rj - abstractions for getting things done

Frank BARKNECHT
50668 Cologne
fbar@footils.org

Abstract

rj is an open source library of Pd abstractions that
was developed as part of the RjDj project to sup-
port developing reactive music scenes for mobile
devices like the iPhone running a variant of Pure
Data inside the RjDj player software. As a least
common denominator for such environments the
object class vocabulary of the core "vanilla" ver-
sion of Pd is used. This way, the rj library is ex-
tremely portable between different distributions of
Pd and can be used on many mobile devices with
limited hardware, but it is also useful as a general
musicians toolbox on common computers.

The rj library strives to provide a minimal, but
also fairly complete set of useful tools for musi-
cians including composition helpers, sound gener-
ators, input handlers or sound effects. It can be
used as a globally installed library but it is also
designed to work by being copied into a project
folder, thereby making the project or "scene" self-
contained and easily distributable.

The rj library has been successfully used by dozens
of musicians writing scenes for the RjDj platform
or in the popular iPhone app for the movie "In-
ception".

Keywords

abstraction, library, rjdj, composition, reactive

Introduction

In 2008, Michael Breidenbriicker, one of the co-
founders of last.fm, started the project that later
became known as RjDj'. His vision was a new
kind of music played on mobile devices that is not
a static track anymore, but creates a dynamic, in-
teractive and algorithmic soundscape able to sense
and react to environmental changes.

From the beginning it was clear, that the new
player software for this music would have to be
able to react in realtime to outside influences. It
must be able to express processes and algorithms
on a musical metalevel: just to play back pre-
recorded tracks or pre-composed patterns would
not suffice. Pure Data with its relatively large

"http://rjdj.me

user base and its liberal BSD license was an obvi-
ous candidate as a base for this project. Michael’s
prior experience as a Max/MSP developer and his
friendship with Pd developer Giinter Geiger may
have played an additional role in the decision to
use Pd.

At that time Apple’s just introduced iPhone
device and AppStore software distribution network
similarly was the obvious and only valid target
platform, also because Apple’s music-savvy user
base promised to be a welcoming audience for new
listening experiences.

However there also was potential for conflict
between Apple’s history of offering a "shiny jail"
with many restrictions for customers and devel-
opers on one hand and the freedom loving Open
Source (OS) community that backs Pd’s develop-
ment.

RjDj was started with a series of sprints -
laid-back get-togethers of Pd users and developers
spanning several days with the goal of exploring
ways to marry Pd with the iPhone and to marry
iPhone users with Pd composers. One important
result of these meetings was the specification of
the RjDj Scene file format. "Scene" is the term
used to describe a piece of reactive music, it is the
analog to the term "Track" in pre-recorded music.
A Scene file in RjDj is a zip-compressed directory
that includes at least a file called " _main.pd": this
is the file that the Pd loader inside of the RjDj app
loads and then plays. Further resources can be in-
cluded anywhere in the zip-archive, notably other
abstractions used in _main.pd, soundfiles to play,
textfiles with scores and so on. In addition to this,
an RDF-file called "index.rdf" holds various meta-
data like title and composer and a cover image can
be included to be displayed in the player.

rj: Goals and restrictions

While not required, the rj library presented
here typically also is included in a Scene archive.
Being included inside of a music project in this
way was the main goal when designing the library.

Technically the rj library is a collection of Pd


http://rjdj.me

abstractions that should support composers of re-
active music for mobile devices including iPhone
and iPod Touch. It is available on Github at http:
//github.com/rjdj/rjlib/. Apple’s AppStore
licensing and developer guidelines create a danger-
ous minefield for developers who would want to use
GPL-licensed code in their project, so it was im-
mediately clear that only a version of Pd stripped
of any GPL components could be offered inside of
the RjDj app. Any Pd patches that must run in-
side the RjDj player thus cannot use for example
the |expr| objects as these are GPL. The Scene di-
rectory can however include additional libraries as
long as they are implemented as abstractions: The
i0S platform prohibits loading binary externals at
runtime.

