PURE DATA

Published : 2012-06-06
License : None

INTRODUCTION

1. PURE DATA
2. REAL TIME GRAPHICAL PROGRAMMING

3. WHAT IS DIGITAL AUDIO?

1 - PURE DATA

Pure Data (or Pd) is a real-time graphical programming
environment for audio, video, and graphical processing. Pure Data
is commonly used for live music performance, VeeJaying, sound effects,
composition, audio analysis, interfacing with sensors, using cameras,
controlling robots or even interacting with websites. Because all of
these various media are handled as digital data within the program,
many fascinating opportunities for cross-synthesis between them exist.
Sound can be used to manipulate video, which could then be streamed
over the internet to another computer which might analyze that video
and use it to control a motor-driven installation.

Programming with Pure Data is a unique interaction that is much closer
to the experience of manipulating things in the physical world. The
most basic unit of functionality is a box, and the program is formed by
connecting these boxes together into diagrams that both represent
the flow of data while actually performing the operations mapped out
in the diagram. The program itself is always running, there is no
separation between writing the program and running the program, and
each action takes effect the moment it is completed.

The community of users and programmers around Pure Data have
created additional functions (called "externals" or "external libraries")
which are used for a wide variety of other purposes, such as video
processing, the playback and streaming of MP3s or Quicktime video,
the manipulation and display of 3-dimensional objects and the
modeling of virtual physical objects. There is a wide range of external
libraries available which give Pure Data additional features. Just about
any kind of programming is feasible using Pure Data as long as there
are externals libraries which provide the most basic units of
functionality required.

The core of Pure Data written and maintained by Miller S. Puckette

(http://crca.ucsd.edu/~msp/) and includes the work of many developers
(http://www.puredata.org/), making the whole package very much a

community effort. Pd runs on GNU/Linux, Windows, and Mac OS X,
as well as mobile platforms like Maemo, iPhoneOS, and Android.

http://crca.ucsd.edu/~msp/
http://www.puredata.org/

2. REAL TIME GRAPHICAL
PROGRAMMING

Traditionally, computer programmers used text-based programming
languages to write applications. The programmer would write lines of
code into a file, and then run it afterwards to see the results. Many
sound or visual artists, as well as other non-programmers, find this a
difficult and non-intuitive method of creating things however.

(

{

// example by James McCartney
var signal, delay, reverb;

// 1@ voices of a random sine percussion sound:
signal = Mix.fill(10, {Resonz.ar(Dust.ar(@.2, 50), rrand(200.0,
3200.0), 0.003)1});

// reverb predelay time:
delay = DelayN.ar(signal, 0.048);

// 7 length modulated comb delays in parallel:
reverb = Mix.fill(7,{CombL.ar(delay, 0.1,
LFNoisel.ar(0.1.rand,0.04,0.05), 15)1});

// two parallel chains of 4 allpass delays (8 total):
4.do{ reverb = AllpassN.ar(reverb, 0.050, [©.050.rand, ©.050.rand 1],
DA H

// add original sound to reverb and play it:
signal + (reverb * 0.2)

}.play

)

SuperCollider: an example of text-based programming for audio.

GRAPHICAL PROGRAMMING

Pure Data, on the other hand, is a graphical programming environment.
What this means is that the lines of code, which describe the functions
of a program and how they interact, have been replaced with visual
objects which can be manipulated on-screen. Users of Pure Data can
create new programs (patches) by placing functions (objects) on the
screen. They can change the way these objects behave by sending
them messages and by connecting them together in different ways
by drawing lines between them.

[@] <-- chunk size (10@ths of a second)
* §.61

s chunk-size

<-- read point in 18@ths of

chunk size

in seconds

[tabreadd~ tablezl
=

A Pure Data patch...

4

This visual metaphor borrows much from the history of 20th Century
electronic music, where sounds were created and transformed by small
electronic devices which were connected together via patch cables.

PRETE

...and an analog synthesizer patch.

The sounds that were heard were the result of the types of devices
the composer used and the way in which she or he connected them
together. Nowadays, much of this electronic hardware has been
replaced by computer software capable of making the same sounds,
and many more.

REAL TIME

The real advantage of Pure Data is that it works in "real time". T hat
means that changes can be made in the program even as it is running,
and the user can see or hear the results immediately. T his makes it a
powerful tool for artists who would like to make sound or video in a
live performance situation.

3 - WHAT IS DIGITAL AUDIO?

Since we'll be using Pure Data to create sound, and since Pd treats
sound as just another set of numbers, it might be useful to review how
digital audio works. We will return to these concepts in the audio
tutorial later on.

Analogue input
(microphane, guitar]

Digital numerical
Analogue data, "samples"
to Digital
Conversion

Digital System

Digital

% to Analogue

Conversion

Analogue autput
{loudspeaker)

A diagram showing how sound travels through your computer. The
"Analog to Digital" & "Digital to Analog Conversion" is done by the
soundcard. The "Digital System" in this case is Pure Data.

Source: http://en.wikipedia.org/wiki/lmage:Analogue Digital_Conversion.pn,

FREQUENCY AND GAIN

First, imagine a loudspeaker. It moves the air in front of it and makes a
sound. The membrane of the speaker must vibrate from it's center
position (at rest) backwards and forwards. The number of times per
second it vibrates makes the frequency (the note, tone or pitch) of
the sound you hear, and the distance it travels from it's resting point
determines the gain (the volume or loudness) of the sound. Normally,
we measure frequency in Hertz (Hz) and loudness or gain in Decibels

[

1. speaker at rest 2. speaker with negative voltage 3. speaker with positive voltage

A microphone works in reverse - vibrations in the air cause its
membrane to vibrate. The microphone turns these acoustic vibrations
into an electrical current. If you plug this microphone into your
computer's soundcard and start recording, the soundcard makes
thousands of measurements of this electric current per second and
records them as numbers.

6

http://en.wikipedia.org/wiki/Image:Analogue_Digital_Conversion.png

SAMPLING RATE AND BIT DEPTH

To make audio playable on a Compact Disc, the computer must make
44,00 measurements (called samples) per second, and record each
one as a 16-bit number. One bit is a piece of information which is
either 0 or 1, and if there are 16 bits together to make one sample
then there are 2'0 (or 2x2x2x2x2x2x2x2x2x2Xx2x2x2x2x2x2 = 65,536)
possible values that each sample could have. Thus, we can say that
CD-quality audio has a sampling rate of 44,100 Hz and a bit-depth
or word length of 16 bits. In contrast, professional music recordings
are usually made at 24-bit first to preserve the highest amount of
detail before being mixed down to 16-bit for CD, and older computer
games were famous for having a distinctively rough 8-bit sound. By
increasing the sampling rate, we are able to record higher sonic
frequencies, and by increasing the bit-depth or word length we are
able to use a greater dynamic range (the difference between the
quietest and the loudest sounds it is possible to record and play).

15
14 S—
13
12
11
10

9 A\l

7

An example of 4-bit sampling of a signal (shown in red). This image shows
that 16 possible values can be made from 4-bits--a very low dynamic
range indeed! In Pd, our scale of numbers goes from -1to 1, with 0 in the

middle. Source: http://en.wikipedia.org/wiki/lmage:Pcm.svg

N

SENWENON®

The number we use to record each sample has a value between -1and
+1, which would represent the greatest range of movement of our
theoretical loudspeaker, with O representing the speaker at rest in the
middle position.

o=~ 448

tobwrite~ woveform

wavef orm

+1

-1

http://en.wikipedia.org/wiki/Image:Pcm.svg

Graphical depiction of a sine wave, which crosses zero from the negative
to the positive domain.

When we ask Pd to play back this sound, it will read the samples back
and send them to the soundcard. The soundcard then converts these
numbers to an electrical current which causes the loudspeaker to
vibrate the air in front of it and make a sound we can hear.

SPEED AND PITCH CONTROL

If we want to change the speed at which the sound is played, we can
read the samples back faster or slower than the original sampling rate.
This is the same effect as changing the speed of record or a tape
player. The sound information is played back at a different speed, and
so the pitch of the sound changes in relation to the change in speed. A
faster playback rate increases the pitch of the sound, while a slower
playback rate lowers the pitch.

VOLUME CONTROL, MIXING AND CLIPPING

If we want to change the volume of the sound, we have to multiply the
numbers which represent the sound by another number. Multiplying
them by a number greater than 1 will make the sound louder, and
multiplying them by a number between Tand zero will make the sound
quieter. Multiplying them by zero will mute them - resulting in no
sound at all. We can also mix two or more sounds by adding the
stream of numbers which represent them together to get a new
stream of sound. All of these operations can take place in real-time as
the sound is playing.

However, if the range of numbers which represents the sound
becomes greater than -1to 1, any numbers outside of that range will
be truncated (reduced to either -1or 1) by the soundcard. The resulting
sound will be clipped (distorted). Some details of the sound will be lost
and frequencies that were not present before will be heard.

ozc~ 1AEE

[Flip~ -1 1|metro Seoa]
featuwrite~ arraylB8

array3d array 188

JAVAN

The waveform on the left is at full volume (i.e. it's peaks are at -1and).
The volume of the waveform on the right has been doubled, so that it
peaks at -2 and 2. The graph shows what would be heard from the
soundcard: a clipped signal with the peaks of the sinewave removed.

THE NYQUIST NUMBER AND
FOLDOVER/ALIASING

f abwrite~ arraydd

Another problem occurs if one tries to play back a frequency which is
greater then half the sampling rate which the computer is using. If one
is using a sampling rate of 44,100 Hz, the highest frequency one could
theoretically play back without errors is 22,050 Hz. The reason being, a
computer needs at least two samples to reproduce a single frequency.
The number that represents half the sampling rate is called the
Nyquist number.

If you were to tell Pd to play a frequency of 23,050 Hz, what you
would hear is one tone at 23,050 Hz, and a second tone at 21,050 Hz.
The difference between the Nyquist number (22,050 Hz) and the
synthesized sound (23,050 Hz) is 1,000 Hz, which you would both add
to and subtract from the Nyquist number to find the actual
frequencies heard. So as one increased the frequency of the sound
over the Nyquist number, you would hear one tone going up, and
another coming down. This problem is referred to as foldover or
aliasing.

Here we can see two possible waveforms which could be described by the
samples show. The red line shows the intended waveform, and the blue
line shows the "aliased" waveform at <Desired Frequency> - (<Desired
Frequency> - <Nyquist Number>).

Source: http://en.wikipedia.org/wiki/lmage:AliasingSines.png

DC OFFSET

DC offset is caused when a waveform doesn't cross the zero line, or
has unequal amounts of signal in the positive and negative domains.
This means that, in our model speaker, the membrane of the speaker
does not return to its resting point during each cycle. This can affect
the dynamic range of the sound. While DC offset can be useful for
some kinds of synthesis, it is generally considered undesirable in an
audio signal.

woveform

+1

An example of DC offset: the waveform is only in the positive domain.

http://en.wikipedia.org/wiki/Image:AliasingSines.png

BLOCK SIZE

Computers tend to process information in batches or chunks. In Pd,
these are known as Blocks. One block represents the number of audio
samples which Pd will compute before giving output. The default block
size in Pd is 64, which means that every 64 samples, Pd makes every
calculation needed on the sound and when all these calculations are
finished, then the patch will output sound. Because of this, a Pd patch
cannot contain any DSP loops, which are situations where the output
of a patch is sent directly back to the input. In such a situation, Pd
would be waiting for the output of the patch to be calculated before it
could give output! In other words, an impossible situation. Pd can
detect DSP loops, and will not compute audio when they are present.
For more information, see the "Troubleshooting" section.

IT'S ALL JUST NUMBERS

The main thing to keep in mind when starting to learn Pure Data is
that audio and everything else is just numbers inside the computer,
and that often the computer doesn't care whether the numbers you
are playing with represent text, image, sound or other data. T his
makes it possible to make incredible transformations in sound and
image, but it also allows for the possibility to make many mistakes,
since there is no 'sanity checks' in Pure Data to make sure you are
asking the program to do something that is possible. So sometimes
the connections you make in Pd may cause your computer to freeze
or the application to crash. To protect against this save your work
often and try not to let this bother you, because as you learn more
and more about this language you will make fewer and fewer mistakes
and eventually you will be able to program patches which are as stable
and predictable as you want them to be.

10

INSTALLING

4. INSTALLING ON OS X

5. INSTALLING ON WINDOWS
6. INSTALLING ON UBUNTU
7. INSTALLING ON DEBIAN

m

- INSTALLING ON OS X

Software name : Pd-extended

Homepage : http://puredata.info

Software version used for this installation: Pd-extended 0.39.3
Operating System use for this installation: Mac OS 10.4.1
Recommended Hardware : Any Mac running Mac OS X 10.4 or later

To begin the installation visit the download page for Pure Data (
http://puredata.info/downloads) :

i

downioad pd docurmentation | [dewelopere | [community | [members exhibition

wou are here: home = downkead pd

nevigation Pure Data Downloads

by ans-Chelstaph Sneiner T i

B Home Your one stop shop for Pure Data downloads

pd-extended
) Merrer
Cownioads

) links

Most recent release (0.39.3)

K o . _ o
3 more qonmlends = = (D = :}Dablaq and Ubuntu (Intel I388 processord [mdS)
(2 matSsum _ .
= =2 (ﬁ L :}Dabum and Ubuntu {PowerPC processor) [mds]
=) documentation
- s T b — .
& ()=l ZDeblan/testing and Ubuntu Gutsy (Intel [386 processor) [rnds)
[deverapers " O of e 1B R5LING ¥ & processor) [mds]

5 corrrmunity = ﬁrenora Cere/PlanetCCAMA (Intal 1386 precessor) [mds]

Cymemiers = —:‘-. ‘Mﬁ\' 05 ¥ 104 1386 (Mac Pro, MacBosk all Intal Macsh [mds]

(yexhibitien . & ‘Mﬁ\' 5 ® 104 PowerPC (PowerMac, PowerBook with G4 or 53 [md3]
. A ‘Mac 085 ® 10.3 (For 10.2 "Panther” and older Macs) [mds)

news -

w @ e icrosoft Windows (200049 Ista) [mds]
55 Pd 041 -2 relensed
080307 -

source [mis)

3 subversiont O a listing of all files on SourcaForge

20080207 pd-vanilla

The @ pd-ewtended installers and packzges include mest of the libraries from the Pd CWS repository. Thes:
the most complete assembly of all available librarkes, extensions, and docurmentation They are bullt to be

=5 Softpe din award
B0 Most recent release (0.41.4)

. & Q-:NLI_.-’Lmu.\ (50Urce)

=8 P 0.4 1-0 released
2008-01-23

‘Mac 05 ® 10.4 Universal

& ‘Mﬁc 08 ¥ 10.3 PowerPC
=5 LAC 2008 all for
music and pagers

’_;" 5‘-’ M lcrosoft windows (2000440, ista)

You can download either Miller Puckette's version of Pure Data, or Pd-
extended. Miller's version of Pure Data is called "Pd-vanilla" because it
has just the basic minimum set of functionality. It does not contain any
external libraries or any of the features developed by the Pure Data
community which are included in Pd-extended. We will use Pd-extended
for this manual, so chose your installer from the "Pd-extended" section
of this webpage.

Since there is not a "Universal Binary" for Pd-extended, you will want
to select the Mac OS X installer that best suits your computer. Use the
one labelled "Mac OS X 386" for the newer, Intel-processor equipped
Mac computers. For example, any Mac Pro or MacBook is an Intel Mac.
Any iMac that is less that a couple years old is an Intel Mac.

Use the "Mac OS X PowerPC" installer if you have a PowerMac,
PowerBook, or iBook with a G4 or G5 processor running Mac OS 10.4
"Tiger" or later. Older iMacs use G4 and G5 processors, so they use
the PowerPC version as well.

12

Millar Puckithe's wirsien You can also get it from @ his site, This is the "official® version from the seurae,

http://puredata.info/downloads
http://puredata.info/downloads

If your computer has a G3 processor or is running Mac OS X 10.3
Panther, then you will need to use older version of Pd-extended, 0.39.3.
You can see all of the older versions on the downloads page by clicking

on . There you can also find
installers for versions of Mac OS X older than 10.3 Panther.

Once you've downloaded the right installer, you'll have a .dmg (Disk
Image) on your harddrive.

Pd-0.39.3-extended-
macosx]l._. erpc.dmg

Double click to open and mount it, and you will have a chance to read
and accept the License Agreement.

§ Pd-0.39.3-extended-macosx104-powerpc.dmg

IMPORTANT - Read this
License Agreement carefully
before clicking on the

GNU GENERAL PUBLIC LICENSE

“Agree" button. By clicking
on the "Agree” button, you
agree to be bound by the
terms of the License
Agreement

Version 2, June 1881

Copyright (C) 1988, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone Is permitied to copy and distribute verbatim copies of this

license document, but changing it is not allowed.
Preamble

The licenses for most software are designed to take away yourfreedom
to share and change it. By contrast, the GNU General PublicLicense is
intended to guarantee your freedom to share and change freesoftware—
to make sure the software is free for all its users. ThisGeneral Public
License applies to most of the Free SoftwareFoundation's software and
to any other program whose authors commit tousing it. (Some other
Free Software Foundation software is covered bythe GNU Library
General Public License instead.) You can apply it toyour programs, 100.

When we speak of free software, we are referring to freedom, notprice.
Our General Public Licenses are designed to make sure that youhave
£x =

oo fenodose bo dlokdb. b 1 fmmnd e okl

I._: Print .‘_.‘ Save... "_.I .__\' Disagree ".I .__\' Agree

Once you click "Agree", the Disk Image will mount and automatically
open. Then simply drag the Pd-extended.app to the provided shortcut
to your Applications folder (or to another location of your choice.)
This will copy Pd-extended to your harddrive.

13

806 Pd-extended :
.4 1 of 7 selected, 12.7 MB available

Pd-extended

0

ReadMe.html

— L
'y
.background .D5_Store v
i
After that, make sure to check the "ReadMe" file for important
installation information.
ene Mozilla Firefox [=)
- e ¥ i‘ @ file:// Volumes/Pd-extended/Rea ¥ = | |G| Google Q) ¢

Pure Data 0.39.3-extended

Pd is a real-time, graphical programming language for media processing. It provides an environment for audio
lanalysis, synthesis, and processing, with a rich set of multimedia capabilities. You can get Pd for Linux, Windows,
MacO5 X, BSD, or IRIX.

For more information, go to: hitp://puredata.org

Installation
(To install Pd, drag the Pd-0.39.3-extended.app into your /Applications folder or to the shortcut in the disk image.
You might need to put the old one in the trash before copying this one to /Applications)

By default, most of the included libraries are loaded at startup. To change this, set your own preferences in the
[Startup... Preferences pane usings the Save all settings button. If you want to start with a blank set of preferences, run
this command in the Terminal.app:

touch ~/Library/Preferences/org.puredata.pd.plist (~ means your home folden

[The Preferences panels in Pd are currently buggy, so you might have better luck with the Apple utility, Property List
Editor, which is freely available as part of XCode or the Server Toals.

Pure Data CVS Developers

|Adam Lindsay -- Alexandre Quessy —— Anton Woldhek — eric skogen — august black —- B. Bogart —- Pablo Mart?n —
IChris McCormick -—- chunlee — dieter kovacic — Dawve Sabine —- David Merrill — Damien HENRY -- Daniel Heckenberg
—— Tom Schouten — Christoph Kummerer —- Ed Kelly — Hans-Christoph Steiner - Eric Lyon — Frank Barknecht —
Federico Ferri — Michael] McGonagle -~ Franz Zotter —— Guenter Geiger -—— Georg Holzmann —— gerard roma ——
[carmen rocco — [*] —- Jodo Miguel Pais —— Josh Steiner — mark williamson —— Juha Vehvil?inen —- Kenneth Peiruza —
Krzysztof Czaja —— Kjetil 5. Matheussen — Luke lannini —- martin pi —— Mathieu Bouchard —- Mike Wozniewski —— Miller

- Markus Noisternig -—— Davide Morelli -— Martin Peach -- Thomas O Fredericks -—— mseta -- Bryan Jurish —
Nicolas Montgermont — Cyrille Henry — Marc Lavall?e — Olaf Matthes — Pei — Piotr Majdak — pix — David Plans
ICasal -- Jamie Bullock —- Winfried Ritsch — Yves Degoyon - lain Mott — Jamie Tittle -—— Tim_Blechmann -—— musil --
|Gerard van Dongen —— jd| — Thomas Grill — |Ohannes m zmMnig

"[bl'le =

As indicated, the Pd-extended.app is setup by default to load most of
the included external libraries. If you want to change the libraries which
are loaded at startup time, or any of the other startup settings, please
notice the instructions here in the "ReadMe", and be sure to read the
chapter "Configuring Pure Data" in this manual.

From here, you can open up your "Applications" folder in the Finder,
and start Pd by clicking the "Pd-extended.app" icon found there.

14

a AT

Tennm A Applications

e as- e
| | B =i & WA |
T

J e 5 OnyX.app Pd-0.39.2-extended-

| e a | test4.app

B pgeentended = |

Pd-extended.app Pluggo Applications

€< f)

1 of 108 selected. B00.9 MB available

STATUS: X11 LIBRARY NOT LOADED

When starting Pd-extended it will check to see if all standard libraries

are loaded. The X1 library is an expected fundamental graphics library.

If you see the following error message in the Pd window, you do not
have X1l installed on your Mac. Instructions to install X11 follow.

libdir_loader: added 'flatspace' to the global objectclass path
/Applications/Pd-extended. app/Contents/Resources/extra/pdp.pd_darwi
n: dlopen{/Applications/Pd-extended.app/Contents/Resources/extra/pd
p.pd_darwin, 18): Library not loaded: /usr/X11R6/1ib/1ibX11.6.dylib

Referenced from: /Applications/Pd-extended.app/Contents/Resources
Jextras/pdp . pd_darwin

Reason: image not found
pdp: can't load library
/Applications/Pd-extended.app/Contents/Resources/extra/pidip.pd_dar
win: dlopen(/Applications/Pd-extended.app/Contents/Resources/extra/
pidip.pd_darwin, 1@): Library not loaded: /usr/X11R6/1ib/1ibX11.6.d
ylib

Referenced from: /Applications/Pd-extended.app/Contents/Resources
Jextra/pidip. pd_darwin

Reason: image not found

INSTALLING X11 ON MAC OS X 10.3
PANTHER AND 10.4 TIGER

Pd-extended needs X1l for some graphics libraries. Starting with Mac
0S X10.5 Leopard, X1l comes installed by default. If you are running
Mac OS X older than 10.5 Leopard, then you will need install it yourself,
if you haven't already. It comes on your Mac OS X DVD or CD. If you
no longer have that DVD or CD, then you can find it online. The FAQ
on puredata.info has the current links:
http://puredata.info/docs/fag/macosx

15

http://puredata.info/docs/faq/macosx

1. Insert your OS X Tiger Install Disc (#1). Scroll down to locate the
Optional Installs icon and double-click it

ene {2/ Mac 0S X Install Disc 1 (=)
> 1 of 14 selected, 148.5 MB available
FY
=
Xcode Tools
e [_.F | e ez
Applications etc Japanese - B&5E
i
Library

System

2. Click Continue on the first screen

8686

% Install Optional Installs

[

o

© Introduction
© License

© Select Des

] lnstallati?ﬁ T
® Install ¥ i
® FinishiUp

|u11||||rn|||m|'

i =

I;u

oy

g

Welcome to the Optional Installs Installer

Welcome to the Mac OS X Installation Program. You will be
guided through the steps necessary to install this software.

(" GoBack b (Cuntinue)

3. Read the Software License Agreement and then click Continue

16

A4

866

4 Install Optional Installs

B Introduction
© License =
O Select Des‘naﬁ
© Installation Ty?b.
® Install 74

® FinishiUp
_.u.n]lll"'l"”

a

-]

Software License Agreement

" English

ENGLISH

(= 1

Apple Computer, Inc.
Software License Agreement for Mac 0S X Seed

PLEASE READ THIS SOFTWARE LICENSE AGREEMENT (" LICENSE")
CAREFULLY BEFORE USING THE SOFTWARE. BY USING THE SOFTWARE,
¥OU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS LICENSE. IF
¥OU ARE ACCESSING THE SOFTWARE ELECTRONICALLY, SIGNIFY YOUR
AGREEMENT TO BE BOUND BY THE TERMS OF THIS LICENSE BY CLICKING
THE "AGREE/ACCEPT" BUTTON. IF YOU DO NOT AGREE TO THE TERMS OF
THIS LIGENSE, DO NOT USE THE SOFTWARE AND CLICK " DISAGREE/
DECLINE".

IMPORTANT NOTE: THIS IS "BETA", PRE-RELEASE, TIME-LIMITED
SOFTWARE MEANT FOR EVALUATION AND DEVELOPMENT PURPOSES
OMNLY. THIS SOFTWARE SHOULD NOT BE USED IN A COMMERGIAL
OPERATING ENVIRONMENT OR WITH IMPORTANT DATA. BEFORE
INSTALLING THIS APPLE SOFTWARE, YOU SHOULD BACK UP ALL OF YOUR
DATA AND REGULARLY BACK UP DATA WHILE USING THIS APPLE
SOFTWARE.

software, documentation and any fonts accompanying this
nrea any atne ia dan

4

(Print) (Save :1 (Go Back :1 (Continue)
4
4. Click Agree
T eontinue installing the seltwars, yow skl agres 1o the terms of
the software boense agreement,
Click Agree to continwe or chck Disagree 10 cancel the installation.
5. Select a location and click Continue
89686 & Install Optional Installs
Select a Destination
Select a destination volume to install the Optional Installs
6 Introduction software.
© License
B Select Des‘nati
© Installation Typ
on Type
® Install i Macintosh HD
® Finish'Up 92.7CB (21.3GB Free)
_.u.rllnl'-',""'ll'I
(v 4 5
i 1
You have chosen to install this software on the volume "Macintosh
HD."
|
I
I: /
(Go Back :1 (Continue)
4

6. Click the small triangle directly next to Applications and then
place a check in the box labeled X11. When you're ready, click

Upgrade.

17

SNSNS) ‘e Install Optional Installs

Custom Install on “Macintosh HD”

Package Name |Action | Size
¥ = Applications 0 bytes |+

6 Introduction

=] Address Book Skip 0 bytes
Lt O ical Skip 0 bytes
© Select Destin) iChat Skip 0 bytes
e Installatién Tvpe 1 iTunes Skip 0 bytes

1 Mail Skip 0 bytes
[_l oxford Dictionaries i
[Safari

® Install !

@ Finis

&

| Additional Fonts
b Language Translations 0 bytes v

— Space q% 0 bytes Remaining: 25.9GB
X11 for Mac OS X

(Co Back) (Upgrade)

A
7. Enter your password when prompted, and then click OK
m Installer requires that you type your password.
MName: Ross
Password: ssssssas
* Detalls
@ (Cancel) (0K)
8. Wait until it finishes installing...
89686 ‘s Install Optional Installs
Installing Optional Installs
6 Introduction
© License
Installing X11
Writing files: 56% Completed
(" GoBack ,l (" Continue)
A

9. After X1l has successfully installed, click Close

18

SNSNS) ‘s Install Optional Installs

6 Introduction

© License

The software was successfully installed

(Go Back) (Close)

4
10. And that's it, X1l is installed

- INSTALLING ON WINDOWS

Software name : Pd-extended

Homepage : http://puredata.info

Software version used for this installation : Pd-extended 0.39-3
Operating System use for this installation : Microsoft Windows XP
Recommended Software : Windows 2000 or later

Recommended Hardware : 300 Mhz processor (CPU) minimum

To begin the installation visit the download page for Pure Data (

http://puredata.info/downloads) :

pd~

downioad pd docurmentation | [dewelopere | [community | [members exhibition

wou are here: home = downkead pd

) links
13 more dowrkends
(2 matSsum
=) documentation

() deveiapers

(3 eomrrmunity

Ty memaers

Coexhibitien

news

=85 Pd 0412 relensed
2080307

A subversion!
20080207

=5 Softpedin award
2008-02-08

=8 P 0.4 1-0 released
2008-01-23

=5 LAC 2008: Call for
music and papers

navigatian Pure Data Downloads
by Hans-Chelstoph Sreiner t 10:34 FM
@ Home Your one stop shop for Pure Data downloads
) dewnigad Fd
pd-extended
@ Mermrber The @ pd-ewtended installers and packzges include mest of the libraries from the Pd CWS repository. Thes:
Cownloads

the most complete assembly of all available librarkes, extensions, and docurmentation They are bullt to be
Most recent release (0.39.3):

- :_"'- (D~ :}'Dabia'\ and Ubuntu (Intel 1388 processord [mds)

. B (D~ :}'Dabim and Ubuntu {PowerPC processor) [mds]

w (n L :;Dabiau'testmg and Ubuntu Gutsy (Intel [386 procasson) [mds]

& 9 redora Core/PlanetCCAMA {Intel 1386 processor) [mds]

- —;-. ‘Mac 05 ¥ 104 1386 (Mac Pro, MacBosk all Intal Macsh [mds]

- ‘Mﬁc 05 ¥ 10.4 PowerPC (PowerMac PowerBook with G4 or G3) [rnds]
. & ‘Ma(05 % 10.3 (For 10,2 *Panther” and older Macs) [mds)

w @ e icrosoft Windows (200049 Ista) [mds]

arce [mds]

O a listing of all files on SourcaForge
pd-vanilla
Miller Puckette's version, You can alse get it from @ his site, This is the "official® version from the seuroe,

Most recent release (0.41.4):
. & écNLI,"Lmu.\ (50Urce)

‘Mac 08 % 10.4 Universal

& ‘Mﬁc 05 ¥ 10,3 PowerPC

é“ 5“ M lcrosoft windows (2000440, ista)

You can download either Miller Puckette's version of Pure Data, or Pd-
extended. Miller's version of Pure Data is called "Pd-vanilla" because it
has just the basic minimum set of functionality. It does not contain any
external libraries or any of the features developed by the Pure Data
community which are included in Pd-extended. We will use Pd-extended
for this manual, so chose your installer from the "Pd-extended" section

of this webpage.

In the first group of links under "pd-extended"click on the link marked
"Microsoft Windows (2000/XP/Vista)" and you should see something
like this (this example using Firefox) :

20

http://puredata.info/downloads
http://puredata.info/downloads

Opening Pd-0.39.3-extended. exe

‘ou have chosen to open

Pd-0.39.3-extended.ene

which is a: Application
from: http:fidfr.dl. sourceforge.net

wiould you like to save this |http:,l',l'an.dl.sourceForge.net,l'sourceforge,l'pure

Cancel

Press "OK" and the download should proceed, leaving you (hopefully)
with a dialog box that informs you the download is complete. If you
are using Firefox then the dialog may look something like this:

) Downloads |Z| |E| f5__<|
Pd-0.39, 3-extended. exe Open
Dane Remove

All files downloaded kao: @ Desktop

Now you can either browse your computer to look for the installer
icon which will look something like this :

you can double click on this icon to start the installation process.
Alternatively, you may wish to click Open in the download dialog :

Qpen
Bemove

If you choose to do it this way then you may see the following window

Open Executable File?

9y "Pd-0,39.3-extended.exe” is an executable file, Executable files may contain viruses or other
malicious code that could harm wour computer. Use caution when opening this File, Are wou sure you
wank ta launch "Pd-0,39, 3-exkended, exe"?

[] oon't ask me this again

[oe | ’ Cancel

if you see this click "OK" and continue. Either of the steps above
should put you in the same place, which is this :

21

5 Setup - pd

EEX
Welcome to the pd Setup Wizard

Thiz will ingtall Pd-0.39.3-extended on pour computer.

It iz recommended that you cloze all other applications before
cantinuing.

Click Mext to continue, or Cancel to exit Setup.

[Mext »][Carcel]

now press "Next >" and the installation process will begin. You will see

this screen :

5 Setup - pd

License Agreement

Flease read the following impartant information befare continuing.

Pleaze read the following License Agreement. You must accept the terms of this
agreement befare cantinuing with the installation.

() | accept the agreement

| GHU GEMERAL PUBLIC LICENSE ~
Yersion 2, June 1991

Copyright [C] 1983, 1931 Free Software Foundation, Inc.
53 Temple Place, Suite 330, Boston, M& 021111307 USA

Everyone iz permitied to copy and distribute verbatim copies
of thiz license document, but changing it is not allowed.

The licenses for most software are designed to take away your b

() | do ot accept the agreement

Prearmble

This is the standard license page. If you don't agree with the license
you can't install the software. So, my recommendation is - click on the
green button next to 'l accept the agreement' and then press 'Next >'.

You will see the following :

22

5 Setup - pd

Select Destination Location
‘where thould pd be installed?

J Setup will install pd inta the following falder,

To continue, click Mest. [F vou would like to select a different folder, click Browse.

| [Browse...

At least 64.1 MB of free disk space is required.

’ < Back ” Mext »][Carcel]

The above assists you in deciding where to install Pd-extended. Unless
you have a good reason to, leave the default settings as they are. If
you have a good reason, and know what you are doing, you can press
‘Browse' and choose another place to install Pd-extended on your
computer. If you decide to change the defaults, or keep them, youy
must then press 'Next >' to continue :

5! Setup - pd

Select Start Menu Folder
‘where should Setup place the program's shartcuts?

Setup will create the program's shortcuts in the follawing Start Menu folder.

To continue, click Mext. [f you would like to select a different folder, click Browse.

F'ure [ata | [Browse...

