
Self-replication: how to do more using less

Krzysztof Czaja
The Fryderyk Chopin University of Music

Okólnik 2
Warsaw, Poland

czaja@chopin.edu.pl

Abstract

Multi-instantiation is the process of taking a single
declaration of an object, or a patch, and creating
several instances of it, replicating the structure,
while possibly varying the initial state. An impor-
tant application, among many others, is support-
ing the implementation of polyphonic instruments.

There are two distinct design options: the pro-
cess of replication may be initiated and controlled
either from the outside, or from the inside of
the replicated patch. The latter possibility is ex-
plored in this paper in an attempt to advocate for
self-replication as a conceptually simple, yet quite
generic and powerful mechanism.

Keywords

Multi-instantiation, self-replication, polyphony.

1 The poly˜, its clones, and the more to
come

One of the few remaining PureData vices,
which still compromise its many virtues [1], is
the lack of implicit multi-instantiation mechanism.
For example, according to the common expecta-
tion, any implementation of a sound synthesis al-
gorithm should qualify for seamless abstraction
into a polyphonic instrument. Pd has not yet ful-
filled this expectation, and a path of improvement
is proposed in this paper.

A canonical example of a working solution ex-
ists in the Max/MSP world. A specially pro-
grammed abstraction may be replicated by pass-
ing its name as a creation argument to an object
poly˜ [2]. The interface used for controlling the
instances of an abstraction is quite complex, and
MIDI-centric. The replicated patch should contain
poly˜-specific variants of inlets and outlets, which
handle interfacing with the outside patch. The
communication between instances and the object
poly˜ itself is passed through an object thispoly˜
contained in the replicated patch.

The number of instances is initially specified
by an argument to the object poly˜, and it may
be changed at any time by sending the message
voices to this object. Directed at specific in-
stances are ints, floats, the bang, and lists. The
message target is used for redirection.

Selective parametrization of instances is not
supported — all instances are created with the
same set of parameter values, which are specified
at the end of an argument list given to the object
poly˜. All data shared by the instances have to
be stored outside of the replicated patch. In-place
editing of the patch is not possible, although view-
ing its contents is.

At least two attempts to imitate selected fea-
tures of poly˜ in a Pd external have failed. Al-
though performing quite well, they turned out to
be too limited to be useful in practice. The only
poly˜-like implicit replication mechanism avail-
able today, is quite convoluted and volatile, unfor-
tunately. It is based on clever dynamic patching
tricks, which misuse a set of messages originally
designed for the manual editing of patches — a
temporary solution [3].

If a similar attempt is to be successful, some
changes to Pd core will be necessary. These
changes need not be guided, however, by the goal
of borrowing an existing design. They are, instead,
an opportunity to extend the internal mechanism
of instantiating Pd objects and patches.

Instantiation-time evaluation is an integral
part of Pd, although currently, it is limited to a
simple form of parametrization: arguments of an
object, before being passed to the constructor, are
first evaluated in the context of parameters of the
containing patch. The Pd core evaluates these ar-
guments using literal values of patch parameters,
and taking literal values of the result of textual
substitution. The patch parameters, in turn, are
the values given as arguments to an object which
instantiated the patch.

One can imagine several ways of extending the
user-guided computation performed during the in-

stantiation phase. Design for metaprogramming,
however, is a much broader topic than this pa-
per’s focus. The scope of this proposal is limited
to the process of instantiating replicated copies of
a patch — its embedded instances. The idea is to
provide two special objects, more and less, each
having a very simple interface designed to control
the way embedded instances are created, and how
they operate. A prototype implementation is be-
ing developed in a branch of a clone of the Pd
vanilla repository [4].

2 Motivating examples

From a user’s perspective, the task of intro-
ducing implicit multi-instantiation into a project
is threefold. First, the user creates an object, an
abstraction or a subpatch, and prepares it for repli-
cation. Then, the user has to trigger, somehow,
the transformation of the object into an array of
embedded instances. The last part is interfacing
the instances with the project as a whole. A few
simplified examples are presented in this section
in order to give a taste of working with embedded
instances.

2.1 Ten sins

The subpatch sins shown below contains the
object more 10, which requests for nine more in-
stances of the subpatch.

Seen from the outside, this subpatch behaves like
an ordinary signal generator. It produces a har-
monic series of ten sinusoidal partials, where the
fundamental frequency is controlled by messages
sent to the object’s only inlet:

What happens under the hood, however, is
that the constructor of the object more sends a
replication request to its enclosing subpatch. Later
on, when the instantiation of the sins subpatch fi-
nalizes, the Pd core will fulfill the request and cre-
ate nine extra embedded instances of the subpatch.

These instances will share inlets and outlets with
the main, surface instance created, as usual, for
the pd sins object. The signal outlet of pd sins
will output the sum of signal streams coming from
all ten instances.