In the very early versions the rj library was
part of the RjDj App. But because updates of the
application itself were less frequent than updates
to the abstraction library it was removed from the
App. Instead it now is typically included in a
Scene itself. This way a Scene is self-contained and
will continue to function, if the rj library would in-
troduce incompatible changes, because the version
included in the Scene still is the one current when
the Scene was written.

In fact this approach of bundling all resources
for a piece of music into a single directory is not un-
common among composers in general. Some even
go so far as to include a version of the current Pd
application or externals used and their source code
itself into a project directory to archive their com-
position for future performances. Miller Puckette’s
"Pd Repertory Project" 2 is an example for this
approach, that is characterized by its effort to re-
duce or remove any dependencies. In the rj library
the dependencies are reduced as much as is pos-
sible without altering Pd itself. As it turned out
the vocabulary offered in Pd vanilla is sufficient
to implement most of the functionality commonly
required to write reactive music.

Overview of the rj library

The rj library currently contains more than 170
abstractions that somewhat arbitrarily have been
arranged into the following topical sections:

e Analysis
e Synths

o Liffects
2http://crca.ucsd.edu/ "msp/pdrp/

e GUIs

e Mappings
e Controllers
e Utilities

Abstractions in each section all start with
the lowercase initial letter of the section’s head-
ing and an underscore. For example the effect
for distortion by reduction of bit depth is called
e _bitcrusher.pd.

A special reference abstraction called
"OVERVIEW.pd" lists the available objectclasses
per section in a format similar to the "help-
intro.pd" reference file that opens in Pd if a
user chooses to see the "Help" for a canvas back-
ground. Contrary to help-intro.pd the rj library’s
OVERVIEW.pd is empty at first: The list of
objects is dynamically created on demand from
textfiles. This was implemented to allow users to
keep an abstraction instance of [OVERVIEW]| in
their _main.pd file without encountering a per-
formance loss when the Scene is played.

Library Contents: Analysis

The Analysis section is a place for objectclasses
dealing with analysing the environment as sensed
by device sensors. Unfortunately it is also the sec-
tion that still needs the most works, currently only
a basic onset detection is included.

Library Contents: Synths

Here you will find object that generate some kind
of sound starting from basic, often bandlimited os-
cillators and sampleplayers up to complete drum
machines and a selection of powerful synthesizers
designed by Andy Farnell including emulations (or
at least approximations) of hardware instruments
like the famous Juno by Roland.

Library Contents: Effects

Effects are an important family of objects in RjDj:
modifying environmental sounds in realtime as the
occur has a profound effect on the listener’s per-
ception. This probably is the reason for users
to describe their RjDj listening experience as a
"digital drug". The rj library includes typical
effects like filters, reverb, vocoder, phaser, cho-
rus, pitchshifter, dynamics processor (including


http://github.com/rjdj/rjlib/
http://github.com/rjdj/rjlib/
http://crca.ucsd.edu/~msp/pdrp/

compressor, noisegate, limiter and expander) or a
granular delay.

Library Contents: GUIs

To its users RjDj is focused on aural experience
without an elaborate graphical interface. Still
when composing or fine-tuning parameters GUI el-
ements like sliders are immensely useful. The GUI
section provides such GUI elements that have been
wrapped to offer a simple and consistent visual
appearance and work nicely with the parameter
control system implemented in many of the other
library objects.

Library Contents: Mappings

Mappings translate or convert messages from one
domain to another. An example would be a trans-
lation of numbers to symbols as in a pitch scale
(0 maps to pitch C, 1 maps to C-sharp, 2 maps
to D and so on) or a conversion of units (like sec-
onds or samples as units of time). The Mappings
sections contains various kinds of mapping related
objectclasses.

Library Contents: Controllers

Controllers control other things. The well-known
[metro| is such an objectclass: It often is at the
center of a whole piece of music. If you stop the
metro, everything stops. This section of the li-
brary includes some metro-variants like a multi-
metro, that accepts irregular period lists, or var-
ious pattern players. Envelope generators like an
ADSR are here as well - they control beginning
and end of a note.