[< Back ” Nest >][Catcel]

The above screen is merely choosing what to call the installation in the
Windows 'Start Menu', Just leave it as it is and press 'Next >'.

23

5 Setup - pd

Select Additional Tasks
‘which additional tazks should be performed?

Select the additional tasks you would like Setup to perfarm while installing pd. then click
Mlext.

Additional icons:
[] Create a desktop icon
[] Create a Quick Launch icon

Load Default Library Set
File Aszociations in the Registry

’ < Back ” Mext »][Carcel

You really don't want to uncheck the last two boxes as they are
necessary for the installation. The first two choices are merely
cosmetic and effect the 'shortcut’ icons. It doesn't matter if you check
these or leave them as they are. When you are ready press 'Next>'.

15 Setup - pd

Ready to Install H
Setup iz now ready to begin instaling pd on your computer.

Click. Inztall to continue with the installation, or click Back if you want to review or
change any seftings.

Destination location:
H:%Program Filespd

Start Menu folder:
Pure Data

Additional tasks:
Load Diefault Librany Set
File Azzociations in the Registy

[< Back ” Install][Catcel]

The above is the summary window. Press 'Install' and the installation
will commence. It might take some time depending on how quick your

computer is. While you wait the installer will present you with progress
bars :

24

5 Setup - pd

Inztalling
Fleaze wait while Setup ingtallz pd on pour computer.

Estracting files..
H:%Program Filez\pdidoch5. referencetpainter-help. pd

Cancel

Then when the installation is complete you will see a final screen :
fE! Setup - pd =19

Completing the pd Setup Wizard

Setup has finished installing pd on your computer. The
application may be launched by selecting the installed icons.

Click Finizh to exit Setup.

Wiew Readie html

If you click 'Finish' your browser will open the (rather unattractive) Read
Me page :

25

) Mozilla Firefox
File Edit ‘“iew Higtory Bookmarks Tools Help

@ @ @ ﬁ L File:,I',I',I'H:,I'Programc‘a’oZDFiles,l'pd,l'Re| ‘| D‘] "|puredata windl" \]

’ Getting Started L:'. Latest Headlines
|| SourceFarg. .. 2 (edit) Install... [| Softwarsby... = Getting Star... [} Filer..html 23 | -
Pure Data 0.39. 3-extended »~

Fd is a real-time, graphical programming language for media processing. It provides an
environment for audio analysis, synthesis, and processing, with a rich set of multimedia
capabilities. You can get Pd for Linux, Windows, MacOS =, BSD, or IRIX.

Far more information, go to: http://puredata.org
Installation

To install, run the installer.

ITo make sure that all of the included libraries are loaded when Pd runs, double-click
C:YProgram Fileshpdhpd-settings.req to import the settings to the registry.
WARMING: this will overwrite any existing Pd preferences!

Pure Data CV3 Developers

Adam Lindsay -- Alexandre Quessy -- Anton Woldhek -- eric skogen -- auqgust black -- B.
Bogart -- Pablo Mart?n -- Chris McCormick -- chunlee -- dieter kovacic -- Dave Sabine -- David
rerrill -- Damien HEWRY -- Daniel Heckenberg -- Tom Schouten -- Christoph Kummerer -- Ed
Kelly -- Hans-Christoph Steiner -- Eric Lyan -- Frank Barknecht -- Federico Ferri -- Michael J
McGonagle -- Franz Zotter -- Guenter Geiger -- Georg Holzmann -- gerard roma -- carmen
rocco -- /*] -- Jodo Miguel Pais -- Josh Steiner -- mark williamson -- Juha Yehvil?inen -- Kenneth
Peiruza -- Krzysztof Czaja -- Kjetil 5. Matheussen -- Luke Iannini -- martin pi -- Mathieu
Bouchard -- Mike Wozniewski -- Miller Puckette -- Markus MNoisternig -- Davide Morelli -- Martin
Peach -- Thomas O Fredericks -- mseta -- Bryan Jurish -- Micolas Mantgermont -- Cyrille Henry
-- Marc Lavall?e -- Olaf Matthes -- Pei -- Piotr Majdak -- pix -- David Plans Casal -- Jamie Bullock
-- winfried Ritsch -- vwes Degoyon -- Iain Mott -- Jamie Tittle -- Tim Blechmanmn -- musil --
Gerard wan Dongen -- jdl -- Thomas Grill -- I0hannes m zm?#lnig

Many others not listed have contributed their time and effort, this is just a list of the current
developers in the SourceForge project. But really, every Pd user is a developer and is
encouraged to contribute to the CWS repository.

License

This package is released under the GNU GPL. The Pd core and sorme other included code is

originally awvailable with a BSD license from the Pd CW5 on SourceForge.

Included Versions

These externals are all included from the Pd CWS repository:
= pure data: 0.39.3-extended

= cyclone: 0.1 alpha 55

= flext: 0.5.1

= gem: 0.91-cvs

= maxlib: 1.5.2

iemlib: 2007.10.16

It is rather uncompelling material but it does have one useful hint...

"To make sure that all of the included libraries are loaded when Pd
runs, double-click C:\Program Files\pd\pd-settings.reg"”

This is rather important, so you need to open the 'Program Files' in
your file browser. Usually you can right-click on the Windows Start
Menu to open a file browser :

Properties

Open All Users
Explore All Users

14 start

Then you will see something like this:

26

= | ocal Disk {H:) (=]

File Edit ‘iew Favorites Tools Help ?

@Back ~ J l’ﬁ ’QSearch H—'“ Felders v

Address | e H:Y b

e
System Tasks ll:’—J Documents and Settings

=

Hide the contents of
this drive

ﬁ Add o remove
programs

4= Searchfor Files or

folders =
l:_) WINDOWS

File and Folder Tasks

Program Filas

(9 Make a new Folder

@ Publish this Folder ta
the Web

kel share this folder

Double-click on 'Program Files' and the the directory called 'pd’, in this
window you should see a file called 'pd-settings":

File Edit ‘“iew Favarites Tools Help ?
@ Back - '_,) l@ p Search H_" Folders -
address |3 H:\Program Filesipd v| o
A pd A
File and Folder Tasks Inkernet Shortout
1 KB
(9 Make a new Folder
.) pd-settings
@ Publish this Folder to Reqgistration Entries
the Web
3KE
kel share this folder
ReadMe
Firefox Document
Other Places 7 KE
Program Files unins000
h DAT File
My Documents 4273 KE
|3 Shared Documents -
g My Computer unins0o0
H Iy Metwork Places Setup/Urinstal —
- v

Double-click on this file and you will see the following :

Registry Editor

\ ?) Are you sure vou wank to add the information in H: \PROGR &1 pd\PD-5SET~1,REG ko the registry?

L es] [Mo]

Press 'Yes':

Registry Editor

. |) Information in H:\PROGRA~1pdiPD-SET~1.REG has been successfully entered into the registry,

o |

Then press 'OK' and that window will disappear. Now you probably
want to actually open Pure Data. Click on the Windows Start Menu and
slide across to 'All Programs' and 'Pure Data', then finally again to the
‘Pure Data' icon :

Aictivate Windows

| Internet
/ Mogzilla Firefox
=] E-mail
Cutlook Express

‘Wwindows Catalog uments »

Windaws Update

Accessories »

M3M Explorer
Games 3
@ Windows Media Play GIMPshap 4
Mozilla Firefox »

gegee et =R

’
@ Windowes Maovie Maks
'@ Tour Windows 3P

- Files and Settings Tr
5 \Wizard

E Pure Data
windows Media Plaver

AllPrograms B | ';i Windows Messenger

Pure Diata [@ Documentation 4

™ arro

Startup

Inkernet Explorer
5K Explorer @ puredata.org
Outlook Express ﬁE,.! Uninstall Pure Data

Remote Assistance

(CRER"F W WE £

Release the mouse button and Pure Data should open :

28

File Find Windows Media Help

GEM:
GEM:
GEM:
GEM:
GEM:
GEM:
GEM:
GEM:
GEM:
GEM:

Graphics Environment for Multimedia
ver: 9.91-cvs
compiled: Dec 11 2005
maintained by IChannes m zmoelnig
Authors @ Mark Danks {original version on irix/windows)
Chris Clepper {macOS-X]
Daniel Heckenberg (windows)
James Tittle (macO5-X)
Ihannes m zmoelnig (linux/windows)
using SSEZ optimization

errar: GEM Man: Could not initialize quicktime: error - 2093

wsample objects, version ©.3.2pre

wrecord-, xplay-, xgroove-
{C)2001-2007 Thomas Grill

Do
erors

LB

[compute audio

[peak meters

29

6. INSTALLING ON UBUNTU

Software name : Pure Data Extended

Homepage : http://puredata.info

Software version used for this installation : Pd-Extended 0.39-3
Operating System use for this installation : Ubuntu 8.04 (tested
also on 7.10)

Recommended Hardware : 300 Mhz processor (CPU) minimum

Installation on Ubuntu Gutsy (7.10) and Ubuntu Hardy (8.04) is the same
process. It is made a little tricky because Pure Data Extended requires
some software that is not normally part of these operating systems
but is included in an older version of Ubuntu. So we must indulge a
short work around to get Pure Data Extended working correctly.
Thankfully it is quick and simple.

INSTALLING LIBFLAC7 AND LIBJASPER

Pure Data Extended requires two software 'libraries' from an older
version of Ubuntu - libflac7 and libjasper

To prepare Ubuntu to install them when you install Pure Data
Extended, you first need to open the Synaptic Package Manager :

@-e

% rreerences [

@j l 'xJ.}, Authorizations

[Hardware Drivers
9 Help and Support

.éc Ao (SRR m Language Support

(&1 Login Window
% Metwork

@ Quit... : Network Tools
@ Printing

é Services

@ Shared Folders

-5:} About Ubuntu

.ETE‘ Software Sources

=

2] system Log

You will be asked for a password. Enter in your adminstrator password
(not your user password) and you will see Synaptic open.

30

http://puredata.info/downloads

Fle Edit Package Settings Help

Custom Filters

oY

Reload Mark All Upgrades PP! F rt Search
All ~ls Package Installed Version | Latest Ve
Amateur Radio (univ| | [[] 2vcard 05-2
Base System [3270-common 3,3.4p6-3|
Base System (restri| | |[[] 3dchess 08.1-13
Base System (unive| | [[[] adigits 0.8-1
Cemrmunication =] D)
Communication (mu = MNe package is selected.
giEsmml D
[Sections l
[Status |
I Origin l

Search Results I

24861 packages listed, 1118 installed, 0 broken. 0 to install/upgrade, 0 to remove

Now we need to add the older software repositories too install these
2 software libraries. Click on Settings and then Repositories and you
will see the Synaptic Repository Manager :

= Software Sources El

Ubuntu Software | Third-Party Software] Updates]Authentication] Statisticsl

Downloadable from the Internet
™ Canonical-supported Open Source software (main)
Community-maintained Open Source software (universe)
Proprietary drivers for devices (restricted)
™ Software restricted by copyright or legal issues (multiverse)

Source code

Download from: | Server for United States

Installable from CD-ROM/DVD

Cdrom with Ubuntu 8.04 'Hardy Heron'
[] officially supported
Restricted copyright

‘ E+.+|t‘ lEglose

Now click on the second tab entitled Third-Party Software. It is here
that you will now need to enter information about these two
repositories:

deb http://archive.ubuntu.com/ubuntu/ feisty main restricted
deb-src http://archive.ubuntu.com/ubuntu/ feisty main restricted

31

You need to add them one at a time by clicking on + Add and typing
one of the above lines into the text field provided and then press Add
Source. Then do the same for the next line.

Now close the repository manager window and you will be asked to
reload the repository information because it has changed. This can be
done by pushing the blue Reload button on the Synaptic interface.
Then quit the Synaptic Package Manager.

INSTALLING PURE DATA

Now download the Pure Data Extended package. Visit the download

page (http://puredata.info/downloads) :

3= S

downloadpd | [docurmentation | [developers | [community | [members | [exhibition

you are here: home — downioad pd

navigatian Pure Data Downloads
by ans-Chori sToph STainer fiisd 3 P
@ Hore Your one stap shop for Pure Data downloads

pd-extended

& Member The @ pd-extended installers and packages include most of the libraries from the Pd CWS repository. Thess
Fewnlgads the maost complete assembly of all available libraries, extensions, and docurentation They are bullt to be
3 links

Most recent release (0.39.3)

| - 0]
@ more downionds . = @~ :}Dabim and Ubuntu {Intel 1386 processoed [mds)

0 Ik

(3 meSzum .
. & cf‘ - :;Dablm and Ubuntu (FowerPC processor) [mds]
) docurmentation

- . — .
. 2= (D e :;Dabuawtestmg and Ubuntu Gutsy (Intel 1386 processod [mds]

L devekapers

() earrerunity . B-I'edore Core/PlanetCCAMA (Inkel [3BE processor) [mds]

Symemoers - ‘Mac 05 # 10.4 1386 (Mac Pro, MacBook: all Intel Macs) [mds]
(exhibitien = & g Mac DS M 104 PowerPC (PowsrMac, PowerBeok with G4 or GS) [mds]

- A ‘Mﬁ(05 ¥ 10,3 (For 10,2 "Panther”® and aldar Mags) [mds)
news -

M leresoft Windews (2000/P/NIsta) [mdS]

=5 Pd O.41-2 relensed
080307 ™

28 subversiont D& listing of all files on SourceForge

20080207 pd-vanilla

Millar Puckette's virsion. You can also get it from @ his site, This is the "official® version from the source,

53 Softpedia award
080208 Most recent release (0.41.4):
- QCNLI,I’Lmu.x {s0urce)
=8 P 0410 released N
2006-01-25 . & ‘Mac 05 ¥ 10.4 Universal

. & ‘Mﬁc 05 ® 10.3 PowerPC
=5 LA 2008 Cal far
music and paper:

';—“" :‘J M icrosoft Windows (2000/4P,/Vista)

You can download either Miller Puckette's version of Pure Data, or Pure
Data Extended. Miller's version of Pure Data is called "pd-vanilla"
because it does not contain any external libraries or any of the
features developed by the Pure Data community which are included in
Pure Data Extended. We will use Pure Data Extended for this manual,
so chose your installer from the "pd-extended" section of this
webpage.

In the very first section click on the link "Debian and Ubuntu (intel 386
processor)", this will forward you to a download page. Don't do
anything else, the download should start automatically. When the file
has downloaded browse to the files and right click on it and choose
'Open with "GDebi Package Installer"

32

http://puredata.info/downloads

pd-0.39.3) Open with "GDebi Package Installer"

debian-st
d Open with "Archive Manager"

Open with Gther Application...

& Cut

The package installer will open :

File Help

Status: Requires the installation of 20 packages

Description | Details] Included Files

Package: pd-extended & Install Package

Pure Data with patches and a large collection of externals

Pd (aka Pure Data) is a real-time graphical programming environment for
audio, video, and graphical processing. It is the third major branch of the
family of patcher programming languages known as Max (Max/FTS, ISPW
Max, Max/MSP, jMax, etc.) ariginally developed by Miller Puckette and
company at IRCAM, The core of Pd is written and maintained by Miller
Puckette and includes the work of many developers, making the whole
package very much a community effort,

Pd was created to explore ideas of how to further refine the Max paradigm
with the core ideas of allowing data to be treated in a more open-ended way
and opening it up to applications outside of audio and MIDI, such as graphics
and video.

(]

Now press Install Package - you will be asked to enter your
password, and then Pure Data Extended will be installed. When the
process is finished close GDebi and open Pure Data Extended:

QAppIications Places System |

|§_,_!" Accessories 4

[wt Garnes v

.‘i Graphics 3

£

e, Internet 3

L@ Office »

/;f’ Programming 3 D Pd-extended

EE cnond £oviidan

33

= pd =

File Find Windows Media Help
IM ouT
|D ID DIO I compute audio
errors _| peak meters

ETR 0|

GEM: Grapiics Enwiromment for Multimedia I
GEM: wer: B.91-cvs

GEM: compiled: Oct 21 2087

GEM: meintained by I0hannes m amoelmig

GEM: Authors : Mark Danks {original yersion)

GEM: Chris Clepper
GEN: James Tittle
GEM: T0hannes m aelmg

GEM: with help by Guenter Geiger, Damiel Heckenberg, Cyrille Henry, et al.

GEM: using MMX opbimization

POP: pure data packet wersion 0.12.5-dares

Jusrilocal/liby pdrextra/pidip. pd Tinux: Tibrp3lame.so.8: cannot open shared obje
ct file: Mo such file or directory

pidip: can't Load Tibrary

Y

Now it is important to open the Synaptic Package Manager again and
disable the two new repositories so they don't cause issues with future
software installations.

34

- INSTALLING ON DEBIAN

Software name : Pure Data Extended

Homepage : http://puredata.info

Software version used for this installation : Pd-Extended 0.39-3
Operating System use for this installation : Debian Linux (4.0 rc3

stable)

Recommended Hardware : 300 Mhz processor (CPU) minimum

To install Pure Data Extended, first visit the download page (

http://puredata.info/downloads) :

pd~

downioad pd docurmentation | [dewelopere | [community | [members exhibition |

¥ou are here: home — downiead pd

13 mare downlonds
(2 matSsum
™) docurmentation
0 deveiapers
(3 eomrrmunity
Ty memaers

(gexkibition

news

=85 Pd 0412 relensed
2080307

A subversion!
20080207

=5 Softpedin award
2008-02-08

=8 P 0.4 1-0 released
2008-01-23

=5 LAC 2008: Call for
music and papers

nevigatian Pure Data Downloads
by Hams-Cheistoph Steiner — last medified 200 1034 PM
@ Home Your one stop shop for Pure Data downloads
pd-extended
1@ Mermber The @ pd-exntended installers and packages include meost of the libraries from the Pd CWS repasitory. Thas:
Cowrnioads the most complete assembly of all available libraries, extensions, and docurmentation. They are bullt to be
) links

Most recent release (0.39.3)

- & (D :;'Dabian and Ubuntu (Intel I388 processord [mdS]
- . .
- 2 o «{Z3Debian and Ubuntu (PowerPC processer) [mds]
. & o . :inabian,n'testmg and Ubuntu Gutsy (Intel [386 processod) [mds]

w A ﬁrenore Core/PlanetCCAMA {Intal 386 precesson) [mds]

- ac ; ERS ac Pro, MacBook a il acsy [mads,
S @ Mac 05 ¥ 10.4 1396 (Mac Pra, MacBook all Intel Macs [rnds]

== ac J K owerPC (PowerMac PowerBook w or md3.
S @ Mac0s ¥ 104 P PC (P Mac, PowerBook with G4 or GS) [mds]

) ‘Ma(085 ® 10.3 (For 10.2 "Panther” and older Macs) [mds)

& [P icresoft Windows (2000/4PWista) [mds]

£ source [mds]

O a listing of all files on SourcaForge
pd-vanilla
Miller Puckette's version, You can alse get it from @ his site, This is the "official® version from the seuroe,

Most recent release (0.41.4):
-3 QCNLI,"Lmux {50urce)

& g Macos ¥ 104 Universal

& ‘Mﬁ(05 ¥ 10,3 PowerPC

& 9 icrosoft Windows (2000/%P/V Ista)

In the very first section click on the link "Debian and Ubuntu (intel i386
processor)", this will forward you to a download page. Don't do
anything else, the download should start automatically. If you used the
default Debian web browser (Ice Weasel) you will see the following :

35

http://puredata.info/downloads
http://puredata.info/downloads

¢ Opening Pd-0.39.3-extended-debian-stable-i386.deb E]

You have chosen to open

Pd-0.39.3-extended-debian-stable-i386.deb

which is a: Software package
from: http://garr.dl.sourceforge net

~What should Iceweasel do with this file?

L1

@ Open with | Archive Manager (default)

) Sawe to Disk

[] Do this automatically for files like this from now an.

v Cancel l |

Don't use the archive manager, instead choose 'Save to Disk' and press
'OK'". When your file has downloaded you must browse to it. The
default download location is the Desktop, on my Desktop | see this :

Right-click on this icon and choose 'Open with "GDebi Package
Installer"":

F= open with "Archive Manager"

"GDebi Package Installer

debian- Open with Other Application...

M ocut
Copy

Make Link

Rename...
@ Move to Trash

Stretch lcon

Restore lcon's Original Size

Extract Here

Properties

This will show something like this :

36

&, Package Installer - pd-extended E]@E]

File Help

Package: pd-extended of Install Package

Status: Requires the installation of 17 packages |Details

Description | Details l Included Files

[+)

Pure Data with patches and a large collection of externals

Pd (aka Pure Data) is a real-time graphical programming environment for
audio, video, and graphical processing. It is the third major branch of the
family of patcher programming languages known as Max (Max/FTS, ISPW
Max, Max/MSP, jMax, etc.) originally developed by Miller Puckette and
company at IRCAM. The core of Pd is written and maintained by Miller
Puckette and includes the work of many developers, making the whole
package very much a community effort.

Pd was created to explore ideas of how to further refine the Max paradigm
with the core ideas of allowing data to be treated in a more open-ended way ||
and opening it up to applications outside of audio and MIDI, such as graphics
and video.

(4]

This is the general package (software) installer for Debian. Just click
"Install Package" and you will be asked for the administrator ('root’)
password for your computer :

ﬁ Enter the administrative password

The application 'GDebi Package Installer' lets you modify
essential parts of your system,.

Password: “ l

Remember password

@) Save for this session

) Save in the keyring

[xgancell[&P ok]

Enter the password and the installation process will start :

A (x]

installing dependencies...

| File 17 of 17 at 0/s |

> Terminal

When the process has completed just open a terminal :

IHEAEGREN Places Desktop WL@

'é' Alacarte Menu Editor
@ Debian 4 i Calculator

& Games 4 _“rl Character Map

‘ﬂ Graphics 4 ! Dictionary

@ Internet 4 . Roat Terminal

'g office » & Take Screenshot

< Programming q 5 erminal

@, Sound & Video * @ Text Editor
System Tools »

Type in the terminal 'pd' and press return :

floss@debian: ~ E]@E]

File Edit Wiew Terminal Tabs Help
Tloss@debian:~% pd|:|

[

(«]

and now Pure Data should appear :

O Pd [=IE][x]

Fle Find Whnhdows Media Helpl

IN ouT

GEM} Graphics Environment for Multimedia

GEM: weri 0,91-cus

GEM} compiled: Oct 21 2007

GEMi maintained by I0hannes m zmoslnig

GEMi Authors ¢ HMark Danks (original wersiona

GEMZ Chri=s Clepper

CEM: James Tittle

GEMZ I0hannes m zmoslnig

GEM: with help by Guenter Geiger, Daniel Heckenkerg, Cyrille Henry. et al,
GEM: using MHMX optimization

FOF: pure daka packet wersion ©,12,5-darcs

Ausrdlocal /libApdeextraspidip.pd_linux: libmp3lame,so,9: cannok open shared oh je
ct filei Ho such file or directory

pidipi can't load library

ID— ID_ DIO | compute audio

BITors _I peak meters

X

=l

38

GETTING STARTED

8. CONFIGURING PURE DATA
9. ADVANCED CONFIGURATION
10. STARTING PURE DATA

39

8. CONFIGURING PURE DATA

Pd-Extended has done a lot to make installing and setting up Pure
Data easier than ever before. But every computer system is different,
and each Pd user will have different needs. This section shows how to
configure the most basic parts of Pd, including the soundcard and MIDI
devices, as well as some advanced configuration options for those
wishing to customize their installation.

BASIC CONFIGURATION

The first thing we'll want to do once Pd is running is make sure that
the audio is configured correctly. This includes choosing the correct
drivers, the correct soundcard and the proper latency for your system
to be both responsive and glitch-free. Also, if you have any MIDI
devices (such as keyboards or fader boxes), you can set Pd up to use
those as well. After that, you can test the audio and MIDI to make sure
it is working properly.

AUDIO DRIVERS

Pd can use a variety of audio drivers to connect to the soundcard. So
our first step is to chose the correct ones. This can be done via the
"Media" menu:

OSX : Media -> portaudio/jack
Linux : Media -> OSS/ALSA/jack
Windows : Media -> ASIO (via portaudio)

audio ON Ctrl+f
audio OFF Ctr+.
% 083
“~ ALSA
fio
“ Jack

gs ro default-MIDI
o 1 ALSA-MIDI
PPE - pudio settings...
ma MIDI settings...
G Test Audio and MIDI
sig Load Meter

This part of the menu should list the available audio drivers on your
system, and allow you to switch between them. The drivers you have
depend on your operating system, and what drivers you have installed
on that operating system. Keep in mind you may not have all of these
installed on your computer:

Linux
. 0SS
. ALSA
. jack
0S X

40

. portaudio

. jack
Windows

. MMIO

. ASIO

Linux users are encouraged to investigate JACK (Jack Audio
Connection Kit), an audio server which allows different audio
applications to be connected with virtual "cables" in your computer.
JACK, and it's Graphical User Interface QJackctl, should be available
from whatever Linux distribution you happen to be running.

Many OS X users have also reported that audio runs smoother and
with less CPU load when using JackOSX, an implementation of the
JACK server and user interface for the Mac OS. JackOSX can be found

at http://jackosx.com/

And Windows users may find configuring their ASIO soundcards much
easier by using ASIO4ALL, which can be downloaded from
http://www.asio4all.com

MIDI DRIVERS (LINUX ONLY)

Linux : Media -> default-MIDI/ALSA-MIDI

This menu which allows you to switch between the built-in Pd MIDI
drivers and the ALSA MIDI drivers, if they are installed. If the ALSA MIDI
drivers are used, then JACK users can use the QJackctl application
(available in most Linux distributions) to connect external MIDI devices
and other MIDI applications running on the same computer to Pd.

AUDIO SETTINGS

OSX : Pd-extended -> Preferences -> Audio Settings
Linux & Windows : Media -> Audio Settings

zample rate: delay [mzec): | 70
¥ input device 1 Microgoft Sound Mapper-lnput|channels: 2

¥ output device 1 Microzoft Sound Mapper - Output | channels: |2

Cancel ﬂ M

This is one of the most important configuration menus in Pd. Here you
can change the sample rate, delay, input and output devices as well
as the number of channels they use.

Sample rate

The sampling rate for CD quality audio is 44,100 Hz. Most
computer soundcards run at this sampling rate, or at
48,000 Hz, by default. Choose the rate that matches the
rate of your soundcard or audio drivers here.

Delay (msec)

41

http://jackosx.com/
http://www.asio4all.com/

Your computer needs a certain amount of time to process
all the information coming out of Pd and send it to the
soundcard for playback. Likewise, when you are recording,
Pd needs a certain amount of time to gather all the
information coming from the soundcard. The term for this
delay is called latency, and it measures the amount of
time between the moment when you tell Pd to do
something (for example by playing a note on a keyboard),
and when you hear the result of that action. A shorter
latency means you will hear the results quicker, giving the
impression of a more responsive system which musicians
tend to appreciate. However, with a shorter latency you
run a greater risk of getting an interruption or 'glitch’ in the
audio. This is because the computer does not have enough
time to "think about" the sound before sending it to the
soundcard. A longer latency means less chances of glitches,
but at the cost of a slower response time. It is up to you
to find the best balance for your own needs, but the
default latency in Pd is 50 milliseconds. You can increase or
decrease the latency of Pd by entering a value in
milliseconds in this box. If you are using the JACK AP, the
delay will be set by your JACK audio server and manual
inputs in the field 'delay’ are without effect.

Input Device

Choose the soundcard you wish to use with Pd and the
number of channels you want to use. In the case of a
normal, stereo soundcard you would enter the number 2.
For a multichannel soundcard, you may choose some or all
of the channels. Make sure this is checked if you would like
to record sound into Pd.

Output Device

Choose the same soundcard as you selected for the Input
Device, and a matching number of channels as you selected
for the Input Device as well. Although it may be possible to
use different soundcards and unmatched numbers of
channels for input and output on some systems, this can
also cause problems for Pd, so experiment first. Make sure
the checkbox next to the device is checked.

MIDI SETTINGS

OSX : Pd -extended -> Preferences -> MIDI Settings
Linux & Windows : Media -> MIDI Settings

(m midi 2]k

input device 1: none |
output device 1: none |

use multiple devices |

cancel | apply | ok |

42

On Linux, you have a choice of using the built-in MIDI drivers, or the
ALSA-MIDI drivers if they are installed. If you are using the built-in
drivers, you should be able to choose which devices to Pd will send and
receive MIDI messages with. You may also select "use multiple devices"
if you have several applications or devices using MIDI. T his method is
rather complex, because you must set up the devices by number using
your startup flags and you will not be able to change them while Pd is
running. Using the ALSA-MIDI drivers is easier to manage, and therefore
recommended.

When using the ALSA MIDI drivers on Linux, you can tell Pd the number
of In and Out Ports to use here. These are connections which other
MIDI applications or devices can use to connect to and from Pd. To
connect devices or applications, you can use ALSA MIDI with the JACK
audio drivers and the Qjackctl if you have them installed. In Qjackctl,
you will see a tab for MIDI, and be able to connect the inputs and
outputs of MIDI devices and applications by clicking on them.

On Mac OS X, to use MIDI you must first open the "Audio MIDI
Setup.app", which is located in your Applications/Utilities folder. Once
this application is open, and you have connected your external MIDI
devices (if any), you should be able to see your MIDI devices in this
window. Minimize the "Audio MIDI Setup.app" and return to Pd and this
"MIDI Settings" menu. Now you will be able to choose which devices
with which Pd will send and receive MIDI messages. You may also select
"use multiple devices" if you have several applications or devices using
MIDI.

TEST AUDIO AND MIDI

0SX, Linux & Windows : Media -> Test Audio and MIDI

To make sure that you've configured your audio and MIDI correctly, Pd
includes a patch to test your setup. If you open "Test Audio and MIDI",
you will see this window:

testtone.pd - C:/Program Files/pd/doc/7.stuff/tools
File Edit Put Find Windows Media Help

Welcome to Pd ("Pure Data"). This window can test your
audio and MIDI connections. To see Pd's DOCUMENTATION
select "getting started" in the Help menu.

TEST

STGHAL test signal channels:
.20 1 2 34 5 6 7 SALL Dmonitor‘
- 40 MNOME
OFF

.] []input -hipass

_ lpd
] e

AUDIO INPUT (RMS dED

MIDI QuUT

=
O e

PD 1g COPYRIGHT 1887-2002 by Miller Puckette and others but
is free for you to use for any reasonable purpose. See the
file, LICENSE.txt in the distribution.

First, click one of the radio buttons marked either "-20" or "-40" under
"TEST SIGNAL". If your audio is set up correctly, you will hear a test
tone and you will see some of the number boxes above "AUDIO
INPUT" changing to measure any incoming audio signal from the line in
or microphone of your computer. If you have any external MIDI devices
or a piece of MIDI software connected to Pd, you can test the
connection by sending MIDI data to Pd and watching to see if the
number boxes connected to [notein] and [ctlin] change.

44

9 - ADVANCED CONFIGURATION

Since Pd-Extended is installed with most of the settings, search paths
and external libraries already configured, many users won't have to
worry about configuring these parts of Pure Data at all. Advanced
users, however, may be interested in customizing these settings. The
settings which can be changed in Pure Data are the same as those
available when starting from the command line:

audio configuration flags:

-r <n> -- specify sample rate

-audioindev ... -- audio in devices; e.g., "1,3" for first and third

-audiooutdev ... -- audio out devices (same)

-audiodev ... -- specify input and output together

-inchannels ... -- audio input channels (by device, like "2" or
"6,8")

-outchannels ... -- number of audio out channels (same)

-channels ... -- specify both input and output channels

-audiobuf <n> -- specify size of audio buffer in msec

-blocksize <n> -- specify audio I/0 block size in sample frames

-sleepgrain <n> -- specify number of milliseconds to sleep when
idle

-nodac -- suppress audio output

-noadc -- suppress audio input

-noaudio -- suppress audio input and output (-nosound is
synonym)

-listdev -- list audio and MIDI devices

-0ss -- use 0SS audio API

-32bit ===== allow 32 bit 0SS audio (for RME Hammerfall)

-alsa -- use ALSA audio API

-alsaadd <name> -- add an ALSA device name to list

-jack -- use JACK audio API

-pa -- use Portaudio API

-asio -- use ASIO drivers and API

-mmio -- use MMIO drivers and API
MIDI configuration flags:

-midiindev ... -- midi in device list; e.g., "1,3" for first and
third

-midioutdev ... -- midi out device list, same format

-mididev ... -- specify -midioutdev and -midiindev together

-nomidiin -- suppress MIDI input

-nomidiout -- suppress MIDI output

-nomidi -- suppress MIDI input and output

-alsamidi -- use ALSA midi API
other flags:

-path <path> -- add to file search path

-nostdpath -- don't search standard ("extra”) directory

-stdpath -- search standard directory (true by default)

-helppath <path> -- add to help file search path

-open <file> -- open file(s) on startup

-lib <file> -- load object library(s)

-font-size <n> -- specify default font size in points

-font-face <name> -- specify default font

-font-weight <name>-- specify default font weight (normal or bold)

-verbose -- extra printout on startup and when searching for
files

-version -- don't run Pd; just print out which version it is

-d <n> -- specify debug level

-noloadbang -- suppress all loadbangs

-stderr -- send printout to standard error instead of GUI

-nogui -- suppress starting the GUI

-guiport <n> -- connect to pre-existing GUI over port <n>

-guicmd "cmd...” -- start alternatve GUI program (e.g., remote via
ssh)

-send "msg..." -- send a message at startup, after patches are
loaded

-noprefs -- suppress loading preferences on startup

-rt or -realtime -- use real-time priority

-nrt -- don't use real-time priority

-nosleep -- spin, don't sleep (may lower latency on multi-
CPUs)

All of the Audio and MIDI configuration flags in this list are set using the
menus described above. Note that not all settings are available on all
platforms (for example, there are no -asio or -mme options on Mac
OS X or Linux, nor the -alsa, -oss, -pa or -jack settings on Windows,
etc..)

