set of two
sticks. [pix_blobtracker] uses the resulting iemmatrix
to keep track of which blob represented which stick.

The infrared LEDs on the sticks were powered by
CR2032 button-cell batteries. Using a simple battery
holder attached to the sticks, these batteries could be
directly connected to the LEDs without resistors. They
would successfully power the LEDs for about 1 hour.
With this setup we were able keep our alternations to
the sticks small enough and light enough that they
could still be used by professional performers.

5 Pd implementation

5.1 Communication amongst multiple
instances

Capturing and analyzing the data from a single
webcam running at 125 frames per second (fps)
created a significant load for 1 core of our i7 CPU.
The high fps was necessary for minimal latency but
the draw on the single core did not allow much room
in that core for more analysis or functionality.

Pd is a single-core application, so more generic
examples of this problem are common and typically
solved by running multiple instances of Pd. The Host
OS will then shift the various Pd instances among the
available cores. In our case, 3 Pd instances could each
be independently responsible for capture and analysis
of each of the 3 webcams. They could then transmit
this information to a master Pd instance, which could
then interpret the data and show the video.

Typically such instances are independently run,
perhaps by a Bash script, then communicate to each
other or another instance using sockets. More recently,
Miller Puckette introduced the [pd~] object to achieve
similar results.

5.1.1 [pd~]

Initially, I tried using the [pd~] object, which took
some (undocumented) fumbling to get to work with
pd-extended. However, I opted against this approach
as it requires audio processing to be running in the

1Not all ps3eye webcams are able to be modified in this
way[17].

master patch and this appears to create a
bottleneck, limiting the performance of the
video rendering in Gem. And, although not
relevant for this particular project, [pd~] also
works only in distributing information instances
of Pd running between multiple cores on a
single computer and not between instances of
Pd running on multiple computers networked
together.

5.1.2 [inter-inst-comm]

With earlier projects, I have split tasks among
cores by using the earlier-described method of
creating multiple instances of Pd which
communicate using sockets. While this is a
successful method, implementation of this
method from scratch can be cumbersome and
error-prone. To help address implementation for
this project and future projects I built a generic
abstraction [interinstcomm].

To use the abstraction [interinst
comm], first initialize communication in each
patch by adding the object: [interinst
comm <id#> <sendsocket> <rec
socket>]. The id# is user-assigned. For
example, if two patches need to communicate to
each other using sockets 6000 and 6001, to
initialize one patch might contain [inter
instcomm 1 6000 6001] and the other
might contain [interinstcomm 1 6001
6000].

If the first patch also needed to communicate
to a third patch using sockets 6002 and 6003,
initialization for this in the first patch might
look like [interinstcomm 2 6002
6003]. In this way, the id# allows the first
patch to make a distinction between
communicating with the second patch and
communicating with the third patch.

After the initialization object exists in a
patch, transfer a message from one patch to
another patch by adding [s2i <id#>
<messagename>] to the patch. For example,
to send a message named mymessage
between the two patches we have already
initialized, add [s2i 1 mymessage]
somewhere inside the first patch. Then the
second patch will automatically receive the
message with a simple [r mymessage]
when the first patch sends a message [s my
message]. An example set of patches further
demonstrating [interinstcomm] is
available with the support materials for this
paper.

Illustration 2: drum stick with four infrared
LEDs

5.2 Dynamic Patching

5.2.1 Motivation

After some experimentation we decided that our
visualizations would consist of three independent tree
structures consisting of lines and spheres. For full
control, we would need the ability to address the
properties of each of the lines and spheres in each tree
independently. Moreover, each tree structure would
contain its own environment for gravity, damping and
other forces and properties. A “master” environment
would effect properties for all the trees.

Our concept meant that the trees would each be able
to dynamically generate their lines and spheres as well
as change their properties through messages. Such
messages could be generated from analysis of input
signals from the microphone and the three ps3eye
cameras.

5.2.2 Implementation

I created an object which consisted of the properties
needed for any generic sphere and line. I then
dynamically generated instances of that object using
dynamic patching at run time. As I needed in
performance, I would generate or destroy the
instances of the objects during performance.