This section also is the place for two other C-
words: Composition and Conductor. Here you’ll
find helpers for algorithmic composition like a
Markov-chain module, urn and drunk for random
numbers or a player for midi files - but these have
to be converted to textfiles in advance as there is
no midi player in Pd vanilla.

Library Contents: Utilities

This final section holds all the things which do
not fit into one of the previous sections. Notably
it includes a small selection of the most important
list-processing abstractions taken from the [list]-
abs library for operations like drip, map, filter and
reduce, making it unnecessary in many cases to
include a full copy of this useful library in every

scene. Here also is the place for the preset saving
system based on the SSSAD object by the author
and the samplebank system to standardize loading
and playback of soundfiles in tables, which we will
see in more detail later.

Parameter Control and State Saving

In the next sections several notable features
of the rj library will be presented in more depth,
starting with the parameter control and preset sav-
ing built into (most) rj-abstractions.

The more complex abstractions in the rj library
share a common way to control their internal set-
tings including as useful state saving system. In an
idea taken from the earlier RRADical/Memento li-
brary by the author, the rightmost inlet has a spe-
cial purpose as a control inlet. It accepts meta-
messages to set the state of the object.

An example is the s _fm4 synthesizer: a four
operator FM-synthesis abstraction. It has quite
a lot of parameters: each operator includes an
ADSR-envelope with 4 parameters, a ratio to set
the frequency in relation to a base frequency and
a volume, so each operator has 6 parameters re-
sulting in a total of 24 parameters. Then a 4x4
modulation matrix can be set, requiring an addi-
tional 16 parameters, so there are 40 parameters
altogether in the FM4-synthesizer.

All these parameters can be set through the
rightmost inlet using meta-messages like "A1 5" to
set the Attack value of the first operator’s ADSR
to 5, or "R3 200" to set release in operator 3 to
200 milliseconds.

Dealing with 40 parameters can result in messy
patches with lots of patchcords going over each
other, unless one takes some smart countermea-
sures. In the rj library a special abstraction called
[u_dispatch| helps with clean patching.

Its main purpose is to "dispatch" meta-
messages to receivers. Every [u_dispatch| object
has to be created with two arguments that are con-
catenated with a dash "-" to the receiver’s name.
The second argument specifies the selector of the
meta-message that the dispatcher should handle.
The first argument usually is simply $0, to localize
the receiver. Internally a [route $2] object will fil-
ter out incoming messages. If it finds a matching
meta-message it will send it to a receiver called |s
$1-82|. Other messages will go to the outlet of the

dispatcher.



[u_dispatch $0
1

[u_dispatch $0
|::1_dispat-::h 50
|::1_dispat-::h 50

|l:1_dispatch 50
E_dispatch 50
E_dispatch 50
E_dispatch 50

|::1_dispat-::h 50
E_dispatch 50
E_dispatch 50
E_dispatch 50
|::1_dispat-::h 50
E_dispatch 50
E_dispatch 50
E_dispatch 50

Ad|
D4|
54|
Rd|

|
[u_dispatch $0
[o_dispatch 50

'vu11|
vu12|

]
[u_dispatch $0
|
[u_dispatch $0

vu13|
vu14|

|l:1_dispat-::h 50
E.'l_dispatch 50
|::1_dispat-::h 50
|::1_dispat-::h 50

ratiul|

rati02|

ratqu|

ratiu4|

|
E.l_dispatch 50

[o_dispatch 50
]
E.l_dispatch 50
E_dispatch 50

indexl]
index2]

index3]
indexd]

Figure 1: Typical clean parameter-dispatching in
rj-abstractions

Taking the examples from above, we would
need two dispatchers to handle Al- and R3-meta-
messages, that would be created as such (also see
figure 1):

[u_dispatch $0 A1]
|
[u_dispatch $0 R3]

Both are connected to each other and the first

one is connected to the control inlet. The attack
message from above, "A1 5", will be filtered out
in the first dispatcher resulting in a float 5 being
sent to the receiver "$0-A1".

The message "R3 200" however will pass
through the first dispatcher unchanged, until the
second dispatcher will send it to "$0-R3".