The next most-important configuration options have to do with the
external libraries which Pd loads at startup time (and thus which
objects you will be able to use), as well as the locations in your file
system where Pd can search for these externals and for other
resources the program uses to run.

Pure Data uses a system called pdsettings to store all these options
and use them every time Pd starts up. The pdsettings can be
configured through various menus in the application, as we saw with
the audio and MIDI settings. But they can also be configured by other
tools, which are specific to each operating system.

We'll start by looking at the built-in menus for Startup and Path, and
then we'll look at other methods to change the configuration options.

STARTUP FLAGS

OSX : Pd-extended -> Preferences -> Startup
Linux & Windows : File -> Startup

=] Pd binaries to load (on next startup) E]@[E]
Gem
cyclone
zExy
creb
[
iemlib
list-ahs
mapping
markex
tnaxlib

_| defeat real-time scheduling Save all settings |
startup flags |—he|ppath fusrisharedpd

Cancel | Apply | &'

The things we want to pay attention to in this menu are the externals
we load, which are listed as "Pd binaries to load (on next startup)", and
whether or not we "defeat real-time scheduling".

Under "Pd binaries to load", you can make a list of the external
libraries which you have installed on your system which you would like
to be available in Pd. You will then be able to run these externals the
next time you start Pd. Because you are using the Pd-extended
distribution, this section should be completed for you with a list of the
externals which come with the distribution.

If you would like to add more libraries to the ones listed, the simplest
way is to add them to an existing line of the Startup menu, like so:

Gem:my_new_lib

And then click "Save all settings" and "OK". However, Pd-Extended is
still a program which is under development, and this method has been
noted to have some problems lately, so you may wish to try the
Platform-Specific Configuration Tools below.

46

If you are running Pd on Linux, you may want to experiment with using
"real-time scheduling" to improve the audio quality by allowing Pd
faster access to the soundcard. On some systems, however, you must
run Pd as the administrator of the system (i.e. "root" or "su") to have
permission to do this. To use "real-time scheduling", enter the
following in your "startup flags"

-rt

startup flags |—he|ppath Justisharespd -t

But keep in mind that if Pd overloads or locks up your system by using
too much of the processer's resources, it can be very difficult to quit
the program when using "real-time scheduling".

Users on Mac OS X should not use the "real-time scheduling" flag, and
should click the box which says "defeat real-time scheduling" for better
audio quality.

PATH

OSX : Pd-extended -> Preferences -> Path
Linux & Windows : File -> Path

rB e PD search path for patches and other files

[Library/Pd

ISystem/Library/Fonts

ILibrary/Fonts

~ILibrary/Fonts

fusrX11R61IbX11/fonts/TTF

/System/Library/Framewarks/lavayvM.framework/Versions/1.3.1/Home/libfonts

fswilib/X 11 fonts/msttf

fswlib/X11 fontsfintl/TrueType

fswillib/X11 fonts/applett

[Applications/Pd-extended.app/Contents/Resources/Scripts/. fextra/cyclone

™ use standard extensions Clverbose | Save all settings
Cancel Apply OK

Shown here is the Mac OS X menu for setting the Paths. These are the
Search Paths that Pd will use to locate external libraries, help patches,
and other any patches, fonts, soundfiles, videos ar anything else which
you may need while working in the program. If you would like to add
more directories to the ones listed, the simplest way is to add them to
an existing line of the Path menu, like this:

/Library/Pd:/home/my_name/my_new_path

And then click "Save all settings" and "OK". However, as with the
Startup menu, some people have had problems using this method, so
you may wish to try the Platform-Specific Configuration Tools
below.

47

Quite a bit of this configuration has been taken care of by Pd-
Extended already, so let's look at some real-world examples of when
you might want to add a path. One situation would be if you want to
use an audio file or a collection of audio files in your patch, but you
don't want to have to specify the whole location every time it's
needed in any object or message.

So, instead of typing

/home/beaver/my_soundfiles/spoken/boy/geewhiz.wav

or

/home/beaver/my_soundfiles/spoken/girl/golly.wav

you could add

/home/beaver/my_soundfiles/spoken

to your Path, and then call these soundfiles by typing:

boy/geewhiz.wav
girl/golly.wav

Another very common situation is when you would like to use a Pd
patch you have saved as an abstraction (which essentially treats the
saved patch like another Pd object) inside another Pd patch. In this
case, you must either have the patch you wish to use as an abstraction
saved in the folder as the "parent" patch you wish use it in, or you
must add the folder containing the abstraction to your Path. For
example the path:

/home/pdfreek/puredata/abstractions/reverb_tools

might contain various kinds of reverb abstractions that the user
"pdfreek" created to be reused in other patches. For more information
about abstractions, please see the DataFlow Tutorials chapter.

Finally, if you want to compile your own external Pd libraries, or use
ones which you have downloaded from the internet, then you need to
place the binary files (which end in .pd_linux for Linux, .pd_darwin for
OS X and .dIl for Windows) in a folder and add that folder to your
path, such as:

~/pd/extra

where ~/ means your home directory (i.e. /home/“username" on Linux
and /User/"username" on Mac OS X). Please note that in the case of
name clashes (where two objects or files have the same name), the
one which is loaded last takes precedence over all others. An example
of this is the object [counter], which exists in several external libraries,
and which has a different function in each one!

PLATFORM-SPECIFIC CONFIGURATION
TOOLS

Since Pd-extended and the vanilla version of Pure Data really function
as separate apps, they each of their own separate files for saving
configuration settings. Also, this settings file is saved with a format,
name, and location that is appropriate for the operating system you
are using. The locations for the Pd settings files are:

Pd-extended

48

e OS X: ~/Library/Preferences/org.puredata.pd.plist (~ means your
home folder)

e Windows: HKEY LOCAL MACHINE -> SOFTWARE -> Pd-extended
(using REGEDIT .EXE, etc.)

e Linux: ~/.pdextended (~ means your home folder)
Pure Data vanilla

e OS X: ~/Library/Preferences/org.puredata.pd.plist (~ means your
home folder)

e Windows: HKEY LOCAL MACHINE -> SOFTWARE -> Pd (using
REGEDIT .EXE/REGEDIT 32.EXE)

o Linux: ~/.pdsettings (~ means your home folder)

Linux

Linux users may edit the file directly via command line applications
such as joe, vim, pico or nano, or with whatever other text editing
application comes with your distribution:

$ nano /home/derek/.pdsettings
GNU nano 1.2.4 File: /home/derek/.pdsettings

audioapi: 5

noaudioin: False

audioindevl: o 4

noaudioout: False

audiooutdevl: 0 4

audiobuf: 50

rate: 44100

nomidiin: False

midiindevl: @

nomidiout: False

midioutdevl: @

path1: /home/derek/pd/rradical/memento
path2: /home/derek/pd/ix_toxy

path3: /home/derek/pd/berlin

path4: /home/derek/pd/rradical/memento/tutorial
path5: /home/derek/workshop_patches
path6: /usr/local/lib/pd/doc/5.reference
path7: /usr/local/lib/pd/extra/xjimmies
npath: 7

standardpath: 1

verbose: @

loadlib1: pool

loadlib2: iemlib1

loadlib3: iemlib2

loadlib4: iem_mp3

loadlib5: iem_t3_lib

loadlib6: 0SC

loadlib7: zexy

nloadlib: 7

defeatrt: @

flags: -alsamidi -rt

[Read 31 lines]

G Get Help *0 WriteOut *R Read File *Y Prev Page

*K Cut Text ~C Cur Pos

X Exit *J Justify *W Where Is *V Next Page U
UnCut Txt AT To Spell

Remember that if you add a new path or loadlib, then you will need to
give it a number higher than the last existing one, and you will need to
change the npath or nloadlib to the number of new paths or loadlibs
you have added. In the above pdsettings, to add the loadlib pdp, you
would have to add/change the following:

loadlib8: pdp

49

nloadlib: 8
0S X

OS X users may wish to try using the Property List Editor.app, which
can be installed from the XCode Tools or Server Tools CDs available
for free from Apple:

http://developer.apple.com/tools/xcode

Here is the Property List Editor, with the org.puredata.pdextended.plist
file open:

8ene _ org.puredata.pd.plist
[MNew Sibling ‘J (: Delete) (Dump ‘)
Property List Class Value
v Root Dictionary » 54 keyfvalue pairs
audioapi String =
audiobuf String » 50
audioindevi String y02
audiooutdevi String 02
defeatrt String ¥ 0
flags String H
loadlib1 String » Gem
loadlibi0 String + mapping
loadiib11 String markex
loadiib12 String + maxdib
loadlibi3 String + memenio
loadiibi4 String + mjlib
loadiib1s String + motex
loadlib16 String » b
loadlibi7? String 3 05CX

You can click directly in the Value field to change a value, or use the
New Sibling button to add a new line.

The command line utility defaults can also be used. The following line
in the terminal lists all the pdsettings in org.puredata.pdextended.plist:

defaults read org.puredata.pdextended

The following command can be used to write a new line to pdsettings:
defaults write org.puredata.pdextended loadlib30 test

and this command can be used to delete one line from pdsettings:

defaults delete org.puredata.pdextended loadlib30

In this case, loadlib30 represents the next possible line that could be
added to load a library (29 libraries are loaded already), and test
represents a hypothetical library which we add to the startup in the
first case using the write command, and remove from the startup in
the second case by using the delete command. For more information
about defaults, type:

defaults --help

Windows

50

[

http://developer.apple.com/tools/xcode/

Windows users may also use the REGEDIT program to edit their
pdsettings. This program comes with the Windows operating system,
and can be located under the name REGEDIT .EXE or REGEDT 32.EXE
(Windows XP or newer). Please note: manually editing the Windows
Registry files using a text editor instead of REGEDIT is generally
considered unsafe, since errors here can disrupt the entire operating
system! Those interested in more details about the Registry should
read:

Datei Bearbeiben Ansicht Faworiten 7
| Wert
(Wert nicht gesetzt)
3
70
o2
0z
1]
Hib flatspace -ib unauthari:
| F libdir
L 0K J [Sbbrechen] F markex
- F flatspace
=23 RME Ioadlibl?_ REG_EXPAND_SZ unautharized
-2 Roxio [ab]ioadib13 REG_EXPAND_SZ emlib
M (TR CafnDant Tnkarnatinnal M 2R w1 nre Cwnann e e i el
B i’]l. < i’]
Arbeitsplatz\HKEY _LOCAL_MACHINE\SOFTWARE\Pd

51

http://en.wikipedia.org/wiki/Windows_Registry#Editing

10 - STARTING PURE DATA

Now that you have Pd-Extended installed on your computer and
configured, let's look at different ways to start it--from simply clicking
an icon through starting from the command line and adding different
startup flags or using a script to save different sets of startup
information.

STARTING VIA AN ICON

There are two ways of starting Pure Data. The way that will be used

most commonly on Windows or Mac OS X will be to click on the icon

which the installer put in your "My Programs" or "Applications" folder.
On Windows, this is "Start -> Pure Data -> Pure Data".

fi Pure Data

_ Skartup 3
@ Tour Windows XP

Q Internet Explorer

.
VoL windows Mavie Mak% Documentation

™ ariro
zn Pure Data
@ puredata.org
ﬁ! Uninstall Pure Data

3| Files and Settings Tr WY MM Explarer
Wizard

Pure Data
All Programs .

Cutlook Express

Remate Assistance

@
-
& windows Media Player
3

“Windows Messenger

g OfF | | Turn OFff Computer

= The GIMP

On Linux, your system may also have a menu bar, such as
"Programs/Multimedia" or "Programs/Sound" where Pd can be started
by clicking the menu item.

STARTING VIA COMMAND LINE

The other way is to open Pd from the terminal or shell via a command
line. This is most often done on Linux, but it can be done this way on
any platform. To do this, one must know the location of the Pd
application on his/her system, which can be different depending on
where Pd was installed.

Linux (from xterm)

/usr/local/bin/pd

Mac OSX (from Terminal.app)

/Applications/Pd-extended.app/Contents/Resources/bin/pd

Windows (from the DOS shell or Command
Prompt)

C:\Program Files\pd\bin\pd.exe

Why would we want to open Pd by command line? The most common
reason would be is if we wanted to use a different set of flags than
the default ones. For example, if you were using Pd in a live
performance, and you wanted it to open up the same patch whenever
you started it in this situation, you might use the command:

52

/usr/local/bin/pd -open /home/pdfreek/liveset.pd

Which would start Pd and open the patch liveset.pd. You could also add
other startup flags, such as which soundcard and drivers to use, which
external libraries to load or which search paths to add. Flags are
additional pieces of information which can alter the configuration of Pd
for that particular startup, rather than the pdsettings which we looked
at in the ConfiguringPd chapter, which affect the program every time
it starts.

Like almost any program launched by command line, you can add the
flag "--help" to see a long list of configuration options, which gives you
some idea of the different possibilities for starting up Pd:

$ /Applications/Pd-0.39.2-extended-
test4.app/Contents/Resources/bin/pd --help

usage: pd [-flags] [file]...

audio configuration flags:

-r <n> -- specify sample rate

-audioindev ... -- audio in devices; e.g., "1,3" for first and
third

-audiooutdev ... -- audio out devices (same)

-audiodev ... -- specify input and output together

-inchannels ... -- audio input channels (by device, like "2" or
"16,8")

-outchannels ... -- number of audio out channels (same)

-channels ... -- specify both input and output channels

-audiobuf <n> -- specify size of audio buffer in msec

-blocksize <n> -- specify audio I/0 block size in sample
frames

-sleepgrain <n> -- specify number of milliseconds to sleep when
idle

-nodac -- suppress audio output

-noadc -- suppress audio input

-noaudio -- suppress audio input and output (-nosound is
synonym)

-listdev -- list audio and MIDI devices

-jack -- use JACK audio API

-pa -- use Portaudio API

(default audio API for this platform: portaudio)

MIDI configuration flags:

-midiindev ... -- midi in device list; e.g., "1,3" for first
and third

-midioutdev ... -- midi out device list, same format

-mididev ... -- specify -midioutdev and -midiindev together

-nomidiin -- suppress MIDI input

-nomidiout -- suppress MIDI output

-nomidi -- suppress MIDI input and output

other flags:

-path <path> -- add to file search path

-nostdpath -- don't search standard ("extra") directory

-stdpath -- search standard directory (true by default)

-helppath <path> -- add to help file search path

-open <file> -- open file(s) on startup

-lib <file> -- load object library(s)

-font <n> -- specify default font size in points

-typeface <name> -- specify default font (default: courier)

-verbose -- extra printout on startup and when searching
for files

-version -- don't run Pd; just print out which version it
is

-d <n> -- specify debug level

-noloadbang -- suppress all loadbangs

-stderr -- send printout to standard error instead of
GUI

-nogui -- suppress starting the GUI

-guiport <n> -- connect to pre-existing GUI over port <n>

-guicmd "cmd...” -- start alternatve GUI program (e.g., remote via
ssh)

-send "msg..." -- send a message at startup, after patches are
loaded

-rt or -realtime -- use real-time priority

-nrt -- don't use real-time priority

To learn more about Pd's startup options, please see the Configuring
Pd chapter.

STARTING FROM A SCRIPT

53

Once you have created a command line for your specific situation, you
can save that command as a script, which is a short file containing a
list of commands, which can be run by typing its name in the terminal
or shell. The exact format of your script depends on which operating
system you use.

Windows

Windows uses the DOS language for its commands, so we must create
a .bat (DOS batch) file containing the location of the Pd program and
the startup flags we want to use. Using a simple text editor, make a
file named "pdstart.bat", and place the following in it, for example

"c:\pd\bin\pd.exe" -font 10 -path "c:\pd\doc\vasp” -lib cyclone -lib
iem_t3_1ib -1ib iem_mp3 -1ib mjLib -1lib OSC -lib percolate -1lib vasp -
lib xeq -lib xsample -lib zexy -lib iemlibl -1lib iemlib2 -listdev %1
%2 %3 %4 %5 %6 %7 %8 %9

Though it may appear to be many lines, this command must in fact be
one long line with no breaks. If the version of Windows you are running
has a "Save as type" option, choose the type "All files" to prevent
your .bat file from being saved as a text file. Once this is saved, you
can double-click on the file to run it.

Linux and OS X

Since both Linux and OS X use the same Unix-type system to interpret
and run command lines, the process for creating a script is the same
for both. In your favorite text editor, create a new file and start it with
the line:

#! /bin/bash

which tells the operating system that what it is reading is a script, and
that it will use the bash command line interpreter. On the line below
that, copy this or a similar line:

/usr/local/lib/pd -font 10 -path /home/pdfreek/pd/my_abstractions -1lib
cyclone -1lib iem_t3_lib -1lib iem_mp3 -lib mjLib -1ib 0SC -1lib
percolate -lib vasp -lib xeq -lib xsample -lib zexy -lib iemlibl -1lib
iemlib2 -open /home/pdfreek/pd/liveset3.pd

This should be all in one line, with no breaks. Please note that you
should give it the correct path to the Pd program in the beginning
(which could be different if you are running OS X for example), and you
should replace the example flags with ones of your own.

Once you have written and saved this file with the .sh (shell script) file
extension, such as "start_pd.sh", you must make it executable as a
script with the following command:

chmod +x start_pd.sh

After you have done this, you can start this script, which will run Pd
with all the flags you have added to it, by typing:

sh start_pd.sh

Some Linux window managers such as KDE or Gnome may support
double-clicking to start shell scripts either by default or by selecting
the default application. On OS X, you could configure the Finder to
open .sh files with the Terminal.app by default (but then you would
have to manually chose to open them with TextEdit.app for editing
later on).

ADVANCED SCRIPTING FOR STARTING PD

54

One of the beautiful things about the Unix system, which both Linux
and OS X are based on, is that it is designed to allow many
applications to communicate with each other and work together. T his
means that shell scripts can be constructed to do an enormous
amount of tasks.

For example, the following script for Linux starts the JACK audio server
(with some flags of its own), opens the Qjackctl interface for JACK and

then starts Pd with the -jack flag and the -open flag listing two specific
files:

#! /bin/bash

jackd -d alsa -d hw -r 44100 -p 1024 -s &
/usr/bin/qjackctl & sleep 5 ; /usr/local/bin/pd -jack -open
/home/derek/pd/delnet/delaynet.pd:/home/derek/pd/echoplex_footswitches/

The ampersand (&) between the commands means that the
command preceeding it will be run in the background. In other words,
the previous command will keep running while we execute the next
ones, instead of quitting. The section "sleep 5" tells the shell to wait 5
seconds before running the next command, in this case in order to give
JACK time to start up. The semicolon (;) is used to seperate jobs,
meaning that the next command won't be run until the previous one is
finished (in the case of "sleep 5") or sent to the background (in the
case of the ampersand symbol).

This script could be expanded to open other applications (in the
following case, the looping application SooperLooper), use the
aconnect application to make ALSA MIDI connections from Pd to
SooperlLooper, and use the jack_connect command to make audio
connections between Pd, SooperLooper and 6 channels of a sound
card via the JACK audio server:

#! /bin/bash

jackd -d alsa -d hw -r 44100 -p 1024 -s &

/usr/bin/qjackctl & sleep 5 ; /usr/local/bin/pd -jack -open
/home/derek/pd/delnet/delaynet.pd:/home/derek/pd/echoplex_footswitches/
& sleep 5 ; /usr/local/bin/sooperlooper -L
/home/derek/pd/echoplex_footswitches/31loops.slsess -m
/home/derek/pd/echoplex_footswitches/3loops.slb & sleep 5 ;
/usr/local/bin/slgui & sleep 5 ; aconnect 'Pure Data':1
'sooperlooper_1':0 ; jack_connect alsa_pcm:capture_1
sooperlooper_1:common_in_1 ; jack_connect alsa_pcm:capture_2
sooperlooper_1:common_in_2 ; jack_disconnect alsa_pcm:capture_1
pure_data_0:input@ ; jack_disconnect alsa_pcm:capture_2
pure_data_0:inputl ; jack_disconnect alsa_pcm:capture_3
pure_data_@:input2 ; jack_disconnect alsa_pcm:capture_4
pure_data_0:input3 ; jack_connect alsa_pcm:capture_3 pure_data_0:input@
; jack_disconnect pure_data_0:output@® alsa_pcm:playback_1 ;
jack_disconnect pure_data_@:outputl alsa_pcm:playback_2 ;
jack_disconnect pure_data_0:output2 alsa_pcm:playback_3 ;
jack_disconnect pure_data_0:output3 alsa_pcm:playback_4 ; jack_connect
pure_data_0:output@® alsa_pcm:playback_7 ; jack_connect
pure_data_0:outputl alsa_pcm:playback_8 ; jack_connect
sooperlooper_1:loop@_out_1 alsa_pcm:playback_1 ; jack_connect
sooperlooper_1:loop@_out_2 alsa_pcm:playback_2 ; jack_connect
sooperlooper_1:loopl_out_1 alsa_pcm:playback_3 ; jack_connect
sooperlooper_1:loopl_out_2 alsa_pcm:playback_4 ; jack_connect
sooperlooper_1:loop2_out_1 alsa_pcm:playback_5 ; jack_connect
sooperlooper_1:loop2_out_2 alsa_pcm:playback_6

Detailed syntax for aconnect and jack_connect can be found by typing:
aconnect --help

or

jack_connect --help

55

Bash shell scripting is a huge area to investigate, curious readers are
encouraged to check out one of the many websites and books
detailing the Bash environment.

56

THE INTERFACE

1. THE INTERFACE
12. TROUBLESHOOTING

57

11 - THE INTERFACE

Now that Pd is installed let us look at the result when the main Pd
window opens.

Main Pd Window

:Jd
IN ouT compute audio
0 0 DIQ peak meters
cup cup V| console

[import] SRewvision: 1.2 §
[import] is still in development, the interface could change!
compiled against Pd version ©.41.4

libdir loader SRevision: 1.8 %
compiled on Jun 5 2009 at 12:19:25
compiled against Pd version @.41.4.extended

GEM: Graphics Environment for Multimedia

GEM: ver: @.91.3 'tigital'

GEM: compiled: Jun 5 2009

GEM: maintained by IOhannes m zmoelnig

GEM: Authors : Mark Danks (original wversion)

GEM: Chris Clepper
GEM: James Tittle
GEM: I0hannes m zmeelnig

GEM: with help by Guenter Geiger, Daniel Heckenberg, Cyrille Henry, et al.
GEM: found a bug? miss a feature? please report it:

GEM: homepage http://gem.iem.at/

GEM: bug-tracker http://sourceforge.net/projects/pd-gem/

GEM: mailing-list http://lists.puredata.info/listinfo/gem-dev/
GEM: compiled for SIMD architecture: SSEZ2 MMX

GEM: using SSEZ optimization

libdir_loader: added 'cyclone' to the global objectclass path
libdir_loader: added 'zexy' to the global objectclass path
libdir_loader: added 'creb' to the global objectclass path
libdir_loader: added 'cxc' to the global objectclass path

As of Pd 0.39, all of the messages that Pd produces are sent to the
main Pd window (before this, they were sent to the shell which was
running Pd). When you start Pd, this main Pd window should tell you
important information, such as the externals you are loading and
whether any errors occurred while loading them, as well as any errors
connecting to the soundcard. Later, you will also use this main Pd
window to see information about the patch you are working on, as well
as for debugging (correcting errors in your patch). So keep this window
in a place where you can find it on your screen.

Here is an overview of common messages that you will encounter in
the Main Pd Window:

[import] tells details of the current version on Pd-extended, in this
case 'Pd version 0.14.4 extended.'

GEM: describes the details of the Graphics Environment of Multimedia
available.

libdir_loader: itemizes the various libraries loading into Pd-extended.
This screen grab shows about 20% of the libraries that are loading.

Error example: If you were reading the Pd window on a Mac, the Pd
window might tell you that you did not have X1l library that is an
application to display unix programs, a desirable component of Pd. See
how that error message appears in the chapter InstallingOSX "Status:
XN Library not loaded."

58

There are a few other important features about this main Pd window.
At the top of the window, you will find audio level indicators that
provide a general idea of the loudness of the sound that you are
sending to the soundcard. If this level goes to 100 or higher, you are
sending too high a level and you will hear a distorted sound. The boxes
marked "Clip" will also flash red. To use the audio level meters, check
the box that says "peak meters" in the main Pd window.

Also found on the top part of the Main Pd Window is a box marked
"compute audio", which you can use to turn on and off audio
processing. When you open the "Test Audio and MIDI" patch, Pd will
automatically turn audio processing on for you.

Last is a box marked "DIO". T his stands for Digital In Out errors, and
this box should flash red when Pd has difficulties sending data to your
sound card. If you click this box, Pd will print a list of times when these
DIO errors occurred in the main Pd window. The "console" box oggles
the text displayed in the Pd window.

Help Browser Window

006 Pd Documentation Browser
1.manual/ 00.INTRO. Xt @
2.control.examples/ 01.PART1.hello.pd
3.audio.examples/ 02.editing.pd
4.data.structures/ 03.connections.pd
5.reference/ 04.messages.pd
6.externs/ 05.counter.pd
7 .sTuff/ 06.more.counters.pd
examples/ 07.time.pd
manuals/ 08.depthfirst.pd
media/ 09.send_receive.pd
sound/ 10.more.messages.pd
11.review.pd
12.PARTZ.subpatch.pd
13.locality.pd
14.dollarsighs.pd
15.array.pd
15.file.txt
16.more.arrays.pd
17.PART3.midi.pd A
18.conditional.pd v

The last thing to point out before getting started with a new patch is
the "Help" menu. You can access this resource from the "Help" menu
on the top navigation bar. Under this drop-down menu, you can open
the official Pd manual, written by Miller S. Puckette in "HTML" format,
which can be viewed in your web browser. You can also open a file
"Browser", pictured above, which will list the built-in help patches which
come with Pd. </p

All of these documents are valuable resources, however many
newcomers to Pd can find them confusing. We will cover some of these
basics in the "Dataflow", "Audio" and "Patching Strategies" tutorials in
this manual, after which you can return to the built-in help files with a
bit better understanding.

STARTING A NEW PATCH

Under the "File" menu in the main Pd window, create a "New" Pd patch.
It should look something like this:

59

006 Untitled-1 - /

4

Unlike other software for creating audio or video media, such as
Ableton Live, CuBase or Final Cut Pro, where a new file shows you a
variety of buttons, menus and timelines, Pd gives you a blank, white
space. Within that white space, you can make a synthesizer or video
mixer, translate sensor input into the movements of a robot or stream
movies to the internet, for example. T he difference between Pd and
software like Live is that it doesn't start with any preconceived ideas
about how to make your artwork. Where Live provides you with a set
of tools suited primarily for the production of loop-driven dance
music, Pd acts more like a text editor where anything is possible, so
long as you know how to write it. It is this kind of possibility and
freedom that attracts many artists to using Pd.

To explore these possibilities, you must understand Pd as being a
written language like German or Chinese. As in any language, Pd has a
vocabulary (the words used in the language) and a grammar (the way
to put these words together so that they make sense). And like
learning any language, you first have to learn how to say simple things
like "What is your name?" before you can write poetry! So let's start
simple.

You will notice that once we have opened a new Pd patch, there are a
few new menu items to choose from. The "Edit" menu has all the kinds
of functions you would expect from a text editor like Notepad,
TextEdit, OpenOffice or Word, such as "Cut", "Paste", "Duplicate",
"Select All", etc etc.

There is also a "Put" menu, containing a list of the kinds of things you
will be putting in your patch, such as "Object”, "Message", "Number",
"Symbol", "Comment" and a range of GUI (Graphical User Interface)
elements such as "Bang", "Toggle", "Slider", etc.

INTERFACE DIFFERENCES IN PURE DATA

While the main functionality of Pure Data doesn't change between
operating systems, the locations and contents of some of the menus
do. Depending on the system you are running, you will be able to do
the following:

Linux

From the "File" menu, you can:

60

Create a "New" Pd patch

"Open" a Pd patch which is saved on your computer
Send a "Message" to the running Pd application

Set the search "Path" which Pd uses

Change the "Startup" flags which Pd uses

"Quit" Pd

oOuhkwWwN

From the "Find" menu, you can:

1. "Find last error" which occurred in the program
From the "Windows" menu, you can:

1. Change between the different open Pd patches
From the "Media" menu, you can:

1. Turn audio "ON" and "OFF"

2. Change between the different available audio drivers
3. Change between the different available MIDI drivers
4. Change the "Audio Settings"

5. Change the "MIDI Settings"

6. "Test Audio and MIDI"

7. View the CPU "Load Meter"

And from the "Help" menu, you can:

1. Read information "About Pd"
2. Open a "Browser" to see some help patches which are included in
Pd

Mac OS X

From the "Pd" menu (which should contain the version number as well),
you can:

1. Read information "About Pd"
2. Change the following "Preferences™:
1. Set the search "Path" which Pd uses
2. Change the "Startup" flags which Pd uses
3. Change the "Audio Settings"
4. Change the "MIDI Settings"
3. Quit" Pd

From the "File" menu, you can:

1. Create a "New" Pd patch

2. "Open" a Pd patch which is saved on your computer
3. Send a "Message" to the running Pd application

4. "Quit" Pd

From the "Find" menu, you can:
1. "Find last error" which occurred in the program
From the "Media" menu, you can:

Turn audio "ON" and "OFF"
Change the "Audio Settings"
Change the "MIDI Settings"
"Test Audio and MIDI"

View the CPU "Load Meter

e WN

From the "Windows" menu, you can:

1. Change between the different open Pd patches
And from the "Help" menu, you can:

1. View the author's documentation as an HT ML file
2. Open a "Browser" to see some help patches which are included in
Pd

PLACING, CONNECTING AND MOVING
OBJECTS IN THE PATCH

Find Media

Object
Message
Number
Symbol
Comment

w

Bang
Toggle
Number2
Vslider
Hslider
Vradio
Hradio
VU
Canvas

Craph
Array

Use the "Put" menu to place an "Object" in your patch. Click on the
patch to drop the object in its place. You will see a box made of a
broken blue line, with a flashing cursor inside indicating that you should
type something there.

Objects are the "vocabulary" of Pd. The more names of objects you
know, the more complicated things you can do with Pd. If you type the
word "print" inside this object and click again outside the box, you will
create the [print] object. </p?

Return to the "Put" menu, and this time place a "Number" in your
patch. Notice that the shape of the number box is different from the
shape of the object box.

Eg

To get help associated with a specific object you can right-click it. or
use the Control key and click on OS X. Then just select "help" from the
drop-down menu (pictured below). This is something like the
"dictionary entry" for the object, and should define what it does and
also show several examples of its use.

62

80686

Untitled-1* - /

Control + click or right-click
gives the help file for the object

You should also notice that both the object and the number boxes
have small rectangles at the corners. If these are at the top of the
object, they are called "inlets", and at the bottom they are called
"outlets". When you are working on your patch, your cursor is shaped
like a pointing finger. If you put that finger over an outlet, it changes
into a black circle which indicates that the outlet is selected.

Select the outlet of the the number box, click and drag that black
circle until it reaches the inlet at the top of the [print] object. When you
have done that, you will see the cursor change from the pointing finger
to the black circle again. If let go of the mouse button now, you will
make a connection from the outlet of the number box to the inlet of
[print]. If you want to remove this connection, place your cursor over
the connection until you see a black X and then click. The connection
will turn blue and you can remove it with the Backspace or Delete key

on your keyboard.

0

To make a connection

E
2

mouse over the outlet

&5

until the cursor becomes a ring

5

then drag the cable to the inlet

until yon see the ring again

rint

BT

Click on a cable to
select it for cutting

E

and use the backspace
key to delete the cable.

and then release.

If you click on the patch away from the number box and [print] object
and drag, you can draw a box which selects them. You will see they are
selected because they will turn blue. Single objects can be selected by
clicking once on them.

@06 Untitled-1* - /

e

Eri nt

In Edit Mode, clicking on the patch and
dragging will select multiple objects
to move, copy, duplicate or delete.

Once the objects on screen are selected, you can:

Move them by dragging them with the mouse

Move them in small increments with the Arrow keys

Move them in larger increments with the Shift and Arrow keys

Delete them with the Backspace or Delete keys

Copy them by using the Control and C keys (Apple and C keys

on OS X) or the Copy menu item under Edit

o Cut them by using the Control and X keys (Apple and X keys on
0OS X) or the Cut menu item under Edit

e Once Cut or Copied, you can Paste them with the Control and V
keys (Apple and V keys on OS X) or the Paste menu item under
Edit

e You can also Duplicate the selected items with the Control and D

keys (Apple and D keys on OS X) or the Duplicate menu item

under Edit

It is recommended to use the duplicate function rather than the paste
function, because pasted objects are placed directly on top of the
previous object, making it difficult to see them. Duplicated objects are
placed to the lower right side of the original, making them easier to
find and move.

pazted objects

Pasted or duplicated objects are automatically selected together, so
you can grab ahold of them and move them immediately after placing
them in the patch.

EDIT MODE AND PLAY MODE

So far we've been able to put objects in the patch, connect them,
move them around or delete them. But how does one get some
results from this patch? In this case, we have connected a number box
to a [print] object, which should print the numbers we send to it in the
main Pd window. Now we have to learn how to send numbers to the
print object.