The extra instances cannot be opened into a
window for editing or viewing of their contents.
They are embedded one after the other, forming
the embedding chain. The position of an instance
in the embedding chain, the embedding index, may
be queried: the object more, when banged, will
output the value of embedding index of its con-
taining instance, which equals 0 for the surface
instance, 1 for the first embedded instance, etc.

2.2 Seven vices

The next example introduces the more’s com-
panion object — less. The interaction of these
two objects facilitates the dynamic creation and
reconfiguration of embedded instances. Moreover,
the object less is used for redirecting specific mes-
sages to specific instances — after specializing the
object more for detachment of embedded instances
from surface input.

This time, the replicated patch will be an ab-
straction, instead of a subpatch. The following
definition can be saved in a file vices.pd, and in-
stantiated as an object vices pride.

The argument off given to the object more
is a request for the detached mode of embedding.
Since there is no numerical argument, the number
of embedded instances is not specified statically —
they will be dynamically requested, instead.

The subpatch less-in contains the object
less, without arguments and not connected:

The purpose of this object is to declare, that the
subpatch less-in is to be shared between all in-
stances of the abstraction vices. In other words,
this is a singleton subpatch — the loadbang fires
only once, and the right inlet of the object more
receives just the six symbols, no more.

In general, if a replicated patch contains an
immediate subpatch, which in turn contains an
object less, then the subpatch is shared. (It is
not necessarily a global singleton, however, be-
cause the replicated patch may belong to another
patch, also replicated, thus forming another level
of replication hierarchy.)

The loadbangs of shared patches fire early.
This timing is an important feature, because the
shared patch should be fully initialized before in-
stantiation of the enclosing patch ends, and before
any actual embedding starts.

In the abstraction shown above, the six sym-
bols sent to the right inlet of the object more are
the replication requests provided in place of the
missing numerical argument of the object. These
requests schedule the creation of six embedded in-
stances. Each symbol is substituted for the first
parameter of a consecutive instance.

If the abstraction is created as an object vices
pride, the resulting printout will read: pride 0,
followed by greed 1, envy 2, etc., down to sloth
6.

2.3 Keeping vices under control

The initially very simple example described
above will now be extended into a version illus-
trating the mechanism of redirection of messages
to specific instances. It also shows the usefulness of
dynamic replication requests. (This does not mean
that the abstraction is already useful as such; it is
just a skeleton, which may be further developed.)

Each instance of the abstraction vices con-
tains its own localized array created by the object
table. These arrays may hold, for example: pre-
sets, values specific to sections of a piece, envelopes
of synthesized partials, spectral profiles, etc. The
abstraction handles reading from or writing to ar-
rays, and loading or saving them to disk:

The left inlet of the abstraction passes control mes-
sages on their way to the tabread object, and the
second inlet does the same for the tabwrite. The
third inlet triggers file saving, and the last one
redirects control to specific instances.

It is only the surface instance which originally
receives all writing and saving requests, due to the
detached mode of embedding. The requests must
then be redirected to specific instances, which is
the task of the subpatch twoless:

A float message sent to the right inlet of the ob-
ject less specifies the embedding index of a target
instance. Any message sent to the left inlet of the
object less is redirected to the current target.

Similarly, the subpatch oneless redirects read-
ing requests:

This subpatch contains also the initialization part,
which controls self-replication of the parent ab-
straction. Instead of hard-coding replication re-
quests in a message box, the list of requests is
loaded from a text file.

3 Detailed exposition

This paper advocates for nothing more, than
extending Pd with two internal object classes,
more and less. The interface of the two objects
is deliberately designed to be as simple as possi-
ble. As a consequence, this exposition will be kept
short.

3.1 The more inside

The purpose of the object class more is to initi-
ate and control self-replication of a patch it is part
of, which may be a toplevel patch, a subpatch, or
an abstraction instance containing the object. The
object more has always two inlets, one outlet, and
accepts a single number and/or a single symbol as
optional arguments.

The numerical argument N is a request for no
less than N−1 embedded instances. Thus, if there
is more than one object more in a patch, all numer-
ical arguments will be ignored, except the largest
one. The largest N is not necessarily the final
number of created instances, since additional in-
stances may be requested dynamically.

Symbolic arguments are reserved for the con-
trol of embedding modes. Currently, the only valid
value is off, which is a request for the detached
mode of embedding. Thus, if a patch contains ob-
jects more, and any of these objects is given the ar-
gument off, the embedded instances of the patch
will have message inlets disabled.

The left inlet of more accepts any message.
The object first converts the received message to
a list, if necessary, then precedes it by the em-
bedding index, and sends the result through the
single outlet. This behaviour is strictly equivalent
to passing that same message to an object list
prepend id , where id is the embedding index. In
particular, sending a bang to an object more forces
the object to output the embedding index as a float
message.