[u_dispatch| also handles lists as values in
meta-messages. This is used to set the modula-
tion matrix per operator as a four-value list. The
meta-message to set the modulation indices for the
first operator could look like this: "index1 0 0.05
0om

As a full example, here is the parameter list
describing a setup sounding similar to the Rhodey
electric piano as is part of the STK C++-library:

A1 1
A2 1
A3 1
Ad 1
D1
D2
D3
D4

1500
250

1500
1000

R1
R2
R3
R4

40
40
40
40

S1
52
83
S4

O O O O

index1
index2
index3
index4

oo oo
oo o
- oo o
oo oo
o o

[y

ratiol
ratio2
ratio3
ratio4 15

[

voll 1
vol2 1
vol3d O
vold O

Abstractions using the dispatcher mechanism



can also report their current state, because a sec-
ond feature of the u_ dispatch objects is to provide
a link to a parameter saving system based on the
SSSAD system by the author. A copy of the ss-
sad.pd abstraction that makes up the system is
included in the utilities section under the name
u_sssad.pd. Every u_dispatch object includes an
instance of [u_sssad] to store the current param-
eter value into a SSSAD-slot named after the pa-
rameter name.

To activate the SSSAD-based saving, an ab-
straction also needs to include an instance of the
u_loader abstraction. It serves as a bridge be-
tween the state as stored locally and a global re-
ceiver system. Optionally the u_loader’s outlet
can be connected to the abstraction’s control out-
let (the rightmost one) and report the state there
as well.

To be able to differentiate between various in-
stances of the same abstraction, every occurrence
has to be "tagged" with a symbol as first argu-
ment. This tag is transported into the preset sys-
tem via the first argument of the loader, which
then by convention should be created as [u_loader
<name_of abstraction>-$1 $0]. The second ar-
gument, usually $0, selects the dispatchers to talk
to. Remember that these have $0 as their first
argument.

When this construction is complete, a full state
as presented above can be reported through a set
of global senders and receiver. Sending a "save"
message to [s RJ_SCENE_SAVE]| will make all
parameters held in some u_ dispatch-object re-
port their current state to a receiver called [r
RJ SCENE] in a format, that includes the spe-
cific tags of abstractions with the abstraction name
prepended. This also is the format used for restor-
ing or remote-control of settings via the global re-
ceiver "RJ SCENE LOAD".

Again an example should illustrate this: As-
suming an instance of the FM4-synthesizer tagged
like this: [s_fm4d MYTAG]. On '"save" to
RJ SCENE_ SAVE, the following may be re-
ceived on [r RJ_SCENE]:

s_fm4-MYTAG
s_fm4-MYTAG
s_fm4-MYTAG
s_fm4-MYTAG
s_fm4-MYTAG
s_fm4-MYTAG D2
s_fm4-MYTAG D3

*http://www.essl.at/works/rtc.html

Al 1
A2 1,
A3 1
Ad 1
D1

s_fm4-MYTAG D4 1000,

Note that the order is undefined! These mes-
sages could then be saved into a [textfile] object
or to a message box object. To restore the pa-
rameters, the messages simply can be sent to |[s
RJ_SCENE_LOAD|. Alternatively they can be
stripped of their first element ("s fm4-MYTAG"
here) to feed them directly into the control inlet.
Figure 2 shows a complete patch saving the state
of a dispatcher-enabled abstraction into a message
box. The message box can be activated or "load-
banged" to restore settings. Saving into a textfile-
object would follow the same principle.

Sample Management

Playing back prerecorded samples or record-
ings that have been taken in realtime as snap-
shots of environmental sounds is a common task in
many RjDj-Scenes. Several scenes produced by the
team at Reality Jockey and other producer also are
"reactive remixes" of tracks by major artists like
the French duo "Air". Here traditionally recorded
stems have been used and enhanced with reactive
elements.

The rj library supports these tasks with several
utility objects that together form an architecture
for sample management in tables. (Playback from
disk is delegated to the usual [readsf~| object.)

At the core of rj’s soundfile management is a
task sharing concept: Several objects deal with
loading of soundfiles into tables while other objects
play back these tables in response to commands
carrying the table identifiers.