64

To make this happen, we need to change out of "Edit Mode" and into
"Play Mode". You can do this by clicking on the "Edit Mode" item in the
Edit menu, or by using the Control and E keys (Apple and E keys on OS
X).

@ Pd-0.39.2-extended-test6 File liﬂl Put Find Media Window Help

aOon Pt Undo clear #Z

IN ouT 8066 ‘ Redo clear {+37 l
0 0 Cut #X
Co| #®C
cup) (cup Py
Paste #V
i Ith the Edit Mode me

print: 1 S il =5 £ works on the Mac)
print: 11: Select all FHA
print:
ety Text Editor ~ #T
print: 1 Feid| Font
print; 1 Tid'f Up
print: 1
ggig: i Find... #F
print: 1 Find Again #G
L : Find last error
print: 1 \
print: i Edit mode
print:
print: 1
print: 1
print: 1
print: 1
print: 1

print: Change to edit mode with the Edit Mode menu item
print: or with Control + E (&pple + E works on the Mac)

When you enter into "Play Mode", you will see that the pointing finger
cursor changes into an arrow cursor. T his change signifies that the
mouse will interact differently with the elements within the patch.

‘@06 Untitled-1* - /

Erint

In Edit Mode, the cursor is a pointing finger.

65

‘@06 Untitled-1* - /

£
k

In Play Mode, the cursor is a black arrow.

v

Now, if you click inside the Number object and drag your mouse up or
down you can change the numbers inside of it. Any changed number is
sent out through the outlet to any connected objects. Since the object
is connected to the inlet of the [print] object the number is printed to
the main Pd window.

@ Pd-0.39.2-extended-test6 File Edit Put Find Media Window Help
oo Pd ‘
N T L8086 Untitled-1* - /

cup cup

print: 111
print: 110
print: 109
print: 108
print: 107
print: 106
print: 105
print: 104
print: 103
ggi;:f igf In Flay Mode, you can drag the number box
print: 100 up and down to change the value.

print: 99
print: 98
print: 37
print: 96
print: 95
print: 94
print: 393 Z
print: 32
print: 91
print: 30
print: 8%
print:

If you hold the Shift key while using the mouse to change the number,
you will scroll through decimal numbers. Using the Alt key plus a
mouseclick will toggle the Number box between 0 and 1. You can also
change the number by clicking once on the number box, using your
keyboard to change the value, and then pressing the Enter key to send
the value to the outlet.

66

T

@ Pd-0.39.2-extended-test6 File Edit Put Find Media Window Help

oo o Pd ‘
N or L8086 Untitled-1* - /
0 0
CLIP CLIP
print: 1.35
print: 1.36
print: 1.37
print: 1.38
print: 1.3%9
print: 1.4
print: 1.41
print: 1.42
E;;;Ef 1'22 shift + drag gives decimal numbers.
print: 1.46
print: 1.4%8
print: 1.5
print: 1.52
print: 1.54
print: 1.56
print: 1.58
print: 1.6
print: 1l.62 2
print: 1.63
print: 1.64
print: 1.65 i
print: 1.66 v
print: 1.87 4

If you want to make any changes to a patch that is "Play Mode", you
have to switch back to "Edit Mode". To do so, use the "Edit Mode"
menu item or the key combination Control (or Apple) and E. Note that
you are automatically placed in Edit Mode whenever you add any new
item from the "Put" menu to your patch.

MESSAGES, SYMBOLS AND COMMENTS

The "Message" box is used to store and send information to other
objects, and can contain numbers or text. It also has a unique shape,
which resembles an envelope like you would use to send a letter. Place
two different messages above the number box in our exercise. Like
the object, messages also give a flashing cursor indicating that you
should enter some information when you create them. Enter "2" in one
of the messages and "4" in the other, and connect both to your
number box. Switch to Play Mode and click on each of the messages.
When you do, you will see that the number box changes according to
the message that you send it, and that the message is also sent
onwards to the [print] object.

E.1416[Eome monsters(

You can also send numbers and other information to the message box.
Create a message with the text "$1is a beautiful number", and connect
it to the [print] object. Then connect a Number to the inlet of the
message, and in Play Mode change the value of the number. You will
see in the main Pd window that whatever number you send to this
message replaces the $1. This is because $1is a "variable", and will take
the value of whatever you send to it. This is important because
different objects need to be sent different messages in order to do
things. We will look at more uses for messages and variables later in
the Dataflow Tutorial.

67

@ Pd-0.39.2-extended-test6 File Edit Put Find Media Window Help

oo o Pd ‘
T
IN ouT eo0e Untitled-1*% -
0 0
cLp CLIP |
print: 27 is beay E:::]

beau
beaul [F1 is a beautiful number[

beau
beay 1
bea

51 in a message is called a "variable"
beay and will be replaced by the first input
beau the message receives.

print: 26 is
print: 25 is
print: 24 is
print: 23 is
print: 21 is
print: 20 is
print: 18 is
print: 17 is
print: 16 is
print: 14 is
print: 13 is
print: 12 is
print: 11 is

LI T T U T
o
@
[=

print: 10 is beay

print: 9 is a beaut]

print: 8 is a beaut

print: 7 is a beaut]

print: & is a beaut! Z
print: 5 is a beauti bil r

print: 4 is a beautiful number

print: 3 is a beautiful number

print: 2 is a beautiful number

print: 1 is a beautiful number

A "symbol" is another way of storing and sending information. Once
created, you can use it to display the output of some objects, or you
can type directly into it and hit Enter to send the text out. Please note
that no spaces will appear in the symbol box when you type into it,
since separate words would be considered separate symbols.

A "comment" is simply a way of making a note to yourself so that you
(or someone else) can understand what you were trying to do later on.
You can make as few or as many as you want, and they have no
effect on the patch itself.

== Thiz iz a symbol box.
Above me there iz a comment.

I'm also a comment.

GUI OBJECTS

Pd has a number of GUI objects you can use to graphically control
your patch and to improve its visual appearance. T hese are:

i VRadio HRadio

ul BITTTTT] et

=+1.

&

HNumber_2 Bang Toggle :2
Lo D 1 e

Mumber -2

N -

Canvas -12

_7n

. -8

HSlider =
[:l =99

68

1. Bang: this GUl object sends a Message named "Bang" every time
it is clicked. "Bang" is a special message, which many Objects
interpret as "do an action right now!". Using the Bang GUI object
is the same as creating a Message box with the word Bang in it.
The Bang GUI object can also be used to receive and display
Bang messages. For more information on this, see the "Counter"
chapter in the Dataflow Tutorial.

2. Toggle: when clicked, the Toggle sends out one of two values--a
zero when it is unchecked and a non-zero number when it is
checked. The non-zero number is 1 by default, however this can
be changed in the "Properties". The Toggle also has an inlet,
which can be used to display whether an incoming number is
zero or not.

3. Number2: this is almost identical to the Number box, however it
has further options in its "Properties", including the ability to
save its current value when the patch is saved (by changing the
"no init" box to "init"). The Number2 has an inlet which can be
used to display incoming numbers as well.

4. Vslider and Hslider: these are Vertical and Horizontal sliders
which send out their current value when moved with the mouse.
The default range of a slider is 0-127, which can be changed in
the "Properties". Both sliders have an inlet which can be used to
display incoming numbers within the range of the slider.

5. Vradio and Hradio: these are Vertical and Horizonal "radio
buttons", which send out their current value when one of the
buttons in them is clicked with the mouse. The default size of a
radio button is 8 buttons, which can be changed in the
"Properties". Both types of radio buttons have an inlet each,
which can be used to display integer (whole) numbers within the
range of the radio buttons.

6. VU: a VU meter displays the average volume level of any audio
signal which is connected to it in Decibels. You may switch the
value scale on the right side on and off in the "Properties".

7. Canvas: a canvas is a rectangular area of pixels, whose size and
color may be changed under its "Properties". Canvases are useful
as backgrounds in your patch to improve its visual appearance
and readability. Canvas also can be used as movable GUI objects
that gather information about their position (x,y) inside a
patcher. Keep in mind that Pd remembers the order in which
anything is placed in the patch, so if you want your canvas to be
behind certain objects, you must either create it first, or you
must Select, Cut and Paste the objects you want in the
foreground so that they appear in front of the canvas.

GUI Object Properties

If you right-click (or Control and click on OS X) on any GUI object, you
will see the "Properties" menu. Here, you can change many aspects of
each GUI object, such as its default values, size in pixels or its color. To
change colors on Linux and Windows you should see a selection of
available colors. On OS X these boxes are empty, so you must click on
the "Compose Color" button. You can also add a label to your GUI
object as well as set the Send and Receive symbols. For more
information on Send and Receive, please see the Send/Receive chapter
of the Patching Strategies tutorial.

69

e n |vsl| Properties

bottom: 0 top: 127

(lin) (noinit:l (steadvonclick)

messages

send-symbol:

receive-symbol:

label
vslider
= offset 0 y offset -8
| Monaco | size [10
colors

® background (O front () label

lC compose color) |o=| I=o||test‘label|

L]]| B
S

(Cancel) (Apply) (OK)

ARRAYS AND GRAPHS

An "array" is a way of graphically saving and manipulating numbers. It
works in an X/Y format, meaning you can ask the table for a value by
sending it a value representing a location on the X (horizontal) axis, and
it will return the value of that position value on the Y axis.

To create an Array, use the "Put" menu. When the new array is
created, you will see two menus where you can change the properties
of the array.

e 600 array eoe canvas
o name array1 Canvas Properties
.~ size 67 X units per pixel
- ‘H"'h._ - " gsave contents Y units per pixel
. ; @ draw as points ggraph an parent
-'-»-'- O polygon X range: from 0 to 67 size [200 | margin o
) bezier curve Y range: from 1 to -1 size 140 | margin 0

[delete me Cancel | m (a)
(View list)(Cancel)(Apply) oK

In the "canvas" properties menu, you can set the "X range" and "Y
range", which represent the length in units of each axis, as well as the
visual size of the array in pixels. In the "array" properties menu, you
can set the "size" of the Array, which represents its length on the X
axis, as well as it's name. Each Array you create must have a unique
name, otherwise you won't be able to read from them.

70

Once an array is created and you are in Play Mode, you can click on the
line inside and draw curves into the array. Arrays can also be filled with
information from datafiles or soundfiles on your computer, as well as
with mathematical functions. We'll discuss arrays in more detail in the
arrays chapter of the Dataflow Tutorial.

Graph

A "graph" is simply a container a graphical container that can hold
several arrays. An array needs a graph to be displayed, so whenever
you create an array from the menu, you will be asked whether you
want to put it into a newly created graph or into an existing graph.

A NOTE ON USING GUI OBJECTS

Pd uses a "vector-based" system for drawing the user interface. T hat
means that every element on the screen is defined by a set of
numbers rather than an image, and every change to these elements
means that your computer must recalculate that part of the screen.
For this reason, having a lot of GUI elements which are constantly
changing is not recommended, as it can cause interruptions in the
audio or slow down the response time of the interface.

In particular, be careful not to use too many of the following:

1. VU meters

2. Graphical bangs, number boxes, sliders or radio buttons with
rapidly changing inputs

3. Arrays which are visible on the screen and which are redrawn

For a way of "hiding" GUI elements when they are not in use, please
see the Subpatches and Abstractions chapters of the Patching
Strategies Tutorial. And for a way of "hiding" the connections between
GUI elements, please see the Send/Receive chapter of the Patching
Strategies T utorial.

71

12 - TROUBLESHOOTING

There are many small things that might not work straight away. Here
are some of the most common issues you might come across.

| don't hear any sound!

First make sure that the box marked "compute audio" is checked in
the main Pd window. Then check to see that you have selected the
right soundcard and drivers for your system, and that the soundcard
is connected and operating. On OS X, make sure the check-boxes next
to your selected soundcard have been checked in "Audio Settings". On
Linux or OS X with Jack, make sure the Jack application is running. On all
platforms, check the audio control panel which comes with your
Operating System and make sure the proper output is enabled there,
and that its playback volume is turned up. Also make sure you are
using the correct sampling rate in Pd to match that of your soundcard.

Help
sample rate: 44100 delay {msec): |50
W input device 1 channels: |2
DIO B compute audio)
eHors peak meters H output device 1 channels: [I

use multiple devices

Cancel Apply oK

Left: the "compute audio” button in the main Pd window. Right: the "Audio
Settings" dialog.

There are clicks, glitches or crackles in the test tone!

More than likely you have chosen a latency that is too fast for your
computer and soundcard to handle. Return to the "Audio Settings"
menu and increase the "delay" time there. On Linux, it is also possible
that other processes running on your computer, or even a badly
configured or slow graphics card, can affect the performance of Pd.
Consider running Pd with the "-rt" flag enabled (Linux only!). This can
be done from the command line, or by adding "-rt" to the "startup
flags" under the "Startup" menu. On Linux or OS X with Jack, it is
possible to set the latency of the Jack application to a greater amount
and reduce glitches (called "xruns" in Jack) there as well.

The test tone sounds distorted!

It is possible that you are playing the sound too loud for your
soundcard. Using the controls of your soundcard to reduce the
playback volume. Also make sure you are using the correct sampling
rate in Pd to match that of your soundcard.

I'm not seeing any audio input!

Perhaps you did not enable sound input. On OS X, make sure the
check-boxes next to your selected soundcard have been checked in
"Audio Settings". Also, some cards with an uneven number of in and
out channels can have problems in Pd. Try setting the number of
channels the same for the input and output. On all platforms, check
the audio control panel which comes with your Operating System and
make sure the proper input is enabled there, and that it's recording
volume is turned up.

72

[B Start H B Stop

[Messages || 4 Status
| I |

Audio MIDI | ALSA

| Readable Clients / Qutput P | Writable Clients / Input Ports |
=1 @] ipure_data 0 :>< +. [pure_data_0
- [@ system - [@ system

| |
l;f DisoDnnect&lll

The QJackCTL application on Linux allows easy routing of audio signals
between applications and the soundcard, or between applications on the
same computer.

l;r gonnectl l X Disconnect

| don't see any MIDI input!

Check to see that your MIDI devices or programs are actually sending
data, and that your Operating System is correctly sending this data to
Pd. On OS X, check to see that you have selected the proper MIDI
devices, and that the "Audio MIDI Setup.app" was running before you
started Pd. On Linux using the default MIDI drivers, check to see that
you selected the proper MIDI device at startup. On Linux with the
ALSA-MIDI drivers, make sure you have properly connected your MIDI
devices or MIDI programs to Pd. Using Jack with the "QJackctl"
application is recommended for this purpose. On Windows, consider
using an application like MIDI Ox/MIDI Yoke Junction to see, analyze and
manage your MIDI connections.

In Forts: |1 Qut Forts: I'I
Cancel | Apply | 0K |
The "MIDI Settings" dialog.

8ene Audio MIDI Setup

I Audio Devices)—MIB!—Bevn:es—li
—Q— Default B: [merm]‘ﬂi m [y ?

' i
View |can Size Configuration Add Device Remove Device Show Info Rescan MIDI

Keystation USB MIDI 1x1 Akai MPD16 (USB) EDIROL PCR
SETTITTI

¥[a]

- sssaseas
ENSESSESSESE

(] o] [a]] [a]

[¥[a]

It is necessary to have the "Audio MIDI Setup" application on OSX running
in to connect MIDI hardware and software ports to Pure Data.

73

B Start H B Stop

[Messages || 4 Status

Audio MIDI | ALSA

128:Pure Data
1:Pure Data Midi-Out 1

"%, 0:Pure Data Midi-in 1

l_f Connect || 3 Disconnec

lge Dis::nnne:tilll (3 Refresh

QJackCTL also allows Linux users to route ALSA MIDI between applications
and hardware MIDI ports.

| get the message "... couldn't create" when | type an object's
name and there's a dashed line around my object!

The reason for this error is that you have asked Pd to create an
object which does not exist. T here can be several reasons for this
error, and the most common one is spelling. Object names in Pd must
be spelled correctly, and they are case sensitive. [Osc~] or [OSC~] will
not create in place of [osc~], for example, nor will [osc] without the
tilde. Sometimes users accidentally combine the creation argument
and the object name, such as [+]] instead of [+ 1. A creation argument
is additional information given to an object and sets the parameters
for it.

New Pd users also often get confused between Objects and Messages,
which are very different types of elements that can be placed in the
patch from the "Put" Menu. You can use the "Find last error" function
under the "Find" menu to track down which objects did not create.
Please see the chapter called "The Interface" for more details.

05C~ , WRONG! RIGHT!
. couldn't create

0sc ——— - _
... couldn't create Insc-| IP_SC_]

| get the message "... couldn't create" when | open a patch and
there's a dashed line around my object!

If you get this error when opening a patch which you're pretty sure
works otherwise (i.e. you've downloaded it from the internet or you
created it in a previous Pd session), then it's likely that there is an
External Object which was available when the patch was created, but is
not available now. You can use the "Find last error" function under the
"Find" menu to track down which objects did not create. Pd will
preserve the location and connections of an object which fails to
create, but it will not function. While most of the Pd Externals are
available in the Pd Extended distribution, some are not, or require
additional configuration of the "Path" and "Startup" settings. Please
see the relevant sections in the "Configuring Pd" chapter. If the
External is not available in Pd Extended, you may need to install it
yourself.

| get the message "error: signal outlet connect to nonsignal inlet
(ignored)" when | open a patch.

74

This error tends to go with the previous error "l get the message ...
couldn't create' when | open a patch..". Often this error means that an
object has failed to create, usually because it uses an External Object
which is not available in the current installation or configuration of Pd.
Pd will preserve the location and connections of an object which fails
to create, but it will not function. You can use the "Find last error"
function under the "Find" menu to track down which objects caused
errors. Pd will treat uncreated objects as Dataflow Objects even if they
were originally Audio Objects, so this error will follow the previous one.
Please see the relevant sections in the "Configuring Pd" chapter for
information about setting the "Path" and "Startup" options. If the
External is not available in Pd Extended, you may need to install it
yourself.

| get the message "error: can't connect signal outlet to control
inlet" and | cannot connect two objects together!

The output of Audio Objects (those with a tilde ~ in their name)
normally cannot be connected to Dataflow Objects (those without a
tilde ~ in their name). So Pd will not allow these connections to be
made. You might want to look at your patch and make sure that you
are using the proper combination of objects.

| get the message"error: DSP loop detected (some tilde objects
not scheduled)" when | click "Audio ON", and the sound is not
working!

In an analog electronic system, you can easily connect the output of a
mixer back to one of the inputs, turn up the channel and get feedback.
This is because everything in an analog system happens pretty much
simultaneously. Computers do not work like this, however, and
therefore you cannot ask a Pd patch to compute results based on it's
own simultaneous output. Pd works in what are called Blocks (i.e. a
group of samples, such as the default number of 64 samples), and all
the Samples in each Block must be computed before they are output.
So a DSP loop occurs when a patch needs information which is
calculated inside the same Block in order to create output. You can use
the "Find last error" function under the "Find" menu to track down
which objects are causing the DSP loop. The easiest way around this
problem is to create at least a one Block delay between the objects
which are connected together. The objects [send~] and [receive~] are
useful for this, because they have a built-in delay of one Block. To
change the number of Samples computer in each Block, you can use
the [block~] object.

error: D5P loop detected (S
error: .printout.text: no s Clossic DSP loop situation! Corrected using matching

error: signal outlet connec] [zend~] and [receive~] pair:
error: DSP loop detected (s
error: DSP loop detected (s
error: DSP loop detected (s
error: DSP loop detected (s == = =
error: DSP loop detected (s sl 127]
error: DSP loop detected (s
error: DSP loop detected (s
error: DSP loop detected (s

| get the message "error: stack overflow" when | connect two
Dataflow Objects together!

75

A "stack overflow" happens when you have asked Pd to compute a
recursive operation, and this operation causes Pd to run out of
memory. Often this is the first step before crashing Pd! A common
example of a recursive operation which could cause this error is the
classic counter, using [float] and [+ 1. A [float] stores a floating point
number on its right inlet, and outputs the result when it receives a
bang. If the output of [float] is connected to the input of [+ 1], and the
output of [+ 1 is connected to the right-most ("cold") inlet of [float],
then a "bang" message sent to the left-most ("hot") [float] will output a
number which increases by one every time that message is sent.

If, however, the output of [+ 1 is connected to the left-most ("hot")
inlet of [float], then sending the message "bang" to the left inlet of
[float] will have a different effect. It will ask [float] and [+ 1] to add
numbers together as fast as the computer will let them do it. Because
Pd will not stop and ask you "are you sure you want to do this?", this
operation will quickly use up all the memory resources which Pd has,
and cause a stack overflow. Please see the sections on "Hot and Cold"
as well as on "Trigger" in the "Dataflow Tutorials" section for more
information on how to avoid stack overflows.

add 1 ard pass
im HOT imlet of [f]!

this will crash FD or report
error: stack owerflow

| get the error message "connecting stream socket: Network is
unreachable" when I start Pd!

If you are using the Linux operating system, and see this message
when you start Pd, it means your machine cannot make a network
connection to itself. You must configure your loopback network
device. In many Linux distributions, you can do this by answering "yes"
when the system configuration tools ask if the machine will be a
"network" (even if it won't).

76

AUDIO TUTORIALS

13. BUILDING A SIMPLE SYNTHESIZER
14. OSCILLATORS

15. FREQUENCY

16. ADDITIVE SYNTHESIS

17. AMPLITUDE MODULATION

18. FREQUENCY MODULATION

19. SQUARE WAVES AND LOGIC

20. GENERATING WAVEFORMS

21. NORMALIZING & DC OFFSET

22. ANTIALIASING

23. FILTERS

24. THE ENVELOPE GENERATOR

25. THE AMPLIFIER

26. CONTROLLING THE SYNTHESIZER
27. BUILDING A 16-STEP SEQUENCER
28. A FOUR STAGE FILTERED ADDITIVE
SYNTHESIZER

77

13 - BUILDING A SIMPLE
SYNTHESIZER

This tutorial uses the concept of simple electronic musical instruments
to introduce some of the core concepts of synthesizing and processing
audio in Pure Data. Those who are already familiar with audio synthesis
should quickly grasp how it works in Pd, while those with no previous
knowledge will be introduced to its theory alongside its practical
application in Pd.

The MiniMoog is one of the most famous analog synthesizers in the world.
We'll take a shot at reproducing some of its basic features in this tutorial.
Source: http://en.wikipedia.org/wiki/lmage:Minimoog.JPG

A synthesizer is one of the most fundamental instruments in electronic
music. Its essential function is to generate a musical tone when it
receives a note from either a keyboard or a sequencer. In analog
electronic music, a synthesizer is built from several modules, or parts:

1. The Oscillators, which generate the tones.

2. The LFO (Low Frequency Oscillator), which usually modulates
either the frequency or gain of the Oscillator(s), or the frequency
of the Filter.

3. The Filter, which emphasizes and/or removes certain
frequencies.

4. The Envelope Generator, which controls changes in frequency
or gain over the duration of the note.

5. The Amplifier, which controls the gain of the synthesizer.

Synthesizers can be capable of playing one note at a time
(monophonic), or several notes at a time, allowing for chords
(polyphonic). The number of simultaneous notes that a synthesizer
can play are called its voices. Originally, the word "Voltage" was used
(i.e. Voltage Controlled Oscillator, Voltage Controlled Filter or Voltage
Controlled Amplifier) because in an analog synthesizer each of these
modules was controlled by electrical voltage from the keyboard,
sequencer or another module. Because we're working in the digital
domain, this voltage is replaced by data in the form of numbers,
messages and streams of digital audio.

78

http://en.wikipedia.org/wiki/Image:Minimoog.JPG

For this tutorial, we will construct a monophonic synthesizer in Pd
based roughly on the design of the famous MiniMoog analog
synthesizer (but much simpler!), and with a sound which is useful for
generating basslines. It will take input from the computer keyboard, a
MIDI keyboard or the sequencer we will build in the the next tutorial.
This synthesizer will be based on two Oscillators to produce the
note, another oscillator (the Low Frequency Oscillator) which will
change the gain of the sound, a Filter which will only allow only certain
frequencies of the sound to pass, an Envelope Generator which will
control the "shape" of the gain of the note, and a final Amplifier which
will be controlled by the Envelope Generator and a volume setting on
the screen.

DOWNLOADS

The patches used in this tutorial can be downloaded from :

http://en.flossmanuals.net/floss/pub/PureData/SimpleSynthesizer/simple_synth.zip

79

http://en.flossmanuals.net/floss/pub/PureData/SimpleSynthesizer/simple_synth.zip

1 4 - OSCILLATORS

Oscillators are the basic signal generators in electronic music. By
combining, filtering or modulating them, almost any imaginable sound
can be created. In Pure Data, audio signals are represented by a
stream of numbers between the values of -1and 1. So the waveform
of each oscillator has been programmed to send out values within this
range.

The name of each oscillator refers to its waveform, which is the shape
of one period (or one Hertz) of that oscillator. Different waveforms
make different sounds.

SINE WAVE OSCILLATOR

The Sine Wave Oscillator makes a pure tone with no harmonics. The
shape of the wave smoothly moves from 0 up to 1, back down
through O to -1and back up to 0. (Remember to turn the DSP on so
that you can hear the audio).

oscl.pd
Slider gends MIDI note values (@-1273.
[mtof] converts MIDI motes to frequency in Hertz.

[osc~] makes a cozine woveform.

zine

Graph output 1

SAWTOOTH WAVE OSCILLATOR

The Sawtooth Wave Oscillator sounds harsher in comparison to the
Sine Wave, and it contains both odd and even harmonics of the
fundamental frequency. T his makes it ideal for filtering and for
synthesizing string sounds. The shape of this wave ramps up sharply
from "0" to "1", then immediately drops back to "0".

oscz.pd
Slider sends MIDI note walues (B-127).

[mtof] converts MIDI notes to frequency in Hertz.

[phosor~] makes a ramping waveform.

sawkooth

[] Groph output 1

SQUARE WAVE OSCILLATOR
80

The Square Wave Oscillator has a "hollow" sound, and contains only
odd harmonics and is useful for synthesizing wind instrument as well as
"heavy" bass sounds. Its shape alternates instantly between 0 and 1.
Since there is no square wave object in Pd, we create a square wave
by checking to see if the output of the Sawtooth Wave object
[phasor~] is greater than 0.5. If it is, the Expression object [expr~]
outputs a 1, otherwise it outputs a zero. This creates the "high" (1) and
"low" (0) states of the square wave, as you can see in the graph.

osc3.pd
Slider zends MIDD note waluss (B-127).
[mtof] conwerts MIDI notes to frequency in Hertz.

[phasor~] makes a ramping woveform.

[expr~] checks if the walue of the romp is greater
than 8.5, If zo, then it outputs 1, otherwize A

squUAre

<] Groph output 1 U U U U L
lal

Line out to soundcard. 1

OTHER WAVEFORMS

Other possible waveforms include a triangle wave as well as many
other mathematical shapes.

SOME COMMOMN WAVESHAPES one period of each waveshape is shown

wavel : Triangle waveZ : Saw=Triangle

wave3d : Saw waved : Sguare

wave5 : Wide Pulse wavet : Narrow Pulse

Adapted from Patrick Sanan’'s Minimoogy emulator for Tom
Erbe's Computer Music Class, UCSD

81

82

1 5 - FREQUENCY

In order to to create sound, each oscillator object takes a numerical
input which represents a frequency in Hertz. T his number determines
the number of times the oscillator will make its waveform during one
second. By using a creation argument (a default setting typed into
the object box when the object is first created), we can set the initial
frequency of an oscillator. And by using an [hslider] (Horizontal Slider),
a Number or a Message, we can send numerical messages to change
the frequency of the oscillator.

Set the initial fregquency with a creation argument.

[phasor- 330]

Change the freguency using messages, sliders
or numberboxes.

phasor~ 330]

AUDIO VS MESSAGE CABLES

In all the examples so far, notice the difference between the cable for
messages, which is thin, and the cable for audio, which is thicker.
Messages can be sent to audio objects (those with a ~ in their name),
but usually audio cannot be sent to message objects (those without a
~ in their name). Attempting to do so will cause Pd to print "error:
can't connect signal outlet to control inlet", and it will not allow the
connection to be made.

<—-humber/messzage cable

[@ <-dataf low cbject {without ~ in name)
«—-humber message cable

[osc:~ <—-oudio object (with ~ in nome)

«——qudio cable

dac~ <——oudio object (with ~ in nome)

MIDI AND FREQUENCY

83

For many musical applications, the MIDI scale is a useful way of
controlling the frequency of an oscillator. One can imagine the MIDI
scale as a piano keyboard with 128 keys on it, and each key has been
marked with a frequency in Hertz which represents that musical note.
Below is a part of the table which makes up the MIDI scale. T hree
octaves are shown. The most important thing to notice is that a note
which is one octave higher than another note (for example, the three A
notes of 110 Hz, 220 Hz and 440 Hz) has a frequency which is twice
that of the lower note.

MIDI MIDI MIDI
Note Frequency Note Frequency Note Frequency

C 36 65.4063913251 48 130.8127826503 60 261.6255653006
Db 37 69.2956577442 49 138.5913154884 61 277.1826309769
D 38 73.4161919794 50 146.8323839587 62 293.6647679174
Eb 39 77.7817459305 51 155.5634918610 63 311.1269837221
E 40 82.4068892282 52 164.8137784564 64 329.6275569129
F 41 87.3070578583 53 174.6141157165 65 349.2282314330
Gb 42 92.4986056779 54 184.9972113558 66 369.9944227116
G 43 97.9988589954 55 195.9977179909 67 391.9954359817
Ab 44 103.8261743950 56 207.6523487900 68 415.3046975799
A 45 110.0000000000 57 220.0000000000 69 440.0000000000
Bb 46 116.5409403795 58 233.0818807590 70 466.1637615181
B 47 123.4708253140 59 246.9416506281 71 493.8833012561

For the complete table, see http://www.phys.unsw.edu.au/jw/notes.html

The object in Pd which turns a MIDI note into a frequency in Hertz is
called [mtof], or MIDI to Frequency. When the MIDI note "69" is sent to
it, for example, it will output the number "440". Looking at our
examples, you can see that each slider has a range of 0-127, and this is
converted by an [mtof] object to a frequency which tells the oscillator
what to do.

Of course, you aren't limited to the notes that Western music schools
teach you are correct. So-called "microtonal" notes are possible as
well. If you hold down the Shift key while using the mouse to change a
Number, decimal numbers are possible, so that you can tell an [osc~]
to play MIDI note number 76.89, for example.

84

http://www.phys.unsw.edu.au/jw/notes.html

16 ADDITIVE SYNTHESIS

Because Pd adds the audio signals that come to the inlet of any audio
object, combining two or more signals into a single waveform is simple.
Adding a sawtooth wave and a sine wave results in the follwing
waveform:

oscd . pd

SANTOOTH WAVE SINE WAYE

Add the two signals together and
multiply by B.5 to prevent clipping.

additive

-1

Note that the two waveforms are sent to an audio multiplication [*~]
object, which halves (multiplies by 0.5) the combined signal to reduce
the total range of values sent to the sound card.

At full volume, each oscillator goes from either 0 or -1 to 1 many times
a second. Because Pd handles numeric values, not waves, you can add
any number of signals. If, however, the combined value of these signals
exceeds the -1to 1range when it reaches the digital-to-analog
converter [dac~] object (that is, the line out to the sound card), clipping
and distortion occur. Any value outside of the accepted range is
treated as a -1or a 1. You can see how two combined signals can go
outside this range on the graph in the patch below.

osch.pd

SANTOOTH WAVE SINE WAYE

Here's what hoppens when wou add the two signols together
aghd don't scale them afterwards. Anybhing outside the rangs
of -1 to 1 {i.e. outside the bounds of the graph below)
will clip and cause distortion when it reaches the
soundcard.

%‘mp“ g w' |l‘ ‘|i!r-"w|iw||' “||'W“'Wrw]rwp

a

[toburite~ additive_clip]

Line out to soundcard. =

85

If you combine two waveforms whose frequencies are very close to
each other, the combined values of the two waves interfere with each
other, causing a periodic modulation of the sound. The frequency of
this modulation is equal to the difference of the two original
frequencies, in Hz. This is known as a "beating frequency," or "phase
interference." The sound of two oscillators slightly de-tuned from each
other is often used for different kinds of electronic music sounds, such
as a "fat" bass effect.

ozch.pd

SINE WAVE SINE WAME

Adding two waveforms with a very small difference in
frequency results in a periodic modulation equal to the
difference between the two in Hz. Output is again scaled by
B.5 to prevent clipping.

Graph output 1
metro 166

Eabwrite~ additive_sine|

additive_sine

Line out to soundcard. a1

86

17 AMPLITUDE MODULATION

Amplitude Modulation Synthesis is a type of sound synthesis where
the gain of one signal is controlled, or modulated, by the gain of
another signal. T he signal whose gain is being modulated is called the
"carrier", and the signal responsible for the modulation is called the
"modulator". In classical Amplitude Modulation, or AM Synthesis, both
the modulator and the carrier are oscillators. However, the carrier can
also be another kind of signal, such as an instrument or vocal input.
Amplitude Modulation using a very low frequency modulator is known
as Tremolo, and the use of one audio sighal to Amplitude Modulate
another audio signal is known as Ring Modulation.