The right inlet is used for dynamic self-
replication and reconfiguration. Each data mes-
sage (i.e. one of: bang, float, symbol, and list mes-
sages), when sent to the right inlet during instanti-
ation of a patch, is a request for one more embed-
ded instance. The message arguments are passed
to the requested instance as its list of creation ar-
guments.

3.2 The less of early banging

The object class less is introduced for two rea-
sons. First, it declares that its enclosing subpatch
is shared between all instances of the parent patch
— the one directly containing the shared subpatch.
Second, it manages redirection of messages to spe-
cific instances of the replicated parent patch.

The redirection works as if the shared subpatch
migrated from one instance of its enclosing patch
to another. The procedure may be compared to
rebinding a variable to a different value. The in-
stance currently containing the shared subpatch is
initially a free variable. This variable is bound to
the source instance of any message arriving to any
inlet of the subpatch. The binding occurs at the
time when an inlet receives a message, i.e. at the
point of calling one of the inlet’s methods. The
variable is unbound as soon as the message has
been processed, i.e. before the method returns.

The currently bound instance is the destina-
tion of messages passed to any outlet of the sub-
patch. Calling the subpatch via an internal timer,
or remotely, through a receive, results in the vari-
able remaining unbound, and the messages thus
triggered will not leave the subpatch — unless re-
motely, or after redirection.

Performing a redirection may thus be under-
stood as rebinding the variable to another in-
stance. The new target instance is determined by
the last object less that the message has been
piped through. The right inlet of the object sets
the target, and the left inlet accepts any message,
which is passed, unchanged, to the object’s single
outlet.

The object less takes a single optional float
argument, which initializes the target instance.

The insertion of an object less in a subpatch
has a side effect of “early firing”, which means, that
if such a subpatch contains any loadbang objects,
they fire before the replication of a parent patch
starts — not after, as is otherwise the case.

3.3 Seven voices

To conclude the exposition, let’s consider the
prototypical application of self-replicating patches
— managing of polyphony. As an example, a two-
level hierarchy of embedded instances will be cre-
ated, which may serve as a skeleton of an additive
synthesizer. The outer patch defines a voice, and
contains an object more, which requests for seven
instances:

At the inner level, there is the subpatch sins,
which was described in the section 2.1. Since that
subpatch replicates itself into ten instances, and
there are seven voices, the total number of created
partials is 70.

The input to the outer patch are note-like mes-
sages of pitch and “velocity”. The outer patch
passes them to its another subpatch, dispatch,
which “allocates” voices in the usual manner.

This dispatching scheme is a clear example of redi-
rection: the messages sent originally to the surface

instance of the outer patch are redirected to a cho-
sen instance taken from a pool of voices.

As a natural extension, this simplistic skeleton
of an instrument may be merged with the abstrac-
tion vices described in the section 2.3, where the
arrays would define envelope profiles of separate
partials, or groups of partials.

4 Implementation

The prototype implementation plugs into the
Pd core without breaking its monolithic, single-
threaded DSP graph design. The DSP part is
somewhat convoluted due to optimizations, which
already exist in the d_ugen and g_io code (“bor-
rowing” of signal vectors). The actual embed-
ding is performed during execution of the function
canvas_restore. Handling of message inlets is
straightforward, and the overhead is one extra test
required by a potential need for passing a message
to embedded inlets. The changes to message out-
lets induce the same overhead, although some ex-
tra code in the constructor has to be executed for
shared subpatches in preparation for redirection.
(The costs of message handling may be avoided
by implicitly specializing the class of inlets and
outlets, whenever a patch is to be replicated.)

The delicate part of the current implementa-
tion is the way a singleton subpatch is transformed
into a “stub” in embedded instances. During repli-

cation of a patch, its immediate subpatches are
scanned for instances of the object less. If such
a subpatch is found, all its contents is deleted, ex-
cept the inlets, the outlets and the less itself.

5 That’s it, more or less. . .

There are some controversial issues originating
from the proposed design. The most urgent one
is the need to fully understand the consequences
of choosing self-replication over a sub-replicating,
poly˜-like solution. Another example of an open
question is the difference in treatment of surface
instance and embedded instances. Any design
decision, however, is to be approved, improved
or rejected only in confrontation with real-world
projects, and these are yet to be created.

References

[1] M.S. Puckette. The Theory and Technique of
Electronic Music. World Scientific Press, Singa-
pore, 2007.

[2] poly˜ Reference, in: Max 5 Help and Docu-
mentation. http://cycling74.com/docs/max5/
refpages/msp-ref/poly˜ .html.

[3] PureData repository. http://pure-data.svn.
sourceforge.net.

[4] Branch ‘moreless’ of the PureData repository.
http://github.com/k7f/PureData.

	1 Introduction
	2 Section
	2.1 Subsection
	2.2 Subsection
	2.3 Subsection

	3 Section
	3.1 Subsection
	3.2 Subsection
	3.3 Section

	4 Section
	5 Section