While this implementation worked, perhaps a better
way might have been to dynamically generate all the
needed objects at creation time as opposed to run
time, then turn the objects on and off as needed. This
latter method prevents hiccups that can be caused by
the graph regeneration that Pd does when a new
instance of an object is created. And although I have
not experienced stability issues with dynamic
patching, any stability issues that might exist with this
unsupported feature will likely show up before the
performance instead of during the performance.

5.3 Text files and [qlist]

After creating an interface which could create nodes
and assign properties, I needed a way to change
multiple properties simultaneously for different
sections of the piece. To solve this I used Pd's [qlist]
and devised a simple set of commands which my
patch could interpret. I stored the commands in a text
file then recalled them through the interface of the Pd
patch.

As I found parameters for the environment that
worked for a particular section in the piece, I wrote
them in these text files as commands. Examples of
some of the commands are shown in Table 1:

Command Description

1-attack-on 0; Send 0 to message
named 1-attack-on

if-debug show-nums
1;

if the debug parameter is
set to 1, send 1 to
message named show-
nums

#This is a comment; That was a comment

repeat 80 1-create-
node;

send [bang(to 1-create-
node 80 times

2-connect-attack-to
2-r-create-node;

take the output of the
message named 2-attack
and connect it to the
input of message named
2-r-create-node

slide 2-r-mass-alpha-
slider 0 1 8000;

Using [line], slide the
value of 2-r-mass-alpha-
slider from 0 to 1 over
8000ms

250 slide 1-s-mass-
size-slider 4 8 250;

wait 250 ms then, using
[line] slide 1-s-mass-
slider from 4 to 8 over
250 ms

Table 1: Commands in text files

6 Future Work

From a technical level, this project served as
a good exploration of pmpd and dynamic
patching. It provided a framework which
allowed for testing using an interactive
interface. Multiple states could be recalled
using text files.

However, while states could be typed into
text files to be recalled later, there was no
system to save states in a text file. Moreover
there was no way to save the states or properties
of the objects themselves, only the
environment.

From an artistic sense, exploring
synthetically generated images in a physically
modeled environment felt successful. It was
also interesting to explore how to successfully
add video to a pre-existing audio work.
Moreover, the semi-transparent screen in front
of the performers did offer some cohesion
between the players and the video. It would be
interesting to embark on a similar project as
this, but build the video concurrently with the
audio rather than having one follow the other.

In addition, there are a multitude of possibilities for
projecting other than onto a screen and with a
rectangular surface.

7. Conclusion

In creating the work Still Life: Revisited, we
explored collaboration, hardware interfaces and
software construction all to serve a pre-existing audio
work. By using Gem and pmpd, we created organic
motion of OpenGL primitives to create expressive live
visuals complementing the music and the motions of
the players. A semi-transparent scrim in front of the
players helped us balance the visuals with the
performance of the original work. In developing the
work, we furthered our understanding of hardware
interfaces and some software techniques.

8. Acknowledgements

Michael Holland initially introduced the idea of this
project and our collaboration. Mary Ellen Childs
wrote the original piece, and was fundamental in the
generation and refinement of the original concept.
Hack.Art.Lab, and especially Ann Resnick and Kristin
Beal-DeGrandmont helped generate meaningful
discussion in the development of the work artistically.
Lauren Hirsh and Ivy Lanning helped in the building
and placement of sensors.

Of course, the work also would not have been
possible without the tireless efforts of the Pd
community, including but not limited to Miller
Puckette, Hans-Christoph Steiner, Iohannes Zmoelnig,
and Cyrille Henry. Besides all of the wonderful code
these people have produced, they have been most
helpful in offering technical insight on the Pd mailing
list.