SIMPLE AM SYNTHESIS

Classical AM Synthesis is created by using one oscillator to modulate
the gain of another oscillator. Because we are changing the gain of the
carrier oscillator from 0 (no gain) to 1 (full gain), the modulating
oscillator must output a signal which changes between 0 and 1. This is
most often done at audio frequency rates from 20 Hz and up. In this
case, the sawtooth waveform of a [phasor~] is used as the modulator,
and the sine waveform of an [osc~] is the carrier.

oscT . pd
Slider sends MIDI note walues (B-127).

[mtof] converts MIDI notes to frequency in Hertz.

[osc~] Cosine Wave Oscilator.

[phagor~] ramp up generator (@ - 17.

Multiply Corrier (audio signal from [osc~]) by Modulotor
{output of [phosor-~]), which couses o modulotion of the
gain of the signal.

sroph cutpt : 1ﬂ|l ‘[) Mn “ ' ||I| M
) -.f L'JMJ \Jf le L'J\]ﬂ ﬂ{ J

Line out to soundoard.

TREMOLO

Tremolo is a form of Amplitude Modulation where the gain of an
audio signal is changed at a very slow rate, often at a frequency below
the range of hearing (approximately 20 Hz). This effect is commonly
used to alter the sound of organs or electric guitar.

Since a sine wave is often used for a smooth-sounding tremolo effect,
in this patch we have taken the output of an [osc~], which normally
moves between -1and 1, and scaled it so that it's output is now from 0
to 1. This is known as adding a DC Offset to the signal. For more
discussion on this, please see the chapter on DC Offset.

87

osc?.1.pd
Slider sends MIDI mote values {B-127).

[mtof] conwerts MIDI notes to frequency in Hertz.

[osc~] Cozine Wawe Dscilotor oz Carrier.

Thiz [0ozc~] gives a low frequency output betwsen -1 and 1.

Add 1 to the signol ond multiply by A.5 to get an output
rangs from 8 to 1, which con be uzed to modulote gain of
the Carrier [osc~].

Graph output

ﬁgﬁﬁrit9~ osc_unudjusted|

I
Eﬁbwrite~ osc_adjusted|

[toburite~ tremolo

Line out to soundcard.

osc_unadjusted ozc_odjusted tremolo

]

RING MODULATION

You can also modulate one audio signal with another audio signal (i.e. a
signal which has both positive and negative values). This effect is called
Ring Modulation. If you have a microphone connected to your
computer, try the following patch. The sound of your voice will enter
Pd through the Analog to Digital Converter [adc~] object (the line in
from the soundcard), and be modulated by the sine wave of a
[phasor~] object. Notice that there is no sound when only one audio
signal is present (i.e. when you are not speaking). T his is because one
audio signal multiplied by zero (no audio signal) will always be zero.
And the louder the input signal is, the louder the output will be.

oscd.pd

qdc~ [ade~] iz the line in from the soundcard. Moke sure wou
hawe the correct audio input selected in the PD preferences!

Multiply the audio signal from the soundocord input [adc~]

by output of the [osc~], which couses o modulation of the

gain of the signal. Audio iz only output when both signals
are present at the input.

¥ ingmod

Graph output

=

|
Al /|| f’u N""\f] Lf\f‘w
\
a

[tobwrite~ ringmod

88

The Ring Modulation effect was often used in Science Fiction movies to
create alien voices. You may want to use headphones when running a
microphone into Pd to prevent feedback (the output of the speakers
going back into the microphone and making a howling sound).

89

18 - FREQUENCY MODULATION

While Amplitude Modulation Synthesis changes the gain or volume of
an audio signal, Frequency Modulation Synthesis, or FM Synthesis, is
used to make periodic changes to the frequency of an oscillator. In it's
simplest form, Frequency Modulation uses two oscillators. The first is
the carrier oscillator, which is the one whose frequency will be
changed over time. The second is the modulator oscillator, which will
change the frequency of the carrier.

For the carrier, we only set the base carrier frequency using a Number
box and a MIDI to Frequency [mtof~] object. Because all the
adjustments afterwards will be done by audio signals, it's best to use
the audio version of [mtof], hence the tilde is added to its name.

The modulator is where we do most of the adjustments. T he first
thing we want to do is set the frequency of the modulator, i.e. how
fast it will change the frequency of the carrier. We do this with a
Number box. The second thing we want to set is how much change we
will make in the base frequency of the carrier. So the output of the
modulator [osc~] is multiplied by another Number box using an Audio
Multiplier [*~] object to get the modulation amount.

When this stream of numbers, which is changing with the speed the
modulator and in the range set by the modulation amount, is added to
the carrier frequency, then the carrier frequency will change as well.
This stream of numbers is sent to the second [osc~], where it
produces a complex sound which you can see in the graph.

carrier_frequenc ozCc9 . pd

[mtof~] creates the "corrier" oudio signal which will be
modu lated.

modulation_freguency_in_Hz
Thiz [osc~] iz the "modulator” oscillator. It determines
how quickly the frequency of the carrier oscillator
changes, and by how much.

modu latioh_amount_in_Hz

Multiply the modulating signal by the amount of modulation
we want.

Add the modulator to carrier frequency.

This [osc~] is the "carrier" oscillator, whose frequency is
changed by the "modulator®.

fm

Graph output 1

Line out to soundcard. a1

90

When the amount of modulation is very small (only a few Hz), then a
vibrato, or "vibration" of the carrier frequency will be heard. When the
amount of modulation is greater, then a greater "glissando", or
sweeping of the carrier frequency will be heard. The frequency of the
modulator will determine how quickly these changes heard in the
frequency of the carrier will happen.

Even more complex sounds can be created by using further
modulators to make changes in the frequency of the main modulator
oscillator.

91

19 - SQUARE WAVES AND
LOGIC

Let's look a little more closely at manipulating square waves with Low
Frequency Oscillators and Logic Operations.

PULSE WIDTH MODULATION

We've already seen how a simple mathematical check ("is the value of
this audio ramp greater than 0.5?") can be used to turn a Sawtooth
wave into a Square wave. T his produces a Square Wave which has a
value of "I" half the time, and of "0" the other half of the time. T his is
called the Pulse Width of the Square Wave. Different Pulse Widths
make a different sound. And when we use a Square Wave as an LFO
(Low Frequency Oscillator), different Pulse Widths will have different
effects on the sound it is modulating.

When the Square Wave is "1" half the time and "0" the other half, it is
said that it has a Pulse Width of 50%. To change the Pulse Width, it is
necessary to send a new number to replace the "0.5" in the [expr~]
object. The [expr~] object currently has one Variable, which is written
as $v1, and one constant, "0.5". If the constant is replaced with a
second variable, $v2, then we can use a Number box to change the
Pulse Width. Sending the number "0.25" will result in a Pulse Width of
25%, i.e. the Square Wave will be "1" a quarter of the time, and "0"
three quarters of the time.

osclB.pd
SOUARE WAVE OSCILLATOR
L 1] slider sends HIDI note values (A-127%.

mt.of [mtof] conwerts MIDI nates to frequency in Hertz.

[phosor~] makes @ ramping waveform.

pulse_width_{A-10867

Divide by 188 to get range from B-1
[expr~] checks if the value of the ramp iz greater

1, otherwize 8

pm
Graph output 1 A A

3]

Line out to soundcard. 1

It is also possible to modulate the Pulse Width of the Square Wave
with an LFO, which creates a unique sound. Instead of using a Number
box, the output of a Sine Wave Oscillator is sent to an Absolute audio
[abs~] object, which converts any negative values from the [osc~] into
positive ones, and this stream of numbers is sent to the second inlet
of the [expr~] object.

92

than the zecond input (B-1 rongs). If so, then it outputs

oscll.pd
SOUARE WaYE DSCILLATOR

L 1T] slider sends MIDI rote values (8-127).

[mtof] conwerts MIDI notes to frequency in Hertz.

[phazor~] mokes a ramping woweform.

Divide by 188 to moke frequencies between B-1 possible.

Moke an LFO sine wowe, Output goes from -1 to 1

Convert any negative wvalues from [osc~] to positive ones
{range = B-1).

[expr~] checks if the wolue of the ramp iz greater
than the rumber ot the second input (B-1 range). If so,
then it outputs 1, otherwise A

expr~ $ul = $vE]

ol
[<] Groph output 1 V v
L 5]
Lobwrite~ pumz
Lire out to soundcord. 1

MATH & LOGIC OPERATIONS

Once we are working with Square waves, whose value is either a "0" or
a "I", then we can also use Logic operations to create patterns. Logic
operations take as their inputs either a "0" or a "1" (and nothing in
between!), and compare the two numbers, giving either a "0" or a "I" as
an output.

The AND operation works like this:

@ AND 0
@ AND 1
1 AND @
1 AND 1

oo

In short, this means that the output is "1" only when both inputs are
also "1", otherwise the output is "0". In Pd, this is represented by the
&& operation used in the Expression [expr] or Audio Expression
[expr~] objects, i.e. [expr~ $v1 && $v2].

The OR operation works like this:

9 OR 0
@ OR 1
10

0

oo
NN

R

R @
R 1
In short, this means that the output is "1" only when both inputs are
also "0", otherwise the output is "0". In Pd, this is represented by the ||
operation used in the Expression [expr] or Audio Expression [expr~]
objects, i.e. [expr~ $v1 || $v2].

And the EQUAL operation works like this:

@ EQUAL o
@ EQUAL 1
1 EQUAL @
1 EQUAL 1

Lo ® =

In short, this means that the output is "1" only when both inputs are

the same, otherwise the output is "0". In Pd, this is represented by the
= operation used in the Expression [expr] or Audio Expression [expr~]

objects, i.e. [expr~ $v1 = $v2].

93

In the following patch, different logic operations are used to make
patterns from two Square Wave Oscillators, which are then compared
with a final Square Wave Low Frequency Oscillator. What you will hear
is a pattern of Square Waves which are switched on and off by each
other. The final LFO makes a recognizable rhythm in the sound.

osclz.pd
SOUARE WAVE OSCILLATOR SOUARE WAVE OSCILLATOR

| L I

[expr~ $v1 = 8.5

?xpr~ fl &8 $vé- &8 (the AND operotion) checks if binary wolues are both 1,

aghd outputs a 1 if they are and a B if they are not.

SOUARE WAVE LFO

Try replacing either the && (AND operotion) or the || {OR
operationy with an == (EQUAL operation) to heor the
difference it mokes in the sound and the graph.

[Expr~ $vl = 8.5

fexpr~ $vi || $vz] Il {the OR operotion’ checks if binary walues are both 8,

and outputs g 1 if they ore and a B if they are not.

logic
e N 1] 11
S 111
3]

[tabwrite~ logic

Line out to soundcord. a1

Try replacing any of the && (AND) or || (OR) operations in the [expr~]
objects with an == (EQUAL) operation to hear the difference it makes
in the sound. Or add further Logic operations to the output of the LFO
to make more complex rhythmic patterns. You can also experiment
with changing the Pulse Width as described in the previous patches.

94

20 - GENERATING WAVEFORMS

OUTLINE

This chapter will cover generating sawtooth, triangle and square
waveforms from a combination of sine wave harmonics, graphing
these waveforms to an array and playing this array back as an
oscillator.

INTRODUCTION

Besides using the built-in oscillators such as [osc~] and [phasor~], or
using audio mathematics on the output of [phasor~] to create new
waveforms, it is possible to generate the waveforms of a saw, triangle
or square wave out of a combination of sine waves. When written to
an array, these waveforms can be played back as an oscillator.

This method has a few advantages over using [phasor~] to create
different waveforms. The first advantage is that the resulting
waveforms will be bandlimited. This means the number of harmonics
they produce will be limited, and will cause less aliasing noise. For
more details on aliasing, see the Antialiasing chapter of this FLOSS
Manual.

The second advantage is that these waveforms much more closely
resemble the kinds of waveforms generated by analog electronics. Real
world analog waveforms do not have the completely sharp angles of
their idealized, digital counterparts due to the "rippling" effect inherent
in the resonance of their circuitry. One could subjectively say that
these waveforms are more "warm" and "analog-sounding" than the
ones produced by [phasor~].

T he basic principle we will use here comes from the Fourier theorem.
This theorem states that any complex waveform can be broken down
into a series of simpler sine waves which, when added back together,
can reproduce that waveform. The more sine waves used to represent
the complex wave, the more accurate the reproduction will be. While a
full explanation of the math behind this is outside the scope of this
manual, we will cover the use of this theorem to create three basic
wave forms, the sawtooth, the triangle and the square.

USING SINESUM

In Pd, we can write waveforms to a table using an internal message.
An internal message is a message box which, when clicked, sends the
message inside to the Pd application itself. An example would be the
messages we can use to turn audio processing on and off in Pd:

Turn audio off Turn audio on

H H
pd dsp B pd dap 1

So to create and load a table with a waveform, we must first create
an array from the Put menu. Then we give it the name "waveform" in
the properties:

95

Untitled-1* - /

waveform
canvas een array
Canvas Properties name waveform|
X units per pixel size 100
Y units per pixel ™ save contents
™ graph on paren ® draw as points
X range: from 0 to 99 sizg ") polygon
¥ range: from |1 o -1 | sizg ") bezier curve
(Cancel) [Apply | _ delete me

After that, we create a message, and type the following in it (using the
Return key after the semicolon to start a new line):

waveform sinesum 2051 1

The semicolon indicates that the message is an internal message, and
"waveform" indicates that we are sending information to the array
named "waveform". The word "sinesum" tells the array that we will be
sending it a series of harmonics to graph. The number "2051" tells the
array that we want to graph those harmonics out on 2051 units on the
X range, so the array will be resized from 100 (its default size) to 2051.
Finally, the number "1" indicates that we want to write a single sine
wave with a peak amplitude of 1to the array.

When we click the message, we see a pure sine wave graphed to the
array:

b pure sine wave {which always has only one harmonic) waveform

,
\/

H
Eaveforma sinesum 2651 1[

SAWTOOTH WAVE

The way that sinesum works is that you send it a list of the
amplitudes of the harmonics you wish to graph. A sawtooth wave is
the simplest, as it uses the formula 1/h (where "h" indicates the number
of the harmonic) to compute the amplitudes. T herefore, the amplitude
of the first harmonic is 1/1 = 1, the second is 1/2 = 0.5, the third is 1/3 =
0.33333, etc etc.

Here is a message to compute a very rudimentary sawtooth wave
using only four harmonics:

waveforml sinesum 1 0.5 0.33 0.25

And here it is graphed:

96

& zowtooth wove (using 4 hormonics) — ﬂ
wavef orm
/A

H
Euveformi zinesum 28h1 1 B.6 A.33 8.25[

Because the graph is the product of several sine waves being added
up, the waveform can go outside the normal -1to 1bounds of an audio
signal. The message:

5
waveforml normalize 1

will adjust the range of the signal to fit within the bounds of -1and 1.
Below, we have two examples of sawtooth waves, both normalized to
the range of -1to 1. As can be seen, the more harmonics used to
calculate the waveform, the closer it gets to its idealized mathematical
form:

& sawtooth wave (using 4 harmonics) S
wavef orm

Eaveformi sinesum 2651 1 A.5 B8.33 8.25[

|
H |
waveforml normalize 1 |

wavef orma

& sawtooth wave (using 12 harmonics)

H
woveformZ sinesum 2861 1 B.5 B.333333 B.25 B.2 B.1666EY
0.142567 B.125 B.111111 8.1 B.898989 B.A53333335 A.676923

waveform normalize 1 L

PLAYBACK OF THE GRAPHED WAVEFORMS

To play back the waveforms we have graphed to the arrays, we use

the [tabread4~] object. It takes an audio signal as its input, which reads

along the X axis of the array and outputs as an audio signal the values
that it finds along the Y axis.

We can use [phasor~] to play the array as an oscillator when we scale
its output, which is normally O to 1, to fit the whole length of the array.
Thus, if our array is 2051 places long, then we can use an Audio
Multiplication [*~] object to get an output of 0 to 2051. Increasing the
frequency of the [phasor~] will increase the frequency at which the
waveform in the array is played back from start to finish

97

waveforms.1l.pd

[T] ®IDI values from 8-128

MIDI walues to frequency in Hz
Audio romp from 8 to 1

Hultiply ramp by length of table

zet waveforml
zet waveforme

: abreadd~ waveforml

Select table to play

Play toble gs audio signal

waveout

Graph output
netro 26|

tobwrite~ woveout

Line out to soundcard

The [tabread4~] object can take the name of the array it will read as a
creation argument, or you can use a message such as the following
to change the array it reads from:

set waveform 2

TRIANGLE WAVE

A triangle wave can also be quite simply generated with only a few
harmonics. The shape of a triangle wave is made using only the odd
harmonics (1, 3, 5, 7, etc). Zeros are used for the amplitude of the even
harmonics (2, 4, 6, 8, etc). Then 1is divided by the square of each of
those harmonics (i.e. 1/h?). Finally, the amplitude of every other
harmonic is multiplied by -1 (i.e. the amplitudes of the third, seventh,
ninth, etc harmonics). T he triangle wave takes shape very quickly with
only four harmonics, and as more harmonics are added, the points of
the triangle become sharper.

& triongle wave (uzing 4 harmonics) wavef arm3

H
EuveformS sinesum 2651 1 A -A.1 B[

H
waveform3 normalize 1

H
waveformd sinesum 2851 1 8 -A.111111 & 6.684 6 -0.8204832 A

A.A123457 B -A.AA53260446 A
H
woveformd normalize 1

& triongle wave (using 12 harmonics) wavef ormd

SQUARE WAVE

98

A square wave takes a few more added harmonics to get close to its

ideal mathematical shape. This waveform is created also using only the

odd-numbered harmonics (1, 3, 5, 9..), and zero is also used for the
amplitude of the even harmonics (2, 4, 6, 8..). Then 1is divided by the
number of the harmonic to get its amplitude (i.e. /h). As illustrated
below, a square wave made up of only four harmonics isn't very
square, but when more harmonics are added its shape becomes very

clear.

A squore wave (using 4 hormonics)

H
EuveformS zinesum 2661 1 @ B.5 B[

& square wave (using 12 hormonics)

H
waveformd normalize 1

.111111 B B.699989 B 8.876923

H
waveforms sinesum 2851 1 @ 8.333333 6 6.2 @ 0.142857 A

H
woveformsg normalize 1

wavef ormb

Y

f
ll*.‘ /\,-’ll

wavef armé

|
|
e

99

21 - NORMALIZING & DC OFFSET

In order to optimize a signal for playback, it is often necessary to
make some final adjustments to the gain of the signal to fit it into
certain ranges which maximize the dynamic range, or the difference
between the loudest and the quietest parts of the signal. Two very
important processes are to remove the DC offset in the signal, and to
normalize the signal.

DC offset is when a waveform has unequal amounts of signal in the
positive and negative domains. Normally, we want the signal to have a
middle point at zero to allow a maximum dynamic range. While DC
offset can be useful in the control of some kinds of synthesis (such as
Amplitude Modulation or Frequency Modulation), it is generally
considered undesirable in an audio signal.

wavef orm

+1

An extreme example of DC offset: the waveform is only in the positive
domain.

And to normalize an audio signal means to adjust its gain to peak at
the maximum the sound card allows before clipping (i.e. -1and 1). This
is done to maximize the dynamic range of the signal when it is played
back.

For example, by default the [phasor~] object ramps from 0 to 1. The
middle point (i.e. the DC Offset) is 0.5, and its dynamic range (the
difference between the minimum and maximum values) is half the
biggest possible. In order to get a waveform which uses the full
dynamic range of the soundcard without any DC offset, we need to
multiply its signal by two in order to double the dynamic range. This is
the normalizing part. Since now the DC Offset is 1,Then we remove the
DC offset by subtracting 1 from every sample value, resulting in a
waveform which crosses zero at the midpoint of its ramp from -1to 1.

100

oburite~ waveform_of fzet |

wavef orm_offzet

deoffeetl.pd

1 _ double dynamic range
metro 188
e — remove do offset
o —

Eabwrite~ waveform_corrected

waveform_corrected

+1 +1
5] 4]
-1 -1

Likewise, the same can be done with the square waves we created by
comparing the output of [phasor~] with 0.5 with a simple logic

operation. The resulting 0 or 1 can be normalized to -1and 1 with the
same audio math.

phasor~ 1888

[etro 165]
T ——

deoffeet2.pd

double dynamic ronge

remove dc of fset

- ___'_‘—~—~__
tabwrite~ waveform_offset | lfubwr ite~ waveform_corrected
waveform_of f set waveform_corrected
+1 +1
a a
-1 -1

Since we are using the [expr~] object to create a mathematical
expression for the creation of the square wave anyway, we can include
the normalizing and dc offset correction directly into that expression
like this:

101

husor~ 16RE] deoffset3.pd

expr~ (vl > BEY # 2 - 1

abwrite~ waveform

wavef orm
+1 |

Here, we revisit the sawtooth wave generator, made from inverting the
ramp of [phasor~], comparing it with the original ramp and deriving the
minimum values. The sawtooth waveform which results has a DC
offset of 0.25 and a gain from 0 to 0.5. By subtracting the 0.25 offset
and multiplying by 4, the waveform is DC offset corrected and
normalized.

deoffeetd . pd

[phasor~] maokes o romping waveform (8 - 17,

Irverts to Romp Down gemerctor {1 - @)

compdres ramp up and ramp down and passes the smaller walue.

Graph output Thiz creates a Triongle wave with DC offzet ot A.25 and
T _ gain from (A - B.5). Mow we mneed to adjust the gain and DC
etro 166 offset

"
Eabwrite~ waveform_uncorrected

-~ B.28| corrects DC Offset

- 4| Normalizes

Graph output
etro 16A]

[fuhwrite~ waveforn_corrected

Line out to soundcard.

wavef orm_uncorrected waveform_corrected

-1

The same process can be reduced to a single [expr~] object which
compares the ramps, performs the DC offset correction and
normalizes the resulting waveform.

102

dooffeetb.pd

Some az previous Example, but using expr

husor~ 288
expr~ (mingfvl, 1 - $vily - B.25) * 4|

Triangle

| Graph output

metro 188

taobwrite~ Triangle 1

doc~| Line out to soundcard. X X X
Making a Triangle waveform with phosor

A DC Offset is a constant value, this means it has a frequency of OHz,
because it never changes. A high pass filter can be used to remove
the DC offset of a signal or combination of signals by removing
frequencies below its cutoff frequency. In this case, the [hip~] object
is set to attenuate frequencies at or below 1Hz, resulting in a
waveform centered on zero. It will not, however, normalize the signal
afterward, nor will it prevent clipping (values greater than -1 or 1 which
cannot be reproduced by the soundcard).

Ehusor" Gﬂ Ehasor~ 445]

deoffzeté . pd

Eubwriter- wavef orm_uncorrected

Groph output

lfubwriter- wavef orm_corrected

Line out to soundoard.

) lﬁr/Vquvq%A/ I/ LM/ waveforn correctsd w
| Wy

-1

Many Pd programmers use a [hip~ 1] object just before each channel of
the [dac~] to eliminate any accidental DC offset which may have
accumulated in the audio signals of their patch.

Finally, a limiter can be used to automatically reduce the overall gain
whenever the signal passing through it exceeds a certain level. In a so-
called "lookahead limiter", the audio signal is delayed for a certain
amount of time while the limiter decides if the signal needs to be
reduced and by how much. The [limiter~] object in Pd is useful for this
purpose, while the [z~] object delays the signal being measured long
enough for the [limiter~] to output the amplification factor needed to
keep the audio signal within bounds. Please check the help file for
[limiter~] for a wide range of uses for this object.

103

noizelimiter.pd

Hultiply [moise~] by two to produce o signal which would
clip the soundcord.

[limiter~] outputs an amplification factor to keep the
gignal within range

Delay the original signal by 64 samples.

Multiply delayved original signal by amplification factor.

Graph output

Ifubwrite~ woveform_Limited

dac~| Line out to soundcaord.

waveform_limited

-1

104

22 - ANTIALIASING

OUTLINE

This chapter describes different techniques for avoiding aliasing
artifacts in digital oscillators in Pd, including the combination of
oversampling plus low pass filteringas well as the use of bandlimited
oscillators.

INTRODUCTION: WHAT IS ALIASING?

As discussed in the What is Digital Audio chapter, aliasing occurs
when frequencies are generated in a Pd patch which are above the
Nyquist frequency, or half the current audio sampling rate. Thus,
for a computer replaying audio at the CD audio rate of 44,100 Hz per
second, the Nyquist frequency is 22,050 Hz. Trying to reproduce any
frequency higher than this creates unwanted extra frequencies in the
sound. Subjectively, these aliasing noises are what can cause oscillators
to sound "cheap", "cold" or "digital" in comparison with "warm" or
"analog" antialiased ones.

All waveforms except a sine wave produce harmonics which are
multiples of the fundamental frequency. Even if we never create an
oscillator with a frequency higher than 22,050 Hz, the harmonics of any
oscillator besides an [osc~] could easily go over this frequency,
resulting in aliasing. Aliasing noise is almost impossible to remove once
it occurs, so if we do not want to hear these inharmonic sounds, we
must do something to prevent them.

THE PROBLEM: AN ALIASING OSCILLATOR

Looking at some of the oscillators covered earlier, we can see that
none of them have any sort of antialiasing built into them. The
following square wave, although normalized and DC offset-corrected
to a full range of -1to 1, produces many aliased frequencies which can
be heard when the frequency is changed. These are heard as
inharmonic sounds which "reflect" down from the Nyquist frequency as
the frequency of the oscillator is increased. These aliasing noises are
sometimes called "birdies".

ontialios.1.pd

This [expr~] generates o square wave with values of -1 and

I_EXDT" (vl = B.E) * 2 - 1| 1. As an audio signal, it is normalized but not antialiosed.

OVERSAMPLING AND FILTERING

105

One technique of antialiasing filtering involves applying a low pass
filter. Because no filter is perfect, every filter has a slope from the
cutoff frequency, which is the frequency at which it starts to affect
the sound, to the point where the frequencies are completely
removed. In order to remove the high frequency harmonics which
cause aliasing, we would need a filter which has sufficient attenuation
at those frequencies to reduce them below the level of hearing.

In order to create such a filter, we need to increase the sampling rate
to give us the frequency range required. This process is called
oversampling, and in Pd this can be done with the object [block~].
When given the creation arguments "1024 116", [block~] will oversample
the audio which comes into a subpatch by a factor of 16 (i.e. up to
705.6 KHz if the current sampling rate is 44.1 KHz), in chunks of 1024
samples at a time. T he signal can then be digitally filtered, removing
the higher harmonics which could cause aliasing, and when it leaves the
subpatch it will be downsampled back to the original sampling rate.

rek/De

ghtigliags.2.pd

antialiasing - /

[inlet]s to send messoges to them and [outlet~]s to send
the oudio out of the oversampled subpatch. The output of
pre (vl = 8.5) * 2 - 1] {his subpatch will be antialicsed.

phazor-~ Put. all oudio objects to be filtered in this section, using

[rpole~ B.93533]

e el These objects make a low-pass filter with cutoff at 1BkHz
EDDlB” B.06550 8.855921 {mzsuning 44188 Hz somple rate.)

1
[cpole~ B.98559 —8.B5592]

Sets the block size to 16824 ond oversamples by a factor of
16

block~ 1624 1 16

The antialiasing filter shown above is taken from the example

J07.oversampling.pd in the 03.audio.examples folder found in the Pd

Documentation Browser in the application.

Because this is a very CPU intensive process, it is wise to only include
the oscillators you wish to antialias in this subpatch, and to control
them via the [inlet]s of the subpatch!

BANDLIMITED WAVEFORMS

106

Another solution to this problem is to use waveforms which produce
fewer harmonics for the oscillators. These waveforms are said to be
bandlimited, because the number of harmonics in them have been
limited by the shape of the wave. Bandlimited waveforms are usually
the product of a combination of sine waveforms which add together
to produce a certain shape. An example of this is shown below.

antialios.3.pd

loadbang

:
zawl singsum 26851 1 A.5 B.33 B.25 A.2 A.16 A.14 A.12 8.11[

|
0wl

[phasor~] ramps from & to 1

array en06 canvas
name Tsawl | Canvas Properties
size 2051 g | X units per pixel
™ save contents Y units per pixel
. draw as points ’zgraph on parent
@ polygon X range: from |0 Tto (2050 | size |80
bezier curve Y range: from [Tto /1 | size (B0

_ delete me (Cancel | (Apply |

(Viewlist) (Cancel) (Apply) o E

Example taken from audio design coursework by Andy Farnell.

The message

sawl sinesum 2051 1 0.5 0.33 0.25 0.2 0.16 0.14 0.12 0.11

is an internal message which tells Pd to fill up 2051 places of the table
"saw 1" with the product of a series of nine sinewaves. You can see the
table, "saw 1" on the left, with the bandlimited waveform, and it's
properties are shown below. To play the table back, the ramp of a
[phasor~] is multiplied by 2048 and is sent to a [tabread4~] object,
which uses the incoming audio as the index to play back table "saw 1".
The audio which comes out must be scaled slightly because, as can be
seen from the table, the waveform has extremes outside the normal -1
to 1bounds.

It should be noted that no technique can completely eliminate aliasing
noise, as eventually any oscillator which is not a pure sinewave will
eventually produce harmonics above the Nyquist frequency when its
frequency is increased. The above oscillator is no exception, and
sounds best when used as a bass synthesizer. For more information on
bandlimited oscillators, see the Generating Waveforms chapter in
this FLOSS Manual.

Scale to length of toble (2848 ploces).

-margin o

-margin o

OK

107

23 - FILTERS

A filter works by allowing some frequencies through, while reducing or
eliminating others. There are three different kinds of basic filters to
work with in Pd: the Low Pass Filter, the High Pass Filter and the Band
Pass Filter, as well as a Voltage Controlled Filter which can be
controlled using some of the LFO techniques we have already looked
at

LOW PASS FILTER

A filter which allows only low frequencies to pass is called a Low Pass
Filter. The object for this kind of filter in Pd is [lop~]. It has one inlet
for audio and one inlet for a number which determines the frequency
in Hertz where the filter starts to reduce the audio (the Cutoff
Frequency). Frequencies above the Cutoff Frequency are reduced or
eliminated.

Graphical depiction of a Low Pass Filter. filtl.pd

lop_display

Aooytoff frequency

Yolume of sound possed

B Frequency in Hz 268, 8

noise~ Generate white noise.

Slider sends MIDI rote walues (B-127).

[lop~] allows frequencies below the cutoff freguency to
pass and reduces or eliminates frequencies abowe it.

Lop

[<] Groph output 1

feabmrite~ Lop

Lire out to soundcord. 1

HIGH PASS FILTER

While one which allows only high frequencies is called a High Pass
Filter. The object for this kind of filter in Pd is [hip~]. It has one inlet
for audio and one inlet for the the Cutoff Frequency. Frequencies
below the Cutoff Frequency are reduced or eliminated.

108

Grophical depiction of a High Pass Filter. filtz.pd

hip_dizplay
cutoff frequency s 1
Volume of sound passed
a
a Frequency in Hz 2\, a

ioise~ Generate white noize.

Slider gends MIDI note walues (B-127).

[hip~] allows frequencies above the cutoff freguency to
poss and reduces or eliminates frequencies below it.

hip

Graph output 1

BAND PASS FILTER

A filter which allows some range of frequencies between highest and
lowest is called a Band Pass Filter. The object for this kind of filter in
Pd is [bp~]. It has one inlet for audio, a second inlet for the center
frequency that it will allow to pass and a third inlet for the Resonance,
which determines the width of the range of frequencies it allows to
pass (the Pass Band). The Center Frequency will pass unchanged, and
frequencies higher or lower than that will be reduced or eliminated.
How much they will be eliminated depends on the Resonance. Useful
numbers for the Resonance tend to be between 0 and 10.

109

Graphical depiction of a Band Pass Filter. filtd.pd

bp_display

qutoff frequency’ +

Volume of sound passed

4] Frequency in Hz 268, A

noise~ Generate white noise.

Slider sends MIDI note wolues (A-127).

The third inlet controls the Resonance, i.e. how far above
or below the center frequency the filter still allows sound
to pass. Generally this number is between B-18.

[bp~] passes the center frequency unchanged, and reduces or
eliminates frequencies above and below it.

bp

Graph output 1

The three filters we've seen so far all take numbers to control their
Cutoff or Center Frequencies as well as their Resonance (in the case of
[bp~]. However, there are times when you might want to control the
frequency of a filter with an audio signal. A typical situation is when a
filter is swept by an LFO.

VOLTAGE CONTROLLED FILTER

[vcf~] (Voltage Controlled Filter) is a filter whose Center Frequency and
Resonance can be controlled by audio signals. The way this is done is
quite similar to the tutorial on Frequency Modulation. A Slider sends a
MIDI note to a MIDI to Frequency audio [mtof~] object to provide the
Center Frequency to be swept, or modulated. Then we have an LFO
[osc~] object, whose output is multiplied by the amount in Hertz which
we want to sweep the filter frequency. This stream of numbers is
added to the Center Frequency coming from the [mtof~] object and
sent to the Frequency inlet of the [vcf~]

10

hoise~ Generate white noize.

center_freguenc

filtd.pd

[mtof~] creates the center frequency for [vof~] to be
modulated.

modulat ioh_frequency_in_Hz

This [osc~] is the "modulator" oscillator. It determines

how quickly the cemter frequency of the [vof~] changes, and
by how much.

modu Lot ion_amount _in_Hz

Multiply the modulating sigral by the amount of modulation
we want.

4+~ Add the modulotor to center frequency of [wof~].

EE::::::] The third inlet controls the Resononce, i.e. how far above
or below the center frequency the filter still allows sound
to pass. Generally this number iz between 8-18.