The basic file-loader is the [u__samplebank] ob-
ject. It is a rather thin wrapper around a [sound-
filer| object and a target table, whose name has
to be supplied as first argument. The soundfile to
load into the table can be supplied as second argu-
ment or via a message to the samplebank’s inlet.
The samplebank reports the current table name
and length in samples and milliseconds and the
samplerate used to calculate it (default is 22050
Hz, which can be overridden) to its outlet in re-
sponse to an "info" message received on the inlet.

The corresponding playback object is called
[s_playtable]. It is modelled after a similar ob-
ject in Karlheinz Essl’s RTC-library * and will play
back a samplebank-table when it receives the sam-
plebank’s table-identifier name, optionally trans-
posing or attenuating it or playing only a part of


http://www.essl.at/works/rtc.html

the table.

Both [u_samplebank| and [s_playtable] work
with mono files - stereo samples are handled by
[u_samplebank2| and [s_playtable2]. Because
stereo files require two tables for left and right
channels, the argument specifying the table in the
samplebank now is not the actual table name but
a base name for the two tables inside. Their real
names have "-1" and -2" appended. The stereo
playback object expects just the basename in its
activation command and will automatically extend
the names following the same pattern internally.

Several extensions to the basic samplebank ob-
jects support loading multiple files into tables or
even a directory of samples with the [u_ samplekit|
objects.

Live recordings simplified with the
[u_record| object: It is very similar to the sam-
plebank, but instead of opening a file it expects a
"record" meta-message to start recording. In ad-
dition to the table-name a buffer length to resize
the internal table is required. The "info" meta-
message will report the length of the last record-
ing.

are

To an experienced Pd user these objects may
look simple, and indeed inside they don’t provide
much advanced functionality beyond what is usu-
ally patched around a [soundfiler|. But it turned
out that musicians coming from a more traditional
background were happy to find familiar terms like
"samplebank" or "samplekit" instead of "sound-
filer" or "record" instead of "tabwrite~". And
even Pd power-users can get bored of patching the
same "bang -> openpanel -> "read -resize $1" ->
soundfiler" again and again and will find it useful
to get the table length with a simple "info" com-
mand even long after a file was loaded (which is
the only time a naked [soundfiler| will report the
samples loaded).

Powerful Synthesizers

The original target platform for RjDj was the
first generation iPhone. While it was very fast
for a mobile device at the time, it still was nec-
essary to be careful with CPU-intensive processes.
This is one reason for the "half-CD" samplerate of
22050 Hz used in the RjDj app. Over time mo-
bile phones including the iPhone became faster,
so in 2010 it became feasible to add some pow-
erful synthesizers to the rj library, which would
max out the iPhone 1G, but run very well on the
iPhone 4. These synthesizer were written by Andy

Farnell, author of a book on realtime sounddesign
called "Designing Sound". They approximate sev-
eral well-known hardware synthesizer models from
the past. Andy not only wrote the synthesizer
patches, he also provided a collection of preset
sounds for each abstraction, that can serve as a
base for further exploration and showcase the ca-
pabilities of the synth-abstractions.

Designing preset sounds is a time-consuming
task where a lot of "fiddling" and fine tuning is
necessary. 1o make this process easier, every synth
comes with a graphical user interface providing
quick access to the internal parameters. All synths
share the same basic interface structure, only pa-
rameter names are different and controls might be
disabled for certain synths. Figure 3 shows the
programmer for the s _ejun-synthesizer. Note the
greyed-out controls for two Oscillators and the cus-
tom names for several modifiers, which would be
different in other synths.

For saving and restoring presets, the parame-
ter handling system described above is used. The
GUI itself uses abstractions of the GUI-section in
the rj-library, that automatically prepend a tag
in front of their values. The sliders in the screen
shot thus not only produce a number, but a meta-
message, for example "modla 0.7". The meta-
message-names of all synths are unified, so the
same GUI patch can be reused. The ranges are
normalized to be 0 to 1. The programmer GUI
itself is not part of the synthesizer abstraction, in
fact, it only is part of the help-file.