References

[1] Hack.Art.Lab. http:// hackartlab.org

[2] Mary Ellen Childs. http://www.maryellenchilds.com/

[3] CRASH. http://www.maryellenchilds.com/?
page_id=8

[4] Cyrille Henry. http://www.chnry.net

[5] pmpd. http://www.chnry.net/ch/?120-Pmpd

[6] pmpd documentation.
http://www.chnry.net/ch/IMG/pdf/pmpd.pdf

[7] Adaptations. http://www.chdh.free.fr/spip.php?
article1

[8] Arduino. http://www.arduino.cc

[9] MEMSIC 2125 Accelerometer.
http://www.arduino.cc/en/Tutorial/Accelerometer
Memsic2125

[10] V-Beat Drumsicks
www.firebox.com/product/2023/V-Beat-
Drumsticks

[11] Xbee.
http://www.digi.com/products/wireless-wired-
embedded-solutions/zigbee-rf-modules/zigbee-
mesh-module/

[12] Wiimote and Nunchuck.
http://www.nintendo.com/wii/console/controllers

[13] [wiimote]. http://thiscow.eu/tiki-index.php?
page=puredata-wiimote

[14] [disis_wiimote].
http://l2ork.music.vt.edu/main/?page_id=56

[15] Delta1010LT. http://www.m-
audio.com/products/en_us/Delta1010LT.html

[16] ps3eye Linux driver.
http://bear24rw.blogspot.com/2009/11/ps3-eye-
driver-patch.html?
showComment=1273457202061#c581278385233
0333262

[17] Good and bad lenses for the ps3eye.
http://peauproductions.blogspot.com/2009/04/two
-types-of-ps3-eye-stock-lenses.html

[18] Modify a ps3eye webcam for near infrared
light. http://www.forcepoint.net/main/?p=24

http://www.forcepoint.net/main/?p=24
http://peauproductions.blogspot.com/2009/04/two-types-of-ps3-eye-stock-lenses.html
http://peauproductions.blogspot.com/2009/04/two-types-of-ps3-eye-stock-lenses.html
http://bear24rw.blogspot.com/2009/11/ps3-eye-driver-patch.html?showComment=1273457202061#c5812783852330333262
http://bear24rw.blogspot.com/2009/11/ps3-eye-driver-patch.html?showComment=1273457202061#c5812783852330333262
http://bear24rw.blogspot.com/2009/11/ps3-eye-driver-patch.html?showComment=1273457202061#c5812783852330333262
http://www.m-audio.com/products/en_us/Delta1010LT.html
http://www.m-audio.com/products/en_us/Delta1010LT.html
http://l2ork.music.vt.edu/main/?page_id=56
http://thiscow.eu/tiki-index.php?page=puredata-wiimote
http://thiscow.eu/tiki-index.php?page=puredata-wiimote
http://www.nintendo.com/wii/console/controllers
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/
http://www.firebox.com/product/2023/V-Beat-Drumsticks
http://www.firebox.com/product/2023/V-Beat-Drumsticks
http://www.arduino.cc/en/Tutorial/AccelerometerMemsic2125
http://www.arduino.cc/en/Tutorial/AccelerometerMemsic2125
http://www.arduino.cc/
http://www.chdh.free.fr/spip.php?article1
http://www.chdh.free.fr/spip.php?article1
http://www.chnry.net/ch/IMG/pdf/pmpd.pdf
http://www.chnry.net/ch/?120-Pmpd
http://www.chnry.net/
http://www.maryellenchilds.com/?page_id=8
http://www.maryellenchilds.com/?page_id=8
http://www.maryellenchilds.com/
http://hackartlab.org/
http://hackartlab.org/

	1	Introduction
	2	Video Elements
	2.1	Artistic Challenge
	2.2	Exploration
	3	pmpd
	4 	Sensors
	4.1	 Accelerometers
	4.2 	Wiimote and Nunchuck
	4.2.1 	[wiimote]
	4.2.2 	wiimote Accelerometer Hardware
	4.3 	Multiple Microphones
	4.4 	ps3eye
	4.4.1 	Near-infrared Tracking
	5 	Pd implementation
	5.1 	Communication amongst multiple instances
	5.1.1 	[pd~]
	5.1.2 	[inter-inst-comm]
	5.2 	Dynamic Patching
	5.2.1 	Motivation
	5.2.2 	Implementation
	5.3 	Text files and [qlist]
	6 	Future Work
	7. 	Conclusion
	8.	Acknowledgements