[wcf~] pazzes the center frequency unchonged, ond reduces
or eliminates frequencies above ond below it. The center
frequency iz determined by an audio signal. You can hear
the center frequency changed by the "modulotor" oscillotor.

wef

Graph output 1

-1

m

24 - THE ENVELOPE
GENERATOR

The Envelope of a sound refers to changes in either its pitch or gain
over the duration of a note. A gain envelope is the most common,
because it is used to synthesize the dynamics of acoustic instruments.
For example, a piano has a very sharp or percussive attack, with the
note becoming loud quite quickly before gradually fading out. A violin,
on the other hand, takes a longer time for the sound to build up as
the strings begin to vibrate, and then fades away relatively quickly. A
gain envelope has five main characteristics:

1. Attack: the length of time it takes the note to reach it's loudest
point.

2. Decay: the length of time after the Attack it takes the note to
reach it's Sustain volume.

3. Sustain: the volume of the note which is held until the note is
Released.

4. Release: the length of time it takes the note to fade to zero
after the key on the keyboard has been released.

This is commonly abbreviated as ADSR, and can be drawn graphically
like this, where the horizontal axis represents time and the vertical axis
represents volume:

adsr

Attack Decay

Sustain Release

mEpe HHEP®E W

TIME

An additional parameter which comes from the MIDI world is called
Velocity, and it refers to how hard the key of the keyboard has been
pressed. In our synthesizer, Velocity will refer to the volume of the
note at its loudest point, i.e the peak of the Attack.

SIMPLE ENVELOPE GENERATOR USING
[LINE]

12

The simplest Envelope Generator can be made using the object [line].
This object takes two numbers, a target and a time (in milliseconds),
and interpolates numbers to that target in the time given. If it is sent a
single number, the time of the ramp is assumed to be zero, and [line]
"jumps" to that value. It remembers that last value that it reached, so
the next pair of numbers will start a new ramp from the current value.
If a new pair of numbers is sent to [line] while it is still making a ramp,
it will immediately stop that ramp and start the new one.

egl.pd

Go to 222 in 1888ns (= 1 second)

To make a simple up/down, or Attack/Decay envelope, we need to
send two different messages to [line]. The first will tell it to go to "1"in
a certain amount of time, the second will tell it to go back to "0" in a
certain amount of time. These two messages can be triggered with a
single "bang" message, as long as we delay the triggering of the second
message long enough for the first ramp to finish, using the [delay]
object.

eq2.pd
Grophical representation of o simple upAdown, or
Attack Decoy (AD) ehvelope.

ad_enve lope

Attack Decay

v axis = value

4 ¥ axiz = time a4

[deloy] will wait 1888ms after the input "bong”,

while the first ramp is being executed, and then

it will send a "bang" to trigger the second ramp.

[[taee] | Go to 1 in Léeens

Go to @ in 1888ms

COMPLEX ENVELOPE GENERATOR USING
[VLINE~]

A more complex envelope can be created with the [vline~] object. T his
object can be programmed to make sequences of ramps in order, and
with a delay in between them. For example, the message "10 1000, 0 0
1000, 11000 3000" would tell [vline~] to do the following:

13

Ramp up to "10" in 1000ms, then jump to "0" in Oms after waiting
1000ms (from the start of the ramp), and finally ramp back up to "1" in
1000ms after waiting 3000ms (from start of the ramp).

egd.pd

1 1BBBE Ramp up to 1 in 1086ms
E 1888 Ramp down to 8 in 1806ms

Jump down Lo 8 in Bms

Ramp up to 18 in 1888ms, jump down to B in Bms after
waiting 1888ms, ramp up again to 1 in 1888ms ofter waiting

another 3666ms .

[lo 1800, B B 1080, 1 1660 5000

gtop "stop" message freezes wline~ at its current walue.

vline~

zhapshot- [emopshot~] tells us the walue of the oudio signal
every time it receives a "bang".

[¥line~] and [znopshot] are oudio objects, so make
sure “compute audio" is turned on!

Because it accepts more complex messages, [vline~] is useful for the
traditional Attack/Decay/Sustain/Release envelope. Also, [vline~] is an
audio object rather than a numeric object, which means it is more
suitable for audio multiplication, as we will see in the next section.

eqd.pd
Grophical representation of a complex, or
Attack/Decay/Sustoin/Re lease (ADSR) envelope.

adsy_envelope

Attack Decay Sustain Release

vy axis = value

8 ¥ axiz = time 4B8Ens

[1068, 0.7 1060 1606, 6 1060 5006 [

Ramp up to 18 in 1888ms, ramp down to B.7 in 1880ms after
waiting 1888ms, romp down to A in 1880ms after woiting
another 3806mns.

vline~

Moke sure "compute oudio" iz turned on!

ENVELOPES STORED IN ARRAYS

na

For an envelope with an arbitrary curve, a table is the most useful way
to go. First we must create a table, by using the Put menu to place and
Array in the patch. When we do that, we will see two Properties dialogs
appear. In one, we name the Array "envelope" and set a length of 100
units. In the second we can change the graphical appearance and the
range of the X and Y axes. In this case, set the X range to "0 to 99",
and the Y range to "1 to 0". The size can be anything that is
convenient, and is measured in pixels. You can get these Properties
dialogs back by Right-clicking or CT L+clicking on the Array. These
dialogs appear under the screenshot below.

To read a table, we can use the object [tabread]. The [tabread] object
takes a creation argument of the name of the table it is supposed to
read. In order to draw inside the table, you should click on the line and
drag with the mouse. A value sent to the inlet of [tabread] represents
a point on the X axis, and the output is the corresponding value on the
Y axis.

egh.pd
Graphical table used to create an enwvelope. Click
on the line inside the table with the mouse and hold

down to drow a new line.

enve lope

a

3] ¥ 99

This table goes from B-99 on the ¥ gxis and B-1 on the Y
axiz. Right-click or CTL+click to see/set the Properties.

Sending a value on the X oxis to [tobread] gives
a walue on the ¥ axis.

[tabread enve lope

This [tabread] reads the toble called "envelope".

[a.602)
e n array
name envelope

size 100

LN
ol
wl,

@ save contents

draw as points

@ polygon canvas
) bezier curve Canvas Properties
[delete me s per pixel
— ks per pixel

|__. View list .._I |_.. Cancel .__| |_.. Apply .__| |_.. OK |
) - - S Egraph on parent

X range: from |0 to 99 size 300

¥ range: from 1 to O size 100

|__" Cancel .'__I |__\- Apply "__|

15

If we want to read a table continuously from start to finish, we can use
[line] to send a continuous stream of numbers to [tabread], starting
with the first position on the X axis of the table ("0"), and ending with
the last position ("99"). Remember that [line] takes a pair of numbers,
the target ("99", the end of the table) and the time it takes to get
there (4000 milliseconds, or 4 seconds). When we want to start over
from the beginning of the table, we send a single number, "0", and the
[line] object jumps back to it.

In the example below, [tabread] gets values between 0-1from the table
"pitch_envelope". We multiply these numbers by 127 with a [*]
(Multiplication) object, to get a MIDI note value between 0-127. After
that, we use a [mtof] (MIDI to Frequency) object to convert the MIDI
notes into a frequency in Hertz. The frequency is sent to a sine wave
oscillator [osc~] object, which sends audio to the [dac~] (Digital to
Analog Converter), Pd's connection to the soundcard.

eqt.pd
Graphical toble uzed to create on envelope. Click
on the ling inside the table with the mouse and hold
down to drow a new line.

pitch_enve lope

a ¥ a9

This table goes from B-99 on the B axis and B-1 on the Y

axiz. Right-click or CTL+click to szeedset the Properties.

99 4ARA| Go to position 99 on the toble in 4806ms (4 seconds).

B [Reset [line] to B, the stort of the table.

Ling]
[[ling] sends a stream of numbers from B-99 to reod the
table from start to finish.

abread pitch_envelope|

Thiz [tabread] reads the table called "pitch_envelope”.
Values output are from 8-1.

F 127 Values from table "pitch_envelope" are multiplied by 127 to
convert them to MIDD notes.

The MIDI notes are converted to a frequency in Hertz.

[osc~] outputs a tone which iz the number of the frequency
sent to it.

16}

25 - THE AMPLIFIER

The next step in our synthesizer is to create the audio amplifier, which
will change the gain of the signal. Whatever method you use to create
your envelope, if you are using it to control the amplitude of a signal
you will want to make sure the output is an audio signal as well. This is
done to avoid clicks in the audio.

USING A SLIDER

In the two examples below, an audio signal from the Sine Wave
Oscillator [osc~] is being changed manually, via a slider, in the same
way as the Volume knob on your home stereo might work. In the first
example, the numbers from the slider, which go from 0-127, are
divided by 127 with a Division [/] object, to get them within the range of
0-1. These numbers are sent directly to the right inlet of the Audio
Multiplication [*~] object, so that every audio sample coming from the
[osc~] is multiplied by a number between 0-1. T his will reduce the
volume of each sample. "0" means no sound, "1" means full volume.
However, these changes in volume will have clicks in them, as each
number from the slider is sent to the [*~].

anpl .pd

Diwide by 127 to get a value between B-1.

Sending rumbers to the [#~] object without using
[line~] to smooth them out will result in clicks!

USING [LINE~], [VLINE~] AND
[TABREAD4~]

In the second example, the numbers from the slider are sent to an
Audio Ramp object [line~], after being packed together into a message
by [pack] with the number 50. What this message, which might appear
as "0.76 50" for example, tells line is that it should ramp to the next
number in 50 milliseconds. This is known as Interpolation, which is to
smoothly transition from one value to another by providing (or
guessing) all the values in between. Since the [line~] object is an audio
object, the signal it sends out should cleanly control the volume of the
audio signal.

17

osc~ 448

anpz .pd
I Slider goes from B-127
P 127 Divide by 127 to get a valus betwesn 8-1.
Euck B 5@ [pack] puts together two numbers into one

mezzage. Here the torget for [line~] comes

from the zlider, and the "interpolaotion time"
iz a conztant SEms.

Use [lire~] to generate an audio ramp, which will
smooth out the changs in wolume ond eliminote clicks.

Multiply the oudio =ignal from the [osc~]
by the ramp coming from [line~].

If you use [line] to make your envelope, you can make an audio signal
by using the audio object [line~] instead.

osc~ 448 amp3.pd

Wait 1888ms after the input "bang",
then output a "bang" .

[1aee] | 6o te L in loeens

Go to 8 in 1688ms

Use [line~] to generate an audio ramp.

Multiply the oudio signal from the [osc~]
by the ramp coming from [line~].

[vline~] outputs an audio signal already.

ozc~ 448 aniprd . prd

* Attock = 1088ms (1 16685
¥ Decoy = 10@8m: ofter pause of 1088ms (8.7 1668 1068

* Sustain = 1888ms after pouse of 2868ms (think of 2600 =
two previous romps added together!)

* Relense = 10@Ams after pouse of 3606ms (0 1009 3088%
{think of 3868 = two previous ramps + sustain added
together!)

[L 1668, 0.7 1668 1600, O 1688 3P66[

Use [vline~] to generate an audio ramp.

Multiply the oudio signal from the [osc~]
by the ramp coming from [vline~].

And to read a table and get an audio signal out, the [tabread4~] object
is useful. Note that [tabread4~] responds better when controlled with
an audio signal as well, so [line~] is used instead of [line].

N8

qudio_enve lope

anps . pd

osc~ 448

99 406 Go to position 99 on the toble in 4888ms {4 seconds).

Rezet [line] to B, the start of the toble.

Uze [line~] to gererate an audio ramp
that tells [tobreadd~] to read accross the
Eﬁbread4~ audio_envelopel ¥ axiz of the toble "oudio_enwelope".

HMultiply the oudio signal from the [osc~]
by the envelope coming from [tobreadd~].

19

2 6 - CONTROLLING THE
SYNTHESIZER

Reviewing what we've covered in this tutorial, we can see that all the
building blocks of a simple synthesizer are present.

We have various Oscillators to generate the tones. Then there are Low
Frequency Oscillators, which provide the possibility to modulate either
the frequency or gain of the Oscillator(s), or the frequency of a Filter.
There are also different types of Filters, which emphasizes and/or
removes certain frequencies. Envelope Generators control changes in
frequency or gain over time, and Amplifiers control the final gain of
the synthesizer.

The way each of these elements are put together gives the final
definition to the sound and functionality of your synthesizer. And there
are an infinite number of was to do this! In the following examples,
we'll look at some simple ways to combine the different elements of a
basic synthesizer with ways of controlling it, either from the computer
keyboard, a MIDI keyboard or a 16 step sequencer which we will build.

INPUT FROM THE COMPUTER KEYBOARD

To get a very crude input from the computer keyboard, we can use
the objects [key] and [keyup]. Each key on the computer keyboard has
what is called an ASCIl value, which is a number used to represent that
key. [key] outputs this number when a key is pressed, and [keyup]
sends this number when a key is released. Like MIDI Notes, these
numbers are within the range of 0 to 127. However, the layout of these
ASCIl values on the computer keyboard is far from musical! But they
are a good way to get some immediate input into a patch, and later
on [key] and [keyup] can used to trigger different elements of a Pd
patch besides musical notes.

In the following patch, the ASCIl values of the computer keyboard are
treated as MIDI notes and control the frequency and volume of a Sine
Wave Oscillator. We will use [line~] as a simple Attack/Decay Envelope
Generator here, to make the envelope of the note smooth and to
avoid clicks.

When a key is pressed, [key] sends the ASCIl value, which becomes a
frequency through [mtof] and controls the [osc~]. At the same time,
when the key is pressed, the output of [key] is converted to a "bang",
which triggers the message "1" to be sent to [pack]. In [pack], this "1" is
packed together with "50" to make a message which says "150". [line~]
interprets the message "0 50" to mean "ramp to 1in 50 milliseconds".
This will smoothly ramp the audio signal from the [osc~] up to full
volume.

When a key is released, then [keyup] will send a number out as well. We
will convert this to a "bang", which sends the message "0" to [pack].
[pack] then makes the message "0 50" and sends it to [line~], and
[line~] will ramp back down to 0 in 50 milliseconds.

120

ctll.pd

= kewup [kev] inputs the ASCIT code for each key on the computer
kevboard that has been pressed. [keyup] sends the ASCIL

code of a key when it iz released.

mtof Convert the ASCII code to a frequency in Hz and zend it to

the [osc~].

B8] obiect.

Send a "bang" meszoge wheh a key iz released, which

[pock B BA] object.

This section is our Attack/Decaoy Envelope Generotor.

the Number box.

zignal from the [osc~].

INPUT FROM A MIDI KEYBOARD

This task is made simpler (and more musical!) with the addition of a
MIDI keyboard. Make sure you have selected the proper MIDI input
device in your Preferences (see Configuring Pd for more details). The
[notein] object receives the MIDI Note and Velocity information from
the MIDI keyboard. Because usually you will want to listen to the first
MIDI keyboard you plug in, we give [notein] a creation argument of "1",
thus [notein 1] will receive MIDI Notes on MIDI Channel 1. The MIDI Note
played will come out the left outlet, and the Velocity (how hard the key
is pressed) will come out the right outlet.

The MIDI Note we send to an [mtof], which converts it to a frequency
and sends it to the [osc~]. The Velocity we divide by 127 to get a value
between 0 and 1. T his value gets [packled together with 50, and sent
to the [line~] object, which we will use again as an Attack Decay
Envelope Generator. [line~] makes a 50 millisecond audio ramp, either
to "0" when the MIDI key is released and the Velocity is "0", or to a
value between 0 and 1 when the MIDI key is pressed, depending on how
hard it has been pressed. [line~] sends an audio ramp to the Audio
Multiplier [*~], which smoothly changes the volume of the audio signal
form the [osc~].

Send a "bang" meszoge when a key is pressed, which trigoers
the meszage "1 BB to the [line~] object wio the [pock @

triggers the messoge "B BB" to the [line~] object wia the

[line~] needz two numbers, o torget and a time. The torget
iz either the "8" or "1" from above, and the interpolation
time iz set here to B8 milliseconds. It can be changed with

The ramp from [line~] smoothly chonges the gain of the

121

notein 1

mtof

O3C~

122

ctlz.pd

[notein] receives MIDI notes (left outlet) and Yelocity
{right outlet) from o MIDI keyvboord. Use Preferences to set
the proper MIDI dewices to receive.

The MIDI Mote output gets conwverted to o frequency in Hertz
which controls the [ozc~].

Divide the Velocity output (B-127) by 127 to get a new,
scaled value between B and 1

This section iz our Atback/Decay Envelope Generator.
[line~] needz two numbers, o torget ond o time. The torget
iz the scaled Velocity from above, and the interpolation
time iz set here to 58 milliseconds. [t can be chonged with
the Mumber box.

Finally, multiply the oudio from the oscillator by the
scaled Velocity number, as it is interpolaoted by the
[Lline~].

27 BUILDING A 16-STEP
SEQUENCER

Besides using a keyboard, another way to control a synthesizer is with
a Sequencer, which stores MIDI Notes and plays them back in
sequence, and at a speed which can be changed from faster to slower.

A COUNTER

Before we can build the note-storing section of the Sequencer,
however, we have to learn a little bit about dataflow in Pd in order to
make a counter. T his counter will count from 0 to 15, and each number
it sends out will trigger one of the steps in a 16-Step Sequencer.

The patch below shows a counter, built with basic Pd objects.

ctl3.pd
[:] The [toggle] turns our counter on and off.
(388
ﬁetra- [metra] sends the messoge "bang" at regular intervals,

which are a time set in millizeconds on the right. This
metro will send "bong" every 380 milliseconds.

[float] iz an object which stores a Floating Point Number
ot it's right hand {"cold") side, and outputs it when it
gets the messoge "bang" on the Left hond (“hot"}) side.
Every time this [float] gets a bang, it sends the number
stored on the left ond gets a new number from [+ 1], which
iz ore greater, to store for the next "bang". [float] is
often abbreviated as [f].

The numbers coming from our counter will increase
endlessly. We use o [mod] object to wrap these numbers
around from @ to 15

[metro] is used to send the message "bang" every so many
milliseconds. This interval is set by a Number sent to the right inlet.
The [metro] is turned on and off by sending either a "1" or a "0" to the
left inlet. We use the [toggle] object to send these messages.

HOT AND COLD

Below the [metro] is a construction which takes advantage of one of
the most fundamental lessons in learning about dataflow in Pd: "hot"
and "cold" inlets. The left-most inlet of almost any non-audio Pd
object is called the "hot" inlet. Any input to the hot inlet of an object
gives immediate output. Any other inlet to the right of the hot inlet is
called a "cold" inlet. Input to a cold inlet is stored in the object, waiting
for input on the hot side. In this case, when a new number comes to
the hot side of the [*], it is multiplied by the number stored in the cold
side. The information in the cold inlets is kept there until new
information received at that inlet changes it, or until the object is re-
created (by retyping its name, cutting/pasting the object or by
reopening the patch).

123

WHY DOES 2 * 3 = 2 ¢

The left-most inlet is "hot".
All the rest are "cold”.

<-"Hot" input. Changes
take effect immediately.

<-"Cold" input. Changes
are stored until input
arrives on the "hot" side.

<-Qutput only comes when input
arrives on the "hot" side.

2 * 3 DOES = 6 |

ang <=-Input is retriggered to
the "hot"” side using the
message "bang”.

[;] <-Qutput comes when any input
arrives on the "hot" side,
so our "bang" message causes
the [*] object to do the
calculation.

So in our counter, there is an object called [float], which stores and
outputs a Floating Point Number. Floating Point Number is another
name for a number with a decimal place, usually called simply a "float".
The opposite of a "float" is an Integer, or "int", which has no decimal
place. All numbers in Pd are assumed to be floats. When [float]
receives a "bang" to its left ("hot") inlet, it outputs the float which is
stored on it's right ("cold") inlet. When this [float] outputs a number, it
is also sent to the inlet of a [+ 1] object, where 1is added to that
number and sent back to the "cold" inlet of [float] to wait for the next
"bang". So, every time this construction receives a "bang", the number
it will output will be T more than before.

For more information on "hot" and "cold", as well as other descriptions
of how to get used to how dataflow works in Pd, please see the
Dataflow Tutorials in this FLOSS Manual.

The numbers sent from our counter will increase until the number
16777216. That means your Sequencer will run for quite a few days. In
order to keep them within the bounds of our 16-Step Sequencer, we
need a way to "wrap" these numbers around so that they start over
when the counter reaches 16, and every other division of 16 that comes
later on. [mod] is the object which does this. T echnically, [mod] means
"modulo”, and it outputs the remainder of a division operation using
the number in the creation argument. Thus "16" becomes "0", "17"
becomes "1", "18" becomes "2" and so on. If you want to make an
truely indefinite from-to-counter connect the [+ 1] output to the
modulo and modulo's output to the cold inlet of the [float] object.

STORING AND RETRIEVING MIDI NOTE
VALUES

124

In the next patch, we see how to store and recall a number from an
[hslider] using the [float] object as well. Here, [float] has been
abbreviated to the commonly used [f]. At the bottom of our counter
construction from the previous example, we have replace the Number
with an [hradio] array of buttons, so that we can see which step of our
Sequencer we are at. (Right or ControlClick on the [hradio] to see its
properties, and type "16" in the "number" field to set the size)

Below the counter we have the object [select]. T his object checks the
input on its left inlet against either the input on the right inlet, or in this
case against a series of creation arguments. When the input on the left
matches one of the creation arguments, then the message "bang"
comes out of the corresponding outlet. Thus, an input of "0" will send
a "bang" out the first outlet, an input of "1" sends a"bang" out the
second outlet, etc etc. In this way, we have a separate "bang" for each
step in the Sequencer.

For each step in the Sequencer, we will use a [f] object to store a MIDI
Note send from a [vslider]. The range of the [vslider] is 0-127, and the
number it outputs is sent to the "cold" inlet of [f], to wait for a "bang"
to come to the "hot" inlet. When that "bang" comes, the MIDI Note is
sent out. You can change the value of the [vslider] with the mouse at
any time, and the MIDI note will only be sent at step O of the sequence.

ctl4.pd

Here iz the counter we built in the previous example.

[float] has been obbreviaoted wth [f].

An [Hradio] GUI object shows uz which step we are at.

zelect @1 23466789168 11 12 13 14 1§J

[select] =ends a "bong" to the outlet which matches the
number sent to the inlet. "8" sends a "bang" out the first
outlet, "1" sends a "bong" out the second, etc eto...

[f] stores a Floating Point Number on its right side
{"cold"y inlet, ond outputs that number when it gets a
"bang" on the left side ("hot") inlet. This means you can
change the value of the [vslider] at any time, aond it will
anly be output from [f] when the counter above iz ot @

THE FINISHED 16-STEP SEQUENCER PATCH

And here we have the finished patch, with all 16 steps included,
connected to a simple synthesizer. Each step of the sequence sends a
MIDI Note to [mtof], which controls the frequency of a [phasor~] as
well as the frequency of a Band Pass Filter [bp~]. The creation
arguments of the [bp~] set it's starting frequency as 220 Hz, but this is
changed every time it receives a new number from the [mtof], which
has been multiplied by 1.5 to make the center frequency of the filter a
half octave above that of the Sawtooth Oscillator [phasor~]. The
resonance is set very high, at "5", so the harsh sound of the [phasor~]
is softened.

125

ctl6.pd

Here iz the counter we built in the previous examples.

Above, we have added an [vslider] and an [f] for sach step
of our 16 step sequencer. The walue of each step is only
sent out when the counter reoches that step, so vou can
changs the walues of the [vslider]s in between the steps.

[phasor~] gets a frequency from [mtof].

Multiply the frequency from [mtof] by 1.5 and send it to
the filter [bp~]. [bp~] filters the sound =0 that the
center frequency is a half-octave above thot of the
[phasor~]. The Reszonance is hiagh, so the harsh sound of the
[phosor~] iz softened.

You could also add an Ervelope Generator here if wou don't
want the sharp clicks in between the notes.

In this version, no Envelope Generator is used, so the volume of the
audio going to the soundcard remains constant. T his leads to
noticeable clicks when the frequencies of the MIDI Notes change. An
Envelope Generator based on [line~], [vline~] or [tabread4~] could be
inserted between the output of [bp~] and the [dac~] if desired.

126

28 - A FOUR STAGE FILTERED
ADDITIVE SYNTHESIZER

Our final example shows all the different elements of a simple
synthesizer combined together into an instrument which can be played
by the computer keyboard using [keyl. It has four distinct sections:

e The INPUT STAGE: where note information is received and sent
to the other stages.

o The OSCILLAT OR STAGE: where the notes received from the
INPUT STAGE are converted to frequencies which control two
detuned Sawtooth Oscillators.

e The FILTER STAGE: where notes received from the INPUT
STAGE are turned into an audio signal which sweeps a Voltage
Controlled Filter, and where the audio signal from the
OSCILLATOR STAGE is filtered.

e And the AMP STAGE: where the "bang" at the start of every
note from the INPUT STAGE is used to trigger a message to the
[vline~] Envelope Generator, which smoothly changes the volume
of the audio from the FILTER STAGE.

ey ctl6.pd THPUT STAGE

For each key press, [trigger] will first send o "bang" to

Erigger float float bGnQ] the AMP STAGE, then o "float" ta the FILTER STAGE, and
another “float" the the DSCILLATOR STAGE.

THE INPUT STAGE

At the INPUT STAGE, we use the [key] object to get the ASCIl values
of the computer keys being pressed. This information is passed to the
[trigger] object. [trigger] is a very important Pd object used to specify
the order in which events happen.

127

What [trigger] does depends entirely on its creation arguments. When it
receives any input, [trigger] sends messages to its output in a right to
left order, based on these creation arguments. In this case, our [trigger]
has the creation arguments "float", "float" and "bang". So on any input
from [key], which sends a Floating Point Number (a "float"), [trigger] will
first send the message "bang" out its right-most outlet, which will go
the AMP STAGE. The it will send that float which came in to the center
outlet, which will go to the FILTER STAGE. And finally it will send that
float to the left-most outlet, which will go the OSCILLAT OR ST AGE.
[trigger] is often abbreviated as [t], so the [trigger] in this example
could also be typed as [t f f b].

For more information on [trigger], please see the Dataflow Tutorials in
this FLOSS Manual.

THE OSCILLATOR STAGE

This stage is concerned only with the Additive Synthesis of two
detuned Sawtooth Oscillators. This means that the output of two
[phasor~] objects, whose frequencies are slightly different from each
other, will be added together. Since the difference in frequency is quite
small (one [phasor~]'s frequency is 99% of the other's), instead of
hearing two tones we will hear a periodic modulation of one tone.

The float from the [trigger] in the INPUT STAGE arrives at an [mtof]
object, which converts it to a frequency in Hertz. This frequency is
sent immediately to one [phasor~], and also to a Multiplication [*]
object, which makes a new frequency number which is 99% of the
other, and this new scaled frequency is sent to a second [phasor~].

The audio output of the two [phasor~] objects is added together in an
Audio Multiplier [*~] object, which reduces the overall volume by 50%
to prevent clipping when it reaches the soundcard. T he resulting audio
signal is sent to the FILTER ST AGE.

THE FILTER STAGE

The FILTER STAGE is responsible for taking the audio from the
OSCILLATOR STAGE and applying a swept Voltage Controlled Filter
[vef~] object to that signal. The center frequency of the [vcf~] is also
determined by the key which has been pressed on the keyboard.

When the float sent by [trigger] from the INPUT ST AGE reaches this
stage, it is converted into a frequency number by [mtof]. This number
is multiplied by 15 so that the center frequency of [vcf~] is a half
octave above that of the Sawtooth Oscillators. The number from
[mtof] is [packled together with 300 and sent to a [line~] object. T his
message tells [line~] to ramp to any new number it receives in 300
milliseconds.

The audio ramp from [line~] is used to control the center frequency of
the [vcf~] object. The result is that the [vcf~] will not jump to any new
frequency it receives, but it will smoothly ramp there over 300
milliseconds, resulting in the distinctive "filter sweep" sound.

The audio leaving the Voltage Controlled Filter is now sent to the AMP
STAGE.

THE AMP STAGE

128

Every time a key on the keyboard is pressed, the [trigger] object in the
INPUT STAGE sends the message "bang" to the AMP STAGE. Here it
triggers the message "1150, 0.9 150 150, 0 1000 500", which is sent to
the [vline~] and tells [vline~] to make this audio ramp.

The exact instructions the message tells [vline~] are as follows:

e First ramp to 1in 150ms

e Then ramp down to 0.9 in 150ms after a delay of 150ms from
the start of the complex ramp.

o After that, ramp down to 0 in 1000ms after a delay of 500ms
from the start of the complex ramp

This translates to:

e Attack: 150ms

e Decay: 150ms to a value of 0.9

e Sustain: 200ms (the 500ms of the last ramp minus the 300ms of
the first two ramps equals a "rest period" of 200ms)

o Release: 1000ms

With these instructions, [vline~] creates an audio ramp which smoothly
controls the overall volume of the audio coming from the FILTER
SECTION via an Audio Multiplication [*~] object.

SUBPATCHES

Now that we have an instrument that is separated into four distinct
stages, we may want to make the screen a bit easier to look at by
putting each stage inside its own Subpatch.

A Subpatch is simply a visual container which objects can be placed in
to get them out of the way. To create a Subpatch in a Pd patch,
simply create an object named [pd mysubpatch], where "mysubpatch"
can be any name you choose. A new empty patch window opens up
and you can cut or copy and paste the objects you want to place in
the Subpatch inside this new window. When you close the window, the
objects will be inside this Subpatch, still functioning as normal.

To get information in and out of a Subpatch, you can use the objects
[inlet] and [outlet] for numbers and other messages, and the objects
[inlet~] and [outlet~] for audio. T his will create inlets and outlets in the
Subpatch in the main patch you are working in, that you can connect
as normal. You can give a creation argument to each inlet or outlet,
which could be a reminder of what is supposed to come in our out of
that inlet or outlet ("midi_note", "start_trigger", "audio_from_filter", etc
etc).

Here is our Four Stage Subtractive Filtered Synthesizer, with each
stage inside it's own Subpatch.

129

~

pd input_stoge

::d fi lter_stag

ctl?.pd
INPUT STAGE

OSCILLATOR STAGE

FILTER STAGE

| L AMP STAGE
pd amp_stage______
M ctl7.pd - /Users/derek/Desktop/si..
ctl7.pd

INPUT STAGE
pd input_stoge

806

input_stage - /Users/de

[

ke
For eac
nd F1lter trigger float floot bang the AHP
another

pd anp_sti

out: Let. F Loat]]
out et f Loat|
out.let. bang

M ctl7.pd - /Users/derek/Desktop/si..

pd input_stage

M O O oscillator_stage - [Users/derek/

ctl7.pd
INPUT STAGE

pd 03

pd fi

inlet float

Change the
to the fir
toget o=
zecond [0z
maltiply b

faut let~ oudio

130

M ctl7.pd - /Users/derek/Desktop/si..

ctl7.pd
INPUT STAGE
pd input_stoge

© O O filter_stage - /Users/derek/De:

[jd 0sci

inlet~ oudio]| [inlet float]

pd filt

Change th
multiply
[o=c~] fr
frequency
this numb
sweeps th
Rezonance

out et~ audio

F o

M ctl7.pd - [Users/derek/Desktop/si..

ctl7.pd
INPUT STAGE

pd input_stoge
OSCILLATOR STAGE

bd osf ©® O @ amp_stage______ - /Users/derek
|_inlet~ uudio| inlet bung|

pd fi

1 158, 8.9 158 1

Attack = 156,

Each "bang" fi
which tells it
to the Audio b
gain of the au

131

DATAFLOW
TUTORIALS

29. DATAFLOW TUTORIALS

30. BUILDING A SIMPLE SEQUENCER: A
STEP BY STEP GUIDE

31. MESSAGES

32. MATH

33. LISTS

34. ORDER OF OPERATIONS

35. WIRELESS CONNECTIONS

36. SUBPATCHES

37. ABSTRACTIONS

38. DOLLAR SIGN ARGUMENTS

39. GRAPH ON PARENT

40. ARRAYS, GRAPHS AND TABLES

132

29 - DATAFLOW TUTORIALS

While a Pd user (which is, lovingly enough, a Pd programmer at the
same time) can learn how to use the software just by playing around
and trying new things, there are important functions that are not
immediately apparent through play, trial and error.

The following tutorials try to explain and practically demonstrate in a
quick and simple way some of the more important ‘grammatical’
aspects of this graphical programming environment.

All examples in the tutorials are available as Pd patches. It is

recommended that you download them and try them out while reading

the tutorial. Get the zipped file here:
http://en.flossmanuals.net/floss/pub/PureData/DataFlow/DataFlowT ut_patches.zi

These tutorials can be used in two ways:

1. they can be followed from start to finish
2. they can be accessed also as a reference

So if something is too obvious to the reader, she can skip a section or
two (or just check the screenshots).

133

http://en.flossmanuals.net/floss/pub/PureData/DataFlow/DataFlowTut_patches.zip

3 O - BUILDING A SIMPLE

SEQUENCER: A STEP BY STEP
GUIDE

Basic elements

*Refer to the Interface chapter for understanding the basic elements
including Objects, Numbers, Messages, Symbols and Comments.

Using the Interface

*Refer to the Interface chapter for controlling objects, properties and
making connections.

1. Create a switch
Put a Toggle into the patch.

* We have chosen to use a toggle in this example, however there are
many ways to turn your sequencer on and off, including sending a
message to the object.