Future work

When developing any library deciding which
objectclasses to include and which should be left
out maybe is the most challenging duty of the
maintainer. A guideline in solving this for the rj
library always was to provide a minimal and small
library, that still is sufficient 80 to 90 percent of the
time. For example, while it would have been pos-
sible to include the full [list]-abs collection to pro-
vide a complete set of list-processing operations,
only the half a dozen most important objects from
there have been included. I estimate that they ful-
fil most list-demands composers have. For the re-
maining more advanced tasks the composers could
just copy the wanted abstractions from the original
library.

The analysis section obviously needs some
more work, but this is underway. However even
as it stands, the rj library has proven to be a use-



ful resource not only for writing RjDj scenes. In
fact, the author also uses it in most of his outside
projects. It’s easy to "install" by copying it into
a project directory and saves a lot of headaches
in regard to outside dependencies. This last point
makes it especially useful in a teaching context as
well. Not only can beginning users avoid having
to hunt down exotic externals, they also can take
a look inside the rj abstractions to see how cer-
tain things can be implemented in pure Pd, and
directly copy it into their own variations.

All in all rj has proven to be a nice library for
"just getting things done" in a fun way.

Acknowledgements

Our thanks go to everyone at Reality Jockey
for supporting development of the library and test-
ing, testing, testing it in real world applications,
particularly Joe White, Robert Thomas, Florian
Waldner and Andy Farnell. Special thanks go to
the authors of abstractions that have found their
way into the rj library in pure or slightly modi-
fied form. Among these are Miller Puckette, Ro-
man Haefeli, Giinter Geiger, Amaury Hazan and
Mathieu Bouchard.



Saving the settings of this object

[s RI_SCENE_SAVE|
r RI_SCENE

[u_c:ucullel::t <- "comma-collects" messages into a wmessage box separated
by cowmas

5 fwmd-MYTAG indexd 0 0.0787402 0 0, s_Hwmd-MYTAG index3 O
0.0787402 0 0, s_Hm4-MYTAG index2 0 0 0 0, s_Hwd-MYTAG
mdex1l 0 0 0 0.330709, s_fwmd-MYTAG ratiol 2, s_fmd-MYTAG
ratio3d 2.5, s fnd-MYTAG ratiod 1.5, s fnd-MYTAG ratiol 1,
s fwmd-MYTAG vold 0.5, s fnmd-MYTAG vold 0.1, s fwmd-MYTAG
wol2 0.7, s_fwd-MYTAG woll 1, s_fwd-MYTAG R4 24,

54 13, s _fmd-MYTAG D4 94, s _fwd-MYTAG Ad 8,
R3 168, s fwmd-MYTAG 53 90, s_fimd-MYTAG D3 61,
A3 20, s_fwd-MYTAG R2 334, s _fwmd-MYTAG 52 25,
nZ
51

s

37, s_fmd-MYTAG A2 2, s fnd-MYTAG R 999,
55, s_fmd-MYTAG D1 38, s_fmd-MYTAG Al 49,

[s RI_SCENE_LOAD

Figure 2: Saving parameters of rj-objects into a message box



|{'.lE|:lare —-path |

Envelope-1

[ Awp-artack
“] awp-oEcay
|

Oscillator-1

[~ osci-coanse
[k

Modifier-1
[ rorReg]
[~ visanr
[ visonser
_Jroewn

g $é-control

Envelope-2

| FirAtrAck
I riroscar
T rirsus
| G

Oscillator-2

—ofca-coanse |
has]

e
Modifier-2

[ cutorr

Creson

Cfvanr

I G

Envelope-3

[ oo-arTack
| woo-oecay
[“hoosus
|

Oscillator-3

[“oscorrea

Modifier-3
| HiGHPASS
[ vpLUME

Figure 3: Programmer for the s_ejun synthesizer



	Introduction
	rj: Goals and restrictions
	Overview of the rj library
	Library Contents: Analysis
	Library Contents: Synths
	Library Contents: Effects
	Library Contents: GUIs
	Library Contents: Mappings
	Library Contents: Controllers
	Library Contents: Utilities

	Parameter Control and State Saving
	Sample Management
	Powerful Synthesizers
	Future work
	Acknowledgements