2. Regulate the timing

a. Put a [metro] object with a creation argument into the patch. A
[metro] object sends a bang periodically so here this will regulate the
time interval between bangs.

For example, if you put a [metro] with a creation argument of 300,
your bangs will output at 300 milisecond intervals.

* The [metro] has two inlets: the first (left) for turning it on and off,
the second (right) for altering the creation argument.

b. Connect the outlet of the Toggle to the first inlet of the [metro].

c. Put a number box into the patch. This provides you with a variable
and enables you to alter the frequency of your bangs.

d. Connect the outlet of the number box to the second (right) inlet of
the [metro].

sim-seql.pd

O O

Eetr‘o 300 metro 300

=l

metro 382 metro 3

134

3. Set up a counter

a. Put in a [float] (this can be written as [float] or [f]). This stores the
number on its right inlet, and outputs the result when it receives a
bang.

b. Connect the outlet of the [metro] to the inlet of the [float].

c. Put in an addition arithmetic object with a creation argument of 1 [+
1. This will set up the counting of the object.

d. Connect the outlet of the [float] to the first inlet of the [+ 1] object
and the outlet of the [+ 1] object to the right inlet of the [float]. T his
will store the number in the [float]'s right inlet and the result will be
sent when the [float] receives a bang.

* Be aware of stack overflow which happens when you connect the
output of the [+ 1] object to the first inlet of the [float] This creates
a feedback loop by sending the creation argument in a neverending
circle between the [+ 1] object and the [float] (if you let this go it could
crash your system!).

d. Put in a [number box] and connect the [float]'s output to the
number box's inlet. This enables you to see what is happening to your
creation argument.

* The [number box] is being used in this example as a visual aid and
enables you to observe what is happening.

e. Put a [mod] object with a creation argument which will specify the
number of steps in your sequencer into the patch. This will define how
many steps the sequencer has and distribute the input accordingly.
For example, if you put a [mod] with a creation argument of 4, you will
build a 4 step sequencer.

f. Put a [horizontal radio] object into the patch. This acts as a visual
aid and enables you to see the individual steps of the sequencer as
they happen.

135

sim-seqg.pd

.

metro 3 metro 3 metro 3 metro 3
_ [_ - o
float float float + 1 Ef];ﬂn't"' 1
2 2 e 2]
o I I
metro 388 metro 388 metro 388 metro 328
DU D A
Floob=<[T [Flaob<[i T fcm-:}\; flost<[% 1]
2 [g
[mod 2]
B B [
I I
metro 309 metro 309 metro 309
i I DR
1 ¥ 1 1 ¥ 1 1 1
2]]
Lo Lo |k
@IIIIIEIIIIII

4. Set up a distribution channel

a. Put a [select] object with creation arguments numbering the
sequencer's steps. T his distributes the bangs to the corresponding
outlets. For example, put in an object of [select 012 3] for a 4 step
sequencer (start with O because mod objects output 0 as well).

* Every time you create a [select] object, the number of outlets will be
equal to the number of creation arguments with an extra outlet in
order to distribute the surplus signals.

b. Put the number of [float] objects for each step of the sequencer
into the patch.

c. Connect the outlets from the [select] object to the inlets of the
corresponding [float] objects.

d. Put a vertical slider into the patch for each step of the sequencer.
These enable you to adjust the pitch of the individual steps in the
sequence. For example, put in four vertical sliders for a four step
sequencer.

e. Connect the outlet of the vertical sliders to the second (right) inlets
of the [float] objects. This enables you to change the pitch of each
step and hear it only when the counter hits that note.

136

mod &

sim-seg3.pd
Imog 2]

mod 4|

Eelle:ctj 123 select @123 select 123

Eli}ﬂt: El{mt: El{mt: ElMt:
Tmod & Imoa £ Tmod £
select @12 3 select @ 1 72 3 select @12 3
TN T3 &~ T
IR
AR
| Y \
| Y \
II \. \ II
\ Y N\ |
\ \ AN I'
| \ \\
\ L)
II|I '\I \

= Em = oEm o= s =
float| float| [float| float

[fleat]

E = s = s = I T
float| fleat| floot | float |float float float

5. Convert a midi number to frequency

a. Put a [mtof] (midi to frequency) object into the patch. This
converts the incoming midi numbers to frequency.

b. Connect the outlets of the [float] objects to the inlet of the [mtof]
object.
6. Send the frequency to audio

a. Put an [osc~] (oscillator) object with a creation argument into the
patch. This outputs audio - ie. a pure sine wave.

* Refer to the Oscillator chapter in Audio Tutorials for more.

b. Connect the outlet of the [mtof] object to the inlet of the [osc~]
object.
7. Send the audio to a soundcard

a. Put a [dac~] object into the patch. A [dac~] object is a digital to
analogue converter and creates a line out to the sound card.

b. Connect the outlet of the [osc~] object to the inlet of the [dac~]
object.

137

sim-sege.pd

:=eLect 8123

|

zaelect 8123

I

==eLect 8123

]

Flﬂat =F1.cmt =F1.cmt =ﬂ.1}ﬂt fh}ﬂt float Fl{mt =FLG£I!: Fl{mt float float =F1.cmt
EtﬂF EtGF ﬂ‘ItGF
osce]
=:eLect 8123 ==e1.ec1: @123 =:el.lect 9123
FlGﬂt float FLoat =F1.oat FLoat float Fleat =Float ﬂeat float float =Float
mtaF mteF mteF
_cscf _-u-scf 0sCm]
[dac~| dac~]

CONGRATULATIONS! You have now created a functioning

Pure Data.

This is how the sequencer should look:

138

sequencer in

sim-seq5.pd

=l

metro 309

fl 1|
@

-

select @17 3

[float] [float] [float| [fleat

mtof

OS50~

dac~

* We have chosen to use the above elements to set up a sequencer
however there are many ways to set one up, including using a table.
We're sure you will discover these as you delve deeper into the world
of Pure Data.

139

31 - MESSAGES

Pd's objects intercommunicate using messages, which typically flow
from an outlet of one object to an inlet of another through black lines
called wires, or patch cords. These messages are usually a request to
do something, like open a file, compute a sum, or store some data.
Apart from audio signals all other data in Pd are messages.

ANATOMY OF A MESSAGE

Messages are made up of one or more pieces of data called atoms.
There are several atom types that may be used in Pd, but the two
most important ones are:

e numeric - a number such as "3," "4.5," or "5.55556e+06"

e symbolic - typically, a word that cannot be interpreted as a
number and that contains no white space, such as "open," "pitch,"
"file001," "reset"

Messages in Pd begin with a symbolic atom, called the selector, which
may be followed by zero or more atoms, referred to as the elements
of the message (all separated by white-space). Aside from two
convenient exceptions covered below, Pd messages follow adhere to
the following form: selector element! element2 etc...

The selector of the message tells the object what to do-- that is, when
a message arrives at one of its inlets, the object checks the selector
and chooses an appropriate action, or method, in response. The
particular action depends on what the object was designed to do. For
example, an object may accept messages consisting of the selector
"set" followed by one numeric atom, like "set 12," to store the number
12. Another object might accept a message with the selector "clear"
(with no elements) as a way to "forget" the current data stored in the
object. (Note: you can usually find out which messages an object
accepts by right-clicking it and choosing "Help.")

All Pd objects will send an error to the console if you attempt to send
a message that the object doesn't understand. For example, the
[change] object accepts "float" and "set" messages, but if you try to
send the message "elvis is king," an error will let you know that the
selector "elvis" isn't understood: "error: change: no method for 'elvis'."
For secondary inlets, the error message will give you a hint as to the
correct selector, like: "error: inlet: expected 'float' but got 'elvis'."

STANDARD MESSAGE TYPES

There are many different people who have created and continue to
create objects for Pd, designing them to accept messages with
whatever selectors they find appropriate to the task at hand (open,
vibrato, learn, kill, stop, etc.). So you might wonder how exactly the
user is supposed to keep track of all the messages a given Pd object
understands. Luckily, there are several standard message types built
into Pd:

140

e float message - the word "float" with one element that is a
number, like "float -5." Also known as floats (floating point
numbers).

e symbol message - the word "symbol" followed by a word. Eg.,
"symbol foo."

e list - the word "list" followed by groups of numbers and/or
symbols and/or pointers.

e bang - the single word "bang." Often used simply to trigger an
object to perform an action.

e pointer - references to data stored in graphical data structures.

The standard messages shown above make it easy to perform
common tasks in Pd-- for example, if you know that a certain object
performs simple arithmetic, you can guess that it will accept float
messages as input.

In the example below, notice that Pd provides a shortcut for typing
both float messages and lists of numbers; you can leave off both the
"float" and "list" selector and the objects will still accept and
understand them. Since so much of Pd is basically about passing
numbers around, these "implicit" float and list messages allow you to
create your patch with less typing.

messagesil. pd

numbers symbols lists
? l?‘.'Lu:\at 7 :ymbol halla =l 23
'F'Lu:\atI=I :ymbol bya32 l'=Llist 4.1 5262
=) symbofl npack f f

.1 2 2

;

Tl

bye32

MESSAGE BOXES

Messages can go between objects directly - as they do in the bottom
two rows of each group shown below - or be sent from message
boxes (and pass through them, as we'll see later). The message box
allows the user to type a message that may be sent to an object by
clicking it with the mouse. It also allows the user to view the message
directly.

Message boxes also allow the user to send more than one message to
an object. If you put a comma at the end of one message, you can
then create a separate message which will be sent immediately after
the first message. The comma breaks the message, creating a new
instance.

messages0z. pd
1 message: 3 9 R

3 messzages: 3
9 ITIE!SSEIgE!S: 4 One list with 2 elements, only the first is read by [float].

3 messages: 5

print 2 messages

[in

141

The message box also has an advanced feature: it allows you to send
messages without wires by using a semicolon. Like commas,
semicolons can be used to create separate messages. However, all
messages after the first semicolon will be sent to a destination
specified by the selector of the message, which below is the [receive]
objects name "parameter" and "parameterl." (Messages may also be
sent to the Pd engine in this way by using the selector "pd" to specify
the destination). This technique is usually used to send several
different messages to different destinations. (Note: you can use a
leading semicolon if you don't want to send anything to the outlet of
the message box.)

i} rint: 2 messagesis. pd
Three separate messages:
- first one is printed

- 2nd and 2rd are sent to their respective receive objects

S
parameter 10;

parameterl 45 & %
print receive parameter receive parametarl
10 45. &

Special Methods of Message Boxes

Just like most other Pd objects, message boxes also react in special
ways when they receive messages starting with special selectors. For
example sending a message starting with the selector-word "set" to a
message box will set the content of this message box the whatever
follows the "set"-selector. "set 12 3" for example will erase the
previous content of the message box receiving this message, then fill it
with "12 3".

There are many more special methods for message boxes, like "add",
"add2", "adddollar" and so on. Please check the help file for message
boxes for details. Changing message boxes by these method- or
meta-messages dynamically is a powerful feature of Pd, but it can also
be a cause for subtle bugs in your patches if you aren't careful. If you
want to avoid accidentally deleting the content of a message box, you
can guard it with a [list] object in front of the box. This will convert all
messages to proper list-messages that have a selector "list". a "set x"
sent through [list] will become a "list set x" and it will not delete the
message box content anymore. Of course, if you actually want to set
the message box to "x" don't add the [list] or add a [list trim] after it
as well.

PACKING ELEMENTS AND VARIABLES INTO
A LIST

You can create more complex messages by joining several elements
together as a list - the most current object for that is [pack]. Elements
may be numbers (specified by "f"), symbols ("s"), or a mixture of the
two.

142

) messages04, pd
print: 10 2.5 20

print: 11 2.5 20 15 25 20 symbol cuel 3 3
print: 12 2.5 20 N I /S T—_ I 7
print: 13 2.5 20 ack f f f ack s f f
print: list cue f f

print: list cue print print

print: list cue
print: list cue

W=
[V S S)

If you want to work with a list that combines fixed and variable
elements, you can use dollarsign variables in a message box. These
will get filled in by the corresponding elements from the message that
arrives at the inlet. $1 will take the first element, $2 the second, and so
on. Note that $1refers to the first element, not the selector-- with
the message "frequency 660" $1 would be "660." Also, remember that
"13" is shorthand for "float 13," so in the example below the message
"time $1" will expand to "time 13." Finally, note that "symbol end!" is
what comes out of the symbol box (which shows how symbol
messages can be useful).

print: time 10 messagesHs. pd
rint: time 11

Erint- time 12 only one variable two or more variables

E;iﬂ:ﬁ Ezepéfﬂ now 1= End1 Z2.7hellal 123

print: cue part2 now I I

print: cue bridgel now fime $1 cue F1 now 32 $1 5 lay $2 before $2 but after $1
print: cue part3 now . - . f -

print: cue endl now print print print print

print: hello 22.7 5
print: play 2 before 3 but after 1

Combining the power of [pack] with variables, it's possible to build
complex commands for your patches:

messagesiE. pd
COMMAND: cue 5 10

COMMAND: open next-file G
COMMAND: cue 6 10 1
(=

=10 =next—Fi'Le
COMMBMD: open next-file j
COMMAND: cue 7 10 =

COMMAMD: open next-file

ack £ f

uz 1 $2 open $32

print COMMAND

DECONSTRUCTING MESSAGES: UNPACK
AND ROUTE

After you've built and formatted the commands you need, in the next
part of your patch you can decide where to send them. First we can
look at [pack]'s evil twin, [unpack]. As the name says, [unpack]
separates a list into it's individual elements. T his can be useful after
you created your list command, to distribute it into the several parts
of your synthesizer patch. Be sure to match the creation parameters
with the format of the list you're expecting to receive.

143

FPACKED: 71 120 flutell &7 | 10| Flutem messages07. pd

FACKED: 70 120 flute@l = & |
PACKED: 69 120 fluteGl ack f f =
PACKED: 68 120 flute@l f
PACKED: 67 120 flute@l ey

print PACKED
unpack f f =

&7 120 ZF'L utedl

pd sample-name
pd amplitude
pd midi-pitch

Besides deconstructing your messages, you can also sort them
qualitatively, through string comparison. For that we use [route]. With
[route] you can send different messages to the same input, and sort
them out quite easily.

The [route] object has two modes: the first routes messages according
to the selector; this mode is set whenever you provide symbolic atoms
as the arguments, like [route dog cat]. In this mode, you could use the
object to route messages according to the built-in message types -
bangs, floats, symbols, lists, etc.:

messagesis. pd

Eang bang

some floats

ymbol aa| symbols

33 z@a lists

=
net any| or undefined strings

=u:u\.lte bang float symbol list

33 hellol

bang float symbol list undefined

The [route] object typically trims off the atom that is being used for
the comparison (except for float and symbol messages). In "selector
mode," you can use the message selector as a kind of "filter" to
channel the remaining element to a specific outlet, as below:

144

messagesa. pd

E;;E?+USE 55 send commands - fixzed or variable ones - separately

PAMNIMG: 1 itch €3

PAMWIMG: O _

PAMNING: -0.0L amplitude 55

PAMNIMG: -0.082 -

PAMNIMNG: -0.03 -0. 65

PITCH: 60 -~

AMPLITUDE: 120 panning $1

;Eﬂgég?le.é or send al1 comands in multiple messages written in the

same message box

itch B0, amplitude 120, panning -1, reverb O.E
L
route pitch amplitude panning reverg

] 120 -1 0.6
L

print REVERE
print PANNING

print AMPLITUDE
print FITCH

Below is an example of the [route] object's "float mode," where list
messages are selected according to the first element (so that you can
easily route lists of numbers). This mode is set by using float
parameters with [route], such as [route 12 3]. (Remember that the
message "1 20" is a shorthand for "list 120.")

messages1a. pd

gl

-
=
b

v

e
20 |3 | 14
If you just send [route] a message consisting of a single selector with
no elements, you can use it just to trigger events. In this case, the

output is only a bang.

messagesll. pd

BEFORE: bang Before

NOW: bang =
AFTER: bang now
MOME OF THEM: something else Sfter
zomething else

route before now after

print AFTER print HOME OF THEM
print MOW

print EEFORE

And the grand finale: combine all objects (and variables) to create your
own complex commands, and distribute them through the various
parts of your instruments - all in the same patch:

145

. messages12. pd
build your own command cue o P

imstrumantl

ltir instrumentl
amplitude

an

symbol 2

f

ack s s f

FELEE 115; or send everything in the same message

imstrumentl pitch B8, imstrumentl amplitude 20, instrumentl

instrument2

instrument2 freq BO0. 56, instrument2 to-from 0.1 0. 92
instrument2 start

imst rumant 2
don't forget the variables

instruments on-off $1
MEnstruments file flute-1

instrument3 file bass-20, instrument3 on-off 1

route instrumentl instrument2 instrumentd

route on-off file

: . =
route pitch amplitude pan, symhal.
EA 20 B.32 flute-1

route freq to-from start

500, 5
=

unpack f

146

32 MATH

In order to work your data, using mathematical functions is essential to
produce something in Pd. Numerical values can be mathematically
manipulated with numerous arithmetic objects. These are divided into
sections, according to their function:

[+1 [-1 [*] [/1 [pow] simple
arithmetic

[sqrt] [log] [exp] [abs] higher math
[sin] [cos] [tan] [atan] [atan2] trigonometry
[mod] [div] fraction work
[max] [min] [clip] [moses] numbers and
ranges

[random] lower math
[==1 [!=1 [>1 [<] [>=] [<=] relational
operators

[mtof] [ftom] [powtodb] [rmstodb] [dbtopow] [dbtorms] convert
acoustical units

[&] [&&1 [11 [111 [%] bit
twiddling

SIMPLE ARITHMETIC

This section deals with basic mathematical functions:

[+] - plus

[-] - minus
[*] - muiltiply
[/] - divide
[pow] - power

Each math object does one operation only, taking usually two
parameters for it. For example, if you want to sum 2 + 3 + 4, you
need to create the necessary objects in a chain - because in reality you
are doing two operations.

mathol. pd

%]
+
w
"
L}

2+ 3 +4=13

fin 1+ F—nall
el
[l T

il

o 1+ F—wn 1+ F—nl

Don't forget that Pd differentiates between left inlets - the hot inlets -
and other inlets - the cold inlets. So if you want to make your
operation sucessfully, you must first get the right number in, and only
afterwards the left number.

147

mathe2, pd
sucessful operation unsucessful operation

right-left arder left-right order

I —=1
Fes 1

e =1
ol

4-3=1 4 - 3= 47777

So, if you have an operation where you know that one of the numbers
is going to be stable, you should connect that number to a cold inlet -
in case the numbers can be changed and the operation still makes
sense, of course.

mathos. pd
[still remember zbout the comma im messages?)

2.5 1, 2, 3, 4

el

5

a1 =

print ¥ * 3 =

X®a=

Or you can use the second number as a parameter of your object. In
case you don't have any parameter it's like having O as a parameter

(which was what happened in the previous examples). In case you put
in a new number, the second parameter will be actualized.

mathid, pd
5 /2 573
E E
f 2=I f 2
2.5 1. 666

| guess it isn't necessary to explain how [+], [-], [*] and [/] work. But for
the other objects some words will be necessary. [pow] is a basic
exponentiation operation, but with some perks to it. First, you can't
input any negative base numbers (the left input). And second, you can
use negative exponents (right input).

mathis. pd

doesn't work

HIGHER MATH

Here are introduced some objects that are often used in mathematics:

148

e [sqrt] to take the square root of a number (no negative numbers
allowed)

e [abs] for the absolute value of a number (turns negative numbers
into positive numbers)

o [log]l and [exp] are the normal functions already known in math

TRIGONOMETRY

The objects here relate mainly to trigonometry, and they work the
same way already explained for the previous objects. In case you need
any information about trigonometry, we suggest to look for a more
specific manual. Only one detail: there is no symbolic definition of Pi, so
in case you need it, you'll have to type the numeric value as precise as
necessary.

FRACTION WORK

With [mod] and [div] you can notice if a fraction produces a remainder
and what that remainder is. [div] gives the result of a division without
any decimal numbers. [mod] does the opposite, produces the
remainder of a division. Note that these objects only work with integer
numbers.

mathos. pd

=/E\=

div 3| Imod3=
g 2

S=[3*1) +2

Although the explanation before might seem to be a bit dry, these
objects are quite useful if you want to build a step sequencer.
Combining [div] and [mod] you can control higher group orders of
numbers, creating bars and beats. For example:

mathe7. pd
start / stop
metro SO0
f + 1 [this 15 a counter, adds up values one after the other)

15 | Total Beat Count

iv 4 od 4
1

v
1

O+ Hea
I+ Hz

Bar number EBeat number

In this patch [div 4] divides the total beat count by 4 without any
remainder, producing the bar number. [mod 4] shows only the
remainder of the same division, which in turn is the beat number. Note
that the original results vary between 0 and 3 - but it makes more
sense to us to see numbers between 1and 4, so we add 1to them.

NUMBERS AND RANGES

It can be important to know how to make number streams fit certain
ranges. For that there are several choices around. The most simple
operations imply limiting a range on the upper or lower side. For that
you can use [min] or [max], respectively.

149

mathis. pd

MIN: 2

MIN: © upper limit of 1@ lower limit of 1@
MIN: 10 55 B

MIN: 10

MIN: 103 Zmin 10 Zmax 1@
MaX: 13

MAX: 12 1o 10

max: 11

Max: 14 print MIN print MAX
MaX: 10

MaX: 10

Of course, you can change the parameter at any time, by sending a
new value to the right side input. Note also that these objects output a
number even if the output doesn't change.

[clip] acts as a mixture of both [max] and [min]. You just define the
range boundaries.

mathog. pd

?B l=-I120
L

clip -50 5@ clip -50 50

50 =50

Another much used object is [moses]. This one doesn't limits the range,
but distributes it through it's outlets - a bit like we already saw with
[routel]. For example, if we wanted to divide between positive and
negative numbers, we would have to use only [moses 0l:

“q 5 mathle, pd
< @ -1 =3

== 0 0 =

== EI: l moses

=00 2 1 =K=3

=0 3 =

print <= @ print = @

This can be quite useful to distribute numbers around several inputs -
imagine you have an instrument which plays midi notes up to 60, and
another for the higher tones...

RANDOM NUMBERS

Random numbers are quite important in electronic music. Whenever
you want to add some imprevisibility to your patches, you'll need
someone else to make decisions for you. For that you can use objects
like [random] or [shuffle] to generate numbers for you according to
certain rules. These numbers are never completely random, as there is
always a certain logic to how they work. But they do feel random, as
the repetition pattern is too large for a human to grasp.

[random] is Pd's standard integer generator. What is makes is that if
produces a "random" number between 0 and X-1, being X the
generation parameter you give to the object (or feed it on the right
side). Each time [random] gets banged, it produces any number in
range. Here is a sequence of random numbers with [random]:

150

RANDOM: mathll. pd

RAMNDOM:
RAMDOM:
RANDOM:
RAMNDOM:
RANDOM:
RANDOM:
RAMDOM:
RAMDOM:
RANDOM:
RANDOM:
RAMNDOM:
RANDOM:
RAMDOM:
RAMDOM:

random 5
2

print RAMDOM

[o PR R S I e i ol TR o B e o R Y

A quite similar object is [shuffle], a Pd-Extended object. It works on the
same way (except that you define the range yourself), but with one big
difference: it keeps the numbers in memory, so that no number is
repeated until the whole sequence has been gone through. This can
make a big difference, for example, if you're playing back random
samples, and want them to repeat more or less often. These are two
nuber sequences where all possible numbers have been generated.

SHUFFLE: mathl3. pd

SHUFFLE:
SHUFFLE:
SHUFFLE:
SHUFFLE:
SHUFFLE:
SHUFFLE:
SHUFFLE:
SHUFFLE:
SHUFFLE:

shuffle @ 4
4

print SHUFFLE

Ao OH RO WM

RELATIONAL OPERATORS

At some point while programming you'll need to compare values to
judge situations. Pd offers the normal logical operations that you
surealy already know. These objects produce an answer in binay form:
1for yes and 0O for no.

mathls. pd

laHw
ToHy
H
[=TH.
I=H A
ﬂHHﬂ

CONVERSION BETWEEN ACOUSTICAL
UNITS

Another set of very useful objects is the next group, which makes
conversions between the realms of acoustics. Of course it would be
possible to program these objects yourself, as long as you know the
formula. But since they're quite used, it makes much more sense to
have them around ready to use.

[mtof] transposes from midi pitch into frequency in Hertz. A good
reference point is the central C at 60, or the 440Hz central A at 69 -
after that add or subtract 12 (semitones) for each octave. Obviously,
[ftom] does the inverse operation. By the way, you can also use float
numbers - which would produce a microtonal scale.

151

mathl4. pd

mtof
261, E26

ftom

[dbtorms] converts from decibels to linear RMS amplitude, so that 100

dB corresponds to an RMS of 1Zero amplitude. [rmstodb] takes over
the inverse operation.

mathls. pd

a0
dbtorms
G. 31623238

rmstodb

]

And [dbtopow] converts from decibels to power units, that is, the
square of the RMS scale.

mathle. pd
dbtopow

owtodb

T Hg Hs

=]

BIT TWIDDLING

aa

EXPR

aa

AUDIO MATH

aa

152

3 3 - LISTS

First, download the patches for this chapter: Lists.pd.zip

Often you want to group elements like numbers together into a single
message so that an object can respond to multiple things at once. The
simplest kinds of lists are made up of collections of numbers. For
example if you want to turn on and off notes in a musical synthesizer,
then you could make a list of two numbers that includes the pitch and
the amplitude as a single message.

a pair of note lists 64 127| 64 0 other lists[7.46791 4.86387 1.46258(|2 3 4 5 1 -1(

For many math objects, you can use a list as a shortcut for sending
data to each inlet. With an object like [+], you can send a list of two
floats to the left inlet, and [+] will interpret the second, rightmost
number in the left as if it was sent to the right inlet, and the first,
leftmost number as if it was sent to the left inlet.

:1 A Fs(le [56 2.1 3 [e.13
N [NI
1= = = =
+ + + + + +
L I I L L I
B B R 31 3a

LISTS VS. LIST-MESSAGES

If you use the term "list" in common language, it may describe any
collection of things. For example "milk eggs honey" could be your
shopping "list". In Pd, lists are a very similar concept to something like
a shopping list or a to-do list: a list is a collection of data that can be
manipulated. Like to-do lists, you can add and remove items from
lists. You can also do a wide range of things to lists in Pd, from sorting
to math to generating symbols.

The term "list" often is used as a shorthand to describe a special kind
of message: the so called "list-message". List-messages are messages
that have the symbol "list" as their very first element (the selector).
Lists starting with other words are sometimes called meta-messages
in Pd lingo, and most objects react very different depending on what
kind of message they receive. Lists are collections of data, that can be
sent around between objects, while meta-messages are like commands
to an object, telling the receiving object to do something specific, like
open a file (e.g. "open voice.wav").

Pd sorts lists from meta-messages by looking at the first element. If
the first element of a message is a float, then Pd labels that message
a list. If the first element is a symbol, then Pd calls that message a
non-list, or a meta-message. There is one caveat: if the first element
is the symbol "list", then Pd calls that message a list.

this is a list [1ist motion 123 123/ this is a NOT list[motion 123 123(
CONVERTING TO AND FROM LISTS

153

http://en.flossmanuals.net/floss/pub/PureData/Lists/Lists.pd.zip

Our shopping list from above would not be a list-message to Pd,
because it starts with the symbol "milk" instead of "list". So Pd would
interpret it as a "milk"-message. To convert it to a proper list-
message, you can send it through a [list] object: [list] will take any input
and convert it to list-messages by prepending the symbol "list" in front
so that it reads "list milk eggs honey" afterwards. If the first element
already was "list", it will pass the message unchanged and not add a
second "list" in front. To convert a list to a non-list meta-message, use
[list trim] which will strip off the "list" again and leave you with "milk
eggs honey".

print: list milk eggs honey il cgeng=ghone)

print: milk eggs honey —
list

=

print
list trim
=

= -
print

Lists can used for processing collections of data. Once the data is
organizing into lists, then it is much easier to sort the data and route it
to the places it needs to go. There are a number of objects that
output a range of different kinds of data, so they need to use lists
instead of specific outlets.

Pd-extended includes a very useful library of objects that simplify all
kinds of list operations: the list-abs. It gives you a wide variety of ways
of manipulating and working with lists.

154

34 ORDER OF OPERATIONS

The order of operations in Pd is determined by rules regarding:

1. hot and cold inlets
2. order of connecting
3. depth first message passing

The application of these concepts appears frequently in Pd code.

HOT AND COLD INLETS

The order in which inlets are triggered is largely ruled by the concept
of 'hot and cold inlets'. The leftmost inlet of any object is always a hot
inlet. Whatever an object receives to the hot inlet will trigger the object
and create an output.

All other inlets are cold inlets. Whatever the object receives to them, it
stores as a value, but does not output anything. This can be seen at
work with a simple counter example:

do it!

add 1 and store
in cold inlet of [f]

A "bang" to a hot inlet is a special message that causes an object to
process and produce output using previously initialized or set values.

In the above example, the following occurs :

e The cold (right) inlet of the float object stores the result from
the addition object [+1]

e The float object does not output before it receives anything at
hot (left) inlet.

e When sent a "bang" message, the float object sends a value and
a lis added in the [+ 1] object

e The result of the [+1] object is sent to the cold inlet of [float]

e Because this inlet is a cold inlet - the value is stored until the
next bang. This is why above construction does not produce an
endless loop (thus crashing your Pd session or reporting a stack
overflow) as shown in the example below:

155

add 1 and pass
in HOT inmlet of [f]!

this will crash FD or report
error: stack overflow

Note : If there is no value specifies in the creation argument of the
object inputting and outputting to and from the float, the default value
will be output. For example, a float object will output 0 if no value was
specified.

ORDER OF CONNECTING

While multiple incoming connections to the same inlet are rarely
problematic, care has to be taken when:

1. the order of operations is important
2. making multiple outgoing connections from a single outlet

The order of events is determined by the order in which the inlet
connections were made.

Note : Since Pd does not illustrate the order of events it is not easily
known by looking at the patch itself.

Trigger

Trigger is a very useful object for managing the order of events.
Trigger takes an incoming value, converts it according to its
arguments, and outputs the new values through its outlets in order
from right to left.

Below you can see Trigger in action.

Fle Fnd Wndows Media

Help

1N ouT

IU_ lu— DIO | _i compute audio

arrnere
| | untitled-2x - /home/random/PROJECTS/PO-Manual
Fle Edit Put Fnd Windows Media

_I peak meters

Help

messagel

Er‘igger‘ bang bang banﬂ

out2: messagel print 0ut3|||—3r*int 0ut2| ||—3rint outll

out3: messagel
outl: messagel

=

|

outl: bang
out2: bang
out3: bang

Note : you can use 't' instead of 'trigger' when creating the object.

156

DEPTH FIRST MESSAGE PASSING

There is one more rule of Pure Data programming that is important
when scheduling events - 'depth first message passing'.

This rule states that at a forking point (as in a trigger object, or
multiple connections from a single outlet) a single scheduled action is
not "finished" until its whole underlying tree is "done".

Consider this simple example. Try following the path with your finger

remembering that the trigger's right to left order and depth first rule:

first

- cold inlet

The resulting number will be always the same as the input number as
the scheduling logic is taken care of according to rules we defined so
far.

Consider again the improperly connected counter example that will
either crash your Pd session or report stack overflow due to the
infinite loop which is enabled:

add 1 ard pass
im HOT imlet of [f]!

this will crash FD or report
error: stack owerflow

From the point of view of depth, the above example represents
infinite depth - the message passing is never finished.

157

3 5 - WIRELESS CONNECTIONS

Soon after some introductory patching, a Pd user will soon discover
the slight inconvenience of connection lines running over objects to
reach other objects. Luckily, there's a solution.

Using the send and receive objects data can be sent from one part of
the patch to another without connecting lines. These objects can also
send data to other windows. The send and receive objects need an
argument to identify each other. T his argument is usually in the form
of a word.

metro 1500

receive beat

(6

In the above example, [metro 1500] generates bangs at the interval of
15 second (1500ms) and is sending the data to the [send beat] object.
This in turn sends the data to the [receive beat] object.

A single send object can be received by multiple receive objects.

metro 1500

osc-~- 1008 o5c~ 2008 osc-- 2000 osc-- 4000

Eeceive beat| tecei\re beatl heceive beat| heceive beat|

delay 1008 delay 2508
e} e}

delay 15E|
2]

delay QBE|

e €

The bangs in the above example are picked up by each [receive beat]
object because they all have the same argument - "beat". There is no
limit to the number of sends and receives with same argument. It is
possible to have many sends. Just add to the example above more
[metro] objects:

158

metro 1500] |metro 3500] [metro 5500] |[metre s5mE|

Eend beat| Eend beat| Eend beat| Eend beat|

osc- 1000 osc-- 2000 o5c~ 2000 osc- 4000

tecei\re beat| hecei\re beat| tecei\re beatl heceiue beat|

delay 10!3—|

delay 15E|

S [

delay QBE| delay 25EI—|

e €

WHAT KIND OF DATA CAN BE SENT?

[send] and [receive] are for control data - messages, symbols, lists. For
audio signals a 'tilde' version of these objects are needed. [send~] and
[receive~] can be used to receive a single audio signal at many places.

This example shows audio sends used to create a multitap delay:

osc-~ 1008

delay Lines -------mmmmmmm oo =

E- mtapdelay| E- mtapdelay| E- mtapdelay| r- mtapdelay

T T T

|—de1wr‘.i.te- dlinel 2DBB||—de'Lwrite- dline2 2000||—de1wr‘ite- dlineZ 2DBB|
del read~ dlinel 400 Eelr‘ead-u dlinez BDB| Ee'l read~ dlines 1088' delread- dline3 1300

e

THROW AND CATCH

In the above example you may notice that outputs from delay lines
are not sent with [send~] back to [r~ out]. Audio signals can only have
one [send~] but many [receive~]. While there are technical reasons for
this difference, a handy pair of audio objects that can help to achieve
many-to-one sends are [throw~] and [catch~]. Many [throw~]s can
send audio signals to one [catch~].

159

metro S5O0

main out

Eecei\re-- aut | |£atch- 0utL|

delay lines --------mmommmm oo =

E- mtapdelayl E- mtapde'lay| E- mtapdelayl r- mtapdelay
1 1 1
[delurite~ dlinel 2000|[delurite~ dline2 2080 [dslurite~ dline3 2000] [delwrite~ dlined 0@

[delread~ dlines go8| [delread~ dline lopa| |delread~ dlined 1300

del read~ dlinel 400

thraow- outR

throw~ outL throw- outL

Using [catch~] it is possible to further control and process audio (i.e.:
volume control, VU metering, limiting, reverbs, etc...).

Coincidentally, all objects we described above ([send], [receive], [send~],
[receive~], [throw~], [catch~], as well as [delwrite~] and [delread~]) all
work across different patches, subpatches and abstractions.

In conclusion, the objects described above are powerful tools to not
only send and copy data and audio around a single patch without
messy connections, but to create connections between individual
patches, subpatches and abstractions.

A word of warning though: the arguments passed to these objects are
always global - they are accessible from all patches and abstractions
opened in a single Pd session. This simply means that a situation can
arise with unwanted 'crosstalk’' of data or multiplies defined. Care has
to be taken on names of arguments, while at the same time a
technique exists to localize arguments using dollarsigns.

160

3 6 » SUBPATCHES

With more complex coding, patches can become large and difficult to
manage. Subpatches help resolve this problem.

It is useful to think of subpatches as container or drawers, where code
is organized and stored. A subpatch is created by typing "pd" into an
object box followed by any an arbitrary word. When creating a
subpatch like this, a new empty subpatch window will appear and you
can put code in this window.

] = Untitled-1* - fhomefadam E“E“Zl

File Edit Put Find Windows Media Help

Ay

A el

=

|- d

-

= Untitled-1* - fhomefadam

File Edit Put Find WYndows Media

pd beep
0 beep -/home/adam
File Edit Put Fnd Windows Media Help

=l

161

SUBPATCH INLETS AND OUTLETS

Subpatches can have inlets and outlets. These are created by using the
inlet and outlet objects (and inlet~ or outlet~ for audio signals).

= Untitled-1* - fhome/adam E“E“ZI

Fle Edit Put Fnd Windows Media

pd beep

beep™=Yhome/adan

Fle Edit Put Fnd Windows Media Help

A el

When you create inlets and outlets note that the origial subpatch
object also gains inlets and outlets.

162

/ Untitled-1* - fhome/adam E“EIEI

Fle Edit Put Fnd Windows Media

pd beep

| beep’ =/homefadam |

File Edit Put Find Windows Media Help

A =

CLOSING AND REUSING SUBPATCHES

When closing subpatch windows the code is not lost but still exists and
works. Subpatch windows can be reopened by left-clicking on subpatch
objects or by right-clicking and choosing "Open" from menu.

Subpatch objects can be freely copied and each copy can be
individually edited - changes are not reflected in any other subpatches,
even if they have the same name.

163

37 ABSTRACTIONS

Subpatches are useful to clear code from the main canvas. However,
sometimes precisely the same code is used again and again, in which
case it isn't convenient to create copies of subpatches. In these cases
it is much more useful to call an external patch directly. T his kind of
patch is known as an abstraction.

Consider a situation where a random note on minor C scale converted
to frequency is needed multiple times in one patch. A basic construct
for this would be:

Every time [random] is banged, one of the displayed numbers will be
transposed + 50 and through [mtof] converted to frequency. It's a
construct that's inconvenient to reproduce many times in a patch. The
abstraction is a separate patch with inlet's and outlets and saved
separately.

cminorpd - fhome/random/PROJECTS/FO-manual

File Edit Put FAnd Windows Media Help

SAVING ABSTRACTIONS

64

The abstraction needs to be saved on a path (folder) that Pd looks
into each time an object is created. That path (folder) can be defined
in Pd preferences however its simpler to have the abstraction in the
same folder where the patch that calls it is saved.

CALLING AND EDITING ABSTRACTIONS

Consider a main patch "cminor-oscilations.pd" saved in
/home/user/puredata/ and "cminor.pd" in the same folder. The
abstraction (or an instance of it) is called simply by typing the name of
the patch (without extension .pd) into an object box.

By clicking on the [cminor] (or right-clicking and choosing "open") the
abstraction is opened in new window, just like a subpatch. However
now a separate patch (cminor.pd) is being edited. T his means when
changes are saved all instances in the calling patch are updated.

165

3 8 - DOLLAR SIGN
ARGUMENTS

Sometimes when you are programming, you want to mark a position
where you will later put a value. In Pd this is done by using dollar sign
arguments. They are used in object boxes and message boxes, but
careful, they have different meanings when used in message boxes
versus object boxes. In both cases, they could be called "replacement

variables": they mark the spot where you want to replace them with
an actual value.

$1 52 33 lpack $1 $2 $3|

IN OBJECT BOXES

In the same way as objects like [metro], [random] or [osc~] accept
arguments (as in [metro 1000]) an abstraction can accept arguments
that can be used inside of it. Consider an abstraction that combines
[metro] and [random] objects to produce random numbers that also
denote time intervals at which they are produced. In its basic form it
could look like this:

The abstraction above has two inlets, at left it would receive on/off
(1/0 float) input and at right the range for the [random] which will then
pass random numbers to [metro] and at abstraction's outlet. As it can
be seen, the abstraction will initialize with 1000ms to [metro] object
and range from 0 to 1000 to [random] object. Now, imagine you are
writing an abstraction not knowing what specific arguments you want
to pass on to it. Or, if you would like to change the value of the
random object dynamically, you would have to change the value that is
passed on to the right inlet.

However, this can be done differently by passing arguments to the
abstraction at the creation time using dollarsigns inside the abstraction.
Consider this change including demonstration of usage. (Note: the
loadbang object outputs a single bang when the sketch is opened):

166

randomettro-usage,pds - fhometrandom,/PROJECTS PO-Manual

Fle Edit Put Fnd Windows Media Help

randometrolpds - Shomefrandom/PROJECTSPO-Manual

Fle Edit Put Fnd Windows Media Help

randomet ral SO0 GO0

autlet

At the creation time two arguments (1000 and 1100) are passed to an
abstraction [randometrol]. Inside the abstraction, $1is substituted with
the first argument (1000), and $2 with the second (1100). T he effect
(which was goal in the first place) is to be able to define the min-max
range (as opposed to only 0-max) at which abstraction works. Because
[random] inside the object needs a 0-max range, first argument
(presumably smaller) is subtracted from the second. The result is
passed to random to produce random numbers which are then added
to the first argument. In demonstration of usage in the window behind
the abstraction this construct produces random numbers between
1000 and 1100 in the first case, and 500 and 600 in the second.

While $1, $2, ... etc. represent first, second, etc .. argument to the
abstraction, there is one special dollarsign that is extremely useful in
Pure Data. $0 is a variable that is internally substituted by unique four-
digit number per patch or instance of abstraction. In other words, Pd
takes care that each instance of an abstraction or patch will be
assigned this unique number and stored in $0 variable. The usefulness
of this is immediately apparent in the following example of simple
delay abstraction where delay-lines with the same name in multiple
instances of same abstraction must be avoided:

167

locdelaypd (one] - fhome/random/FROJECTS/PO-Manual

File Edit Put Fnd Winhdows HMedia

locdelay-usagepd - fhomesr

Fle Edit Put Fnd

locdslay one [delurite~ $0-dline 2000]

locdelay two

show that mysterious
=-- uniqua mrumbar!

locdelaypd [two] - fhome/random/PROJECTS/PO-Manual

File Edit Put Fnd Wnhdows HMedia

Help |
elp |

Help

[delurite~ $8-dlire 2000]

show that mysterious
=-- unique number!

It is important to understand that, despite $0 isn't actually substituted
with the unique number inside the delwrite~ object, the latter actually
writes audio signal to delay-line named "1026-dline". $0 variable is
assigned in every opened or called patch, which also solves the
problem of two or more instances of same patch (i.e.: simple synth).
$0 also saves from situations from unwanted crosstalk of frequently
used variables in different patches. An attentive reader/user could also
point out a possibility to use $1, to use an argument passed to an
abstraction (like "one" and "two" in above example), in which case care
must be still taken to assign unique arguments to abstractions used in
the same Pd session.

$0 is at times called localized variable, however, in my view, that is not
entirely true. A variable constructed with $0-something can still be

accessed from the global namespace by simply finding that unique

number and than calling that appropriate variable (like for example to
read the delay-line named 1026-dline from above example from within
another independent patch). In fact this can sometimes be even useful.
It is however true that using dollar variables is a localization technique.

IN MESSAGE BOXES

A frequent confusion arrises from the use of dollarsigns in message
boxes. It is important to understand that dollar variables in message
boxes are actually totally local to that message box itself regardless
where they appear. They will be substituted only by what a message
box receives on its inlet. In an example of abstraction within which
both types of dollar variables are used:

168

shotlinepd (2000 00 900] - fhome/random/PROJECTSPO-Manual

File Edit Put Fnd Wndows Media Help

shotline-usagepd - fhome/rando)

Fle Edit Put Fnd !

shotline 2008 300 300

syntax: [shotline speed from-value to-value]

The [shotline] abstraction, which has a goal of producing a ramp of
values in specified time from some starting value to ending value,
takes three arguments - speed, from-value and end-value. T hese
variables are accessed inside the abstraction with $1, $2 and $3 in the
[pack object]. The latter sends a list of those three arguments to
message box, in which $1, $2 and $3 represent only elements of an
incoming list and not directly arguments of the abstraction. Message box
first send the second element, followed by a comma - so it resets line
to that value, and then a pair of third and first element which
correspond to target value and time-frame of a ramp.

169

39 - GRAPH ON PARENT

In Pure Data it is extremely easy to create interfaces that include
sliders, buttons, number boxes, toggles, colored backgrounds... to see
how to use them, look at the "GUI objects", or simply right-click on one
of them and choose 'help".

However, they still need to be connected and to use them away from
the data inlets that they control, they have to be repeatedly created in
order to function the way we want. Consider an example of a delay
abstraction (already used above) that takes at it's second inlet a value
for time of delay which we want to control with a slider:

lozdelay2-usagepds - Shome/random/PROJECTSPO-Manual

File Edit Put Fnd Windows Media Help
locdelayzpds - Ahome/random/PROJECTSAPD-Manual
File Edit Put Find Wndows Media Help

|hzll Properties

——————————— output-range:--—----—-—--—
left: ID right: |2000)
lin | no init | steady on clickl

So, every time when an abstraction like that is created, when it is
desired to be controled by a slider, many steps are needed to
recreate the same visual and programmatic construct. Luckily, there is
a very powerful feature of Pd: graph-on-parent. It enables a
subpatch or an abstraction to have a custom appearance at the
parent 'calling' patch.

170

Instead of plain object box with the name of abstraction and
arguments, it can have different size, colour, and all the gui object
inside. Here's how it's done, continuing on delay: inside the abstraction
or subpatch, rightclick on white underlying canvas and choose
properties. Inside a dialog that appears, enable toggle for graph-on-
parent:

lozdelay2-usage.,pds - fhomerandom/PROJECT S/ PO-Manual

File Edit Put Fnd Wndows Media Help
locdelayz.pds - fhome/random/FROJECT S/FO-Manual
File Edit Put Fnd Wndows Media Help
canvas

e Tave 3
Canvas Properties

T .read~ $0-dline 500
X units per pixel

)) — let-
¥ units per pixel

@ graph on parent
Krange: from |0 to |1 size |55 margin |100
¥ range: from |-1 to |1 size |60 margin |100

e | [em| [ed]

Applying this will create a grey-bordered box within the abstraction.
This box represents the shape and form of the abstraction on the
parent canvas (the calling patch). Whatever the size and contents of
that grey box will be visible excluding connections, object boxes and
message boxes. In the properties of the abstraction below the graph-
on-parent option two rows of four values represent X and Y settings.
Size will set the size of the box while margins will only set the position
of that grey box within the abstraction. Adjusting these setting
accordingly:

locdelayz.pdx - fhome/random/PROJECT S/ PO-Manual

File Edit Put Fnd Wndows Media Help

=]

canyvas

[delnrite~ $0-dlire 2000] Canvas Properties

X units per pixell

¥ units per pizel

@ graph on parent
X range: from |0 to |1 size |170 margin |20

¥ range: from |-1 to |1 size 40 margin |20

Cancel | Apply | oK |

171

Inside the grey box it is now possible to create a suitable interface,
according to users needs and aesthetic preferences needed for
functional and pleasurable control of parameters. See properties of
individual GUI objects (like canvas, slider, etc) and experiment what can
be done with them. Simple delay abstraction in this case receives an
underlying colour canvas and two sliders, one for delay-time and the
other for incoming level:

locdelayz-uzage.pds - /home/random/FROJECTS/PO-Manual

File Edit Put Fnd Wndows Media Help
locdelayz.pd = fhome/random/PROJECTS/PO-Manual
- File Edit Put FAnd Windows HMedia Help

delread- $0-dline 508

|_de1write- $a-dline 2999'

While editing the abstraction with graph-on-parent, abstraction is
greyed-out on the parent canvas until the abstraction window is
closed. Only then the final appearance can be seen:

Lreor tevcl |
[loycine]

The purpose of a pixel wide transparent gap between the gray border
and canvas in the abstraction is to reveal inlets and outlets at the
parent window - however with sizing of inlaid canvas, even black
borders can be hidden. Calling this abstraction as usual - by creating an
object box and typing the name of abstraction without the extension
pd - will always instantly create this GUI:

will create --=

typing - Mocdeloyd | TR —

that needs nothing more than to connect to audio signals and adjusting
controls:

172

Crpe loel ||
CarlorJime |

Cinpe tevel |
[aeloy cine | |

Confe tevel |
[Fleyeine |

173

40 - ARRAYS, GRAPHS AND
TABLES

Often, we need a way to conveniently store large amounts of data and
to be able to instantly access it. Pd uses Arrays for this purpose. An
array can be thought of as a container in the computer's memory with
neatly indexed drawers with data that can be looked up instantly.
They are used for many purposes, including the loading of soundfiles
into Pd.

Arrays are accessed by their Index number. These numbers are used
to look up values stored in the array. So if we ask an array what is
stored at index number "0", it will return the first value stored there.
And if the array has 100 values stored in it, asking it for index number
"99" will give the last value in the array.

Arrays are displayed on screen in Graphs. A graph plots out the data
stored in the array using an X/Y format, meaning that the index
numbers of the array are shown on the X (horizontal) axis, and the
values stored at those index numbers are shown on the Y (vertical)
axis. This graph is created automatically, whenever we create an array.

However, when we don't need to see the array on screen, we can hide
it away inside a Table. A table is a subpatch which contains both the
array and its graph. In this case, it is used with a creation argument
which gives the name of the array. For example, if you create an
object named [table mytablename], then inside the [table] object you
will find an array named "mytablename" inside its own graph.

CREATING AN ARRAY

To create a new array, choose "Array" from "Put" menu and a dialog
appears:

name |array? |
size |100

i save contenis

~ dravr as points
polygon

~ bezier curve
in new graph
~ inlast graph

Cancel oK |

Here the name and size of array can be defined. The name of the
array should be unique and $0 can be used in a name (i.e.: $0-samplel)
to avoid crosstalk. The size of the array defines how many elements it
will hold. If the array will be used to control a 16-step sequencer, the
only 16 elements are needed. But if it will contain a two seconds of
audio at a 44.1KHz sampling rate, then the array would require 88200
elements. (T he array can also be resized later, however, when the
soundfile is loaded into it.)

174

The "save contents" button will cause Pd to save the contents of an
array within the patch file. This is useful when it stores data that might
be used each time the patch is opened, for example to modulate the
frequency or amplitude of a sound. However, this is not recommended
if soundfiles will be loaded into it, as the audio data will be stored as
text information inside the Pd patch!

The next three options, "draw as points", "polygon" or "bezier curve",
define how data will be visualized: as discreet points (horizontal lines),
as cornered zigzagging connected lines or smoothed bezier-curved line:

size=20 size=89200

sparse-points dense-points

sparse-palygon dense-pol ygon

sparse-bezier dense-bezier

The last option is whether to display the array "in new graph", or use
an existing one ("in last graph"). Most often, each array will use its own,
new graph. However, displaying multiple arrays in one graph can be a
way of visually comparing information.

USING ARRAYS TO DISPLAY AUDIO

Sometimes arrays can be used to display the waveform of sound
signals. Using [tabwrite~], sound signals are recorded into table. Every
time a [tabwrite~] receives a "bang" from the [metro] object, it will
start recording (sampling) the incoming audio signal into the array,
graphing it when it reaches the end of array:

175

arrayl

met ro SO0

tabwrite- arrayl

In above example, [tabwrite~] is sent a "bang" every half second to
continuously display the waveform produced from two [phasor~]s, and
a [clip~] object.

WRITING DATA TO AN ARRAY

Data can be put as values into tables too, simply by sending an index
number (X-coordinate) and a value (Y-coordinate) to [tabwrite] (no
tilde!) object:

random

wrap around at 100

[mod 1

_ 1| randem
betywasn
1 and -1

waluz inder
Q.4 4E

tabwrite random

In above example, for each index number (they are produced with a
counter and start from beginning (0) with [mod 100] at 100) a random
value between -1and 1is written to a table.

READING DATA FROM ARRAYS

Tables can be read (looked up) in two ways: to get discrete numbers,
or to directly read them as audio waveforms. With [tabread] an index
number is taken as an X-coordinate and value in the table (Y-
coordinate) is output. In the following example an array is used in a
repeating sequencer-like fashion as a simple rudimentary control for
an sawtooth oscillator:

176

met ro 250

[draw in with a mouse)

[size = 18}

With [tabosc4~] table data is used as an oscillating waveform - like
sinewave is used in sinewave oscillator [osc~] and sawtooth wave is
used in [phasor~]:

modulation frequency

table?

draiw me!

make sure size = r2+3 [i.e.:131

In above example an oscillating waveform from table7 is used to
modulate frequency of an oscillator that is using the same waveform
to synthesize sound. Changing the table in realtime will influence the
modulation and oscillation. Source for hours of fun!

USING ARRAYS TO PLAY BACK SAMPLES

Another way to read data from a table is to play it as a sound
recording - which usually is, especially if array is filled with data from a
sound file. For this [soundfiler] object comes handy, as is shown in the
following examples. In first, array is played using simple and
straightforward [tabplay~] object, which offers flexibility of playing
from a specific point for a specific length. Remember, digital sound
recording is, simply put, high frequency measurements (sample rate,
i.e.: 44 1kHz) of sound vibrations. In Pd, when soundfile is loaded into a
table, every single measurement (sample) can be accessed. That is why,
44100 samples equals 1 second (in most cases).

177

openpanel

read -resize $1 samp1e9E

sampled

"bang" eor @ plays whole sample

play starting at 44100th sample

play starting at beginning
for 44100 samples

play from 441008 through 45033
(1000 samples)

Following to the aforementioned possibility of accessing individual
samples within a sound recording that's been loaded into an array, a
[tabread4~] object allows more computational flexibility. Below,
[phasor~] object produces ramps (sawtooth wave) from 0 to 1at the
audio rate (commonly 44100 times in a second). If frequency of the
[phasor~] oscilator is Hz, it will output a ramp from 0 to 1in exactly
one second. If multiplied by 44100 and sent to [tabread4~], it will read
first 44100 indices (indexes) in a second and output the values as an
audio signal - example below tries to demonstrates that with a twist
or two:

length (=)
openpansl R

read -resize $1 samplelB[

samplell

* 44100]

*- 44100

First twist comes from an idea of changing the frequency of phasor,
and this way slowing down the ramps. T his would however shift the
pitch of the sound - like changing speed of a vinyl record. This is
prevented by multiplication with higher number of samples, which
effectively turn the parameter into the length of a sample that is being
looped instead of slowing it down. Looping is here because [phasor~]
starts again at O after it has reached 1. The other twist is the starting
point, which simply shifts the whole loop by adding number of samples
(seconds multiplied by 44100).

178

179

VIDEO (GEM)
TUTORIALS

41. GEM

42. WHAT GEM IS FOR

43. IMAGES, MOVIES AND LIVE VIDEO
44. VIDEO MIXER

45. PIX EFFECTS

46. RECORDING

47. GEM WINDOW PROPERTIES:

48. VIDEO TRACKING

180

41 . GEM

GEM which stands for "Graphics Environment for Multimedia" is a tool
for visuals. With GEM it is possible to generate and manipulate 2D and
3D graphics and animations, process & modify media like images &
videos and generate particles.

This manual will explain the main objects that comprise GEM, and the
basic techniques you will need to get started creating your own GEM
projects.

A good start to get an idea about the various possibilities what can be
done with GEM is to take a look at the examples & help patches that
come with GEM. They can be can be accessed via the Pd Help Browser
(in the Help menu, under "Browser..."), under "examples/Gem" or have a
look at the GEM manual in "manuals/GEM."

Help Browser
File Edit Put Fnd Wndows Media Help
1.manualf Jdp! 01 .basicf 00.3impleVideo.pd
2.control.examples! adaptivel 02.advanced/ 01.¥ideoPaint.pd
3.audio .examples/ creh! 03 lighting/ 02.VideoSphere.pd
d.data.structuress cyclones 04.pixf 03.movement_detection.p
5.referencesf deprecated/ Ddvideof | 04.videoRTX.pd
6.extems/ ekext! 05.text!
7.stufff GemI | | |06 particler
gripd/ 07 .texture/
manualsf gyref 08.iof
mediaf hardvraref 09.0penGLf
sound/f hcsf 10.gislf
hid/ __| 199.games/
iemlib/ dataf
iemxmirpc!
isf
keyboardkeys!
memento/
msdf
| [nopoly 4/ | Il
/ [nepoly~1] F i

GEMis a Pd Library and comes ready to use as a part of Pd-extended.
It was initially written by Mark Danks. Some of the past and current
GEM developers are IOhannes Zmélnig, Chris Clepper, James
Tittle(tigital), Cyrille Henry.

181

42 WHAT GEM IS FOR

GEM is the part of Pd used for creating motion graphics. You can use
GEM to create and play back videos and still images, mix videos, draw
shapes in 2D and 3D, move objects and shapes around. Because it is
part of Pd, you can make your visuals react to sounds, generate them
from sounds themselves.

GEM & OPENGL

Since GEM is based in a large part on OpenGL, we recommend learning
about OpenGL, and 3D graphics in general. The main OpenGL book is
known as the "Red Book," titled OpenGL Programming Guide: The Official
Guide to Learning OpenGL. It is outside the scope of this introduction
to get into the details of 3D animation, but we will do our best to
explain the basics.

THE VERY BASICS OF RENDERING

When your graphics are "drawn" into the computer screen, we call this
process rendering. Quite simply, your graphics may come from many
different sources, such as video files, image files, and algorithmic
animation, but at some point they all need to be combined together
and displayed as pixels on your display, whether that display is a
computer monitor, TV, LEDs, or a projector. Since you may not be
drawing to all the pixels on your screen at once, we call this area a
"window." You are probably very familiar with the concept of
different windows on your computer.

The end result of the rendering process, the section of pixels that will
be drawn to the screen, is called a "frame." Rendering happens
discretely, at a certain number of frames per second (e.g. the
framerate). Think of it as if the frames were images on a film strip,
flashing by. Each one is an individual, separate image, and the illusion
of motion is created just like in film, by showing sequences of slightly
different frames. 25 frames per second (fps) is the default, and
around 15 fps is about as slow as you can get before you lose the
illusion of movement.

You should be aware that complex graphics may take a long time to
render, possibly longer than the normal time between frames. In this
case, you will not be able to reach the framerate you've set.

[GEMWIN]

[gemwin] is the GEM object that represents the window into which
your graphics will be drawn. It controls the timing of your graphics, by
scheduling when frames should be drawn to the screen based on the
framerate, and discards them if they have taken to long to render (is
this true?). By default it also clears the window every frame and sets
it to a "background" color, specified as a list of R G B values.

Messages to [gemwin] change the size of that window, start and stop
the rendering process, alter the position from which you look at your
3D, and control various other aspects of the window, such as
antialising. Other messages to [gemwin] are explained in detail in the
[gemwin] help patch.

182

create, 1 create window and start renrdering
=

| =
| l;clolor' 1@8@ set backgreund color to red

|
|| .' gi.ew 2@ -12 set the "comero” position
||/

FF,5M 2 turn on anti aliasing (smocth)

éerﬂwi.r' 38 set fromerate to 3@ fps

Fig. 3: Some settings for [gemwin].
GEMHEAD

[gemhead] is the start of a chain of graphics operations connected by
patch cords that should be executed every frame. Drawing
operations, including video effects, cascade from the top down, adding
to each other flow downwards across objects. This chain of
operations is triggered invisibly by [gemwin] according to the
framerate you have set. You can turn this automatic rendering off by
sending [gemhead] the message 0. Additionally, [gemhead] can be
triggered manuall by a bang, which is useful when you want to control
the order in which your graphics chains are drawn. With several
gemheads, you can force this execution order by either giving them an
argument or set their order number. Lower numbers are triggered
first. The default ordering number is 50.

turn gemhead cn an off

Q send bang to trigger rendering

-

genr‘ ead 99

Zenhenﬂ' 3@ 5@ is the default order number

Fig. 4 The number argument after gemhead defines the order number.

LET'S GET STARTED

We will start from the very beginning. GEM is based on the principles
of OpenGL. You can work with images and videos (which are by the

way a number of images that change with every frame), and you can
also work with 3D shapes like 3D models, curves or simple rectangles.

Here is a first example that displays an image in your GEM window.

NOTE: This image "subway.png" needs to be placed in the same
place as this patch..

183

=
create, 1 creote window ond stort remdering

gemwin the render context

emhead start o new render chain

Lx_textur'e= moke the image a "texture”: copy it inte the memery of your

iix_imge subway . png lood and store an image
i graghics card

l;zzct{;lnzll.e 4 3.‘=. apply the texture to o rectaongle

Fig. : A Basic GEM patch. The key objects in this example are [gemwin]
and [gemhead].

In order to open up a window into which you can draw stuff you have
to create an object called [gemwin] which is your render context and
you send it the messages "create" to create the window and "1" to
start the rendering.

Starting with a [gemhead] you create a “render chain”, that will draw
things into your GEM window. In this case an image which is mapped

onto a rectangle.

Here is how it looks like.

Fig. 2: GEM window

PIX_OBJECTS AND AND 3D SHAPES

184

The order in which objects are connected in Figure 1 might seem a little
strange to you. From your real life experience you would probably do
it the other way round: First grab a piece of paper or a t-shirt and
then draw an image onto it. In Gem this is different, you create the
image first and then you decide what you're going to do with it:
project it on a square, a sphere, a 3d model.

Another basic principle of how OpenGL works, is that you distinguish
between functions that affect your images and functions that affect
your 3d shapes. Images have to be mapped onto 3d shapes. This
means: usually no image will be drawn in the GEM window unless it is
associated with a 3d shape, very often a rectangle, but of course there
are also a lot of other shapes, more about that later.

Eventually, this gives us two sets of GEM objects: the one that relate
to image processing and another set that relates to shapes and their
transformations. The first group will get a lot of attention, especially in
the beginning of this manual, but on the other hand, always have in
mind, that images are only one aspect of OpenGL.

The objects that deal with textures are called pix objects and have the
prefix "pix_" in their object name. The doorway into the shape world is
called [pix_texture]. T his object sends the image from your CPU
memory to the graphics card memory from where it is "mapped" onto
one or several shapes.

185

43 - IMAGES, MOVIES AND LIVE
VIDEO

For any image processing you need a source image. T his can be a file
that you load from your harddrive or a live video feed. This chapter
will introduce [pix_image], [pix_film], [pix_movie] and [pix_video].

[PIX_IMAGE]

In the basics chapter we already used the object [pix_image]. T his
object allows you to load picture files. Supported formats are *.tif,
*jpg, *.png, *bmp and *gif.

To load an image into [pix_image] either add the filename as an
argument or send it the message open filename. If you want to select a
file using a file browser you can use the object [openpanell.

three methods to lood o file:

file nome as argument file nome as message click to open file browser
openpanel
lopen subway. pn open $1
f'Fp Y. png p
= I T —
pix_image subway.png pix_image pix_image

[PIX_FILM]

As with [pix_image] you can load movie files by passing [pix_film] the
file name as an argument, or by sending it an "open" message with the
filename. The list of supported formats may vary depending on your
installed movie codecs, but usually you should be able to play *.avi,
*mov and *mpg files.

Please be aware that sound is not supported by [pix_film] ([pix_movie]
neither). If you want to sync a soundtrack of a video to your images,
you have to first extract it using an external video editor.

[pix film] will play your movie automatically if you send it a message
"auto 1". The framerate at which your movie is played is dependent on
the framerate that was set with gemwin. The message "auto 0" will
cause [pix_film] to just display the current frame. You can use the right
inlet to scroll through your movie or jump to a certain frame. T hat
also allows you to play movies at different speeds, even backwards.

The rightmost outlet of pix_film will output a "bang" everytime the
end of the film is reached.

186

‘gemhead create, 1
= T

genwi.r'

auto $1 frame

B

:=1.x_FiLm tr"n:lir'.cl\rffl

/ }j end_reached
unpack @ @ @

318 32e 248
length width height

ix_texture

;ectur‘?].e & 3l‘=

[PIX_MOVIE]

[pix_movie] works exactly like pix_film. The only difference is that you
don't need [pix_texture]. You can directly connect the outlet of
[pix_movie] to a rectangle.

[PIX_VIDEO]

[pix_video] will grab live input of a camera that is attached or built into
your computer. Usually you can receive a video signal only once on
your machine, so if another application or even another Pd patch

already uses video input, [pix_video] will not be able to receive a signal.

On the other hand, if you have several cameras attached to your
system, you can use several [pix_video] objects and specify the the
camera devices with messages like "device 0" and "device 1"

187

A "dimen" message will let you set the resolution of your video image.
If you use a small resolution, your render engine will have less pixels to
render and thus be faster, but of course this will also decrease the
image quality. To test different resolutions you might want to set the
quality setting of [pix_texture] to 0. You will also realize that not all
resolutions are supported by your system. Just play around with dimen
to figure out how high or low you can set dimensions.

Gimen 802 682, creote, 1 open o GEM window with size B@@xG@d.

germwin
=ier“n"en:w.i
?evice 2 device count is zerc based. your first camera is device @
If you hove a second camera attached you con select it with
= "device 17.
device 1
B i
dimen 128 9@ try out a low resolution
= .
ix_video
it
hint: with guality 1, which is the defoult setting, wyour
5 video will still leck smooth. to see the real 168x128
guality 51 resolution of your image, turn off interpclaticn with

d = " : "
ix_texture quality @".

;ectur'gll.:é 5.33 4

RELATED OBJECTS

Finally, | also would like to briefly mention some other objects that
allow you to "create" images. [pix_multiimage] will allow you to load
several images at once. Use the right inlet to switch between them.
Also check out [pix_set] if you want to create an empty image. Or play
around with [pix_sig2pix~] if you want to feed your audio signal into an
image buffer.

188

GEM MINI-VIDEO MIXER..

One of the first things you can do with GEM it’s a "video mixer". A

video Mixer it used to be a "hardware" machine. basically, this machine

combines the two inputs into a single output. Into a V] setup, it used
to be a very important piece, because that was the machine that

allowed to mix in a creative way video content from vhs’s dvd’s video

cams, ipods, laptops w video output or any other device with a
compatible output..

Modern video mixers have more inputs, more outputs, different mixing

modes and effects.

In pd it’s very practical to "emulate" that classic setup, one of the
first benefits it’s that you can get rid of all that expensive hardware
and do exactly the same function for a quarter of the price of a
deccent video mixer.. (not counting the VHS’s, dvd players, video
monitors and so..)

These are the basic elements you need to make the simplest two
channel video mixer in gem:

Here we have two video players [pix_film], one video mixer [pix_mix]
and the "output" [rectangle]

IMPORT ANT: Pix_mix just works with same size images or movies.

Remember also that the slider that goes into the 3rd inlet of [pix_mix]
has to be scaled between 0 and 1.

emhead 2 TGemhead 3| you need gemhead to start the gem choin

U Q opens the dialog to select one wideo
\openpanel SOPEFDWEL infoBminitrenics. net
=oper' 31 open $1
=
/] ,fg] <--this teggle enables the "loop” mode
f /
[Tauto 51 / louto 51 -
= == . - create| creates the gem window
ix Fili ’ELL'F'LLH loods the video
pix_film == o
I - , . Dtur‘r‘s rendering on !
1 /’ - =3
L 7 estroy
éi.x_m'.x 2 mixes between inlet 1 and £ =
= reset
ix_texture texturizes the result inte... -

= = emwin
;ectur‘gl.e 43 &

This is a good starting point to study the basic structure of a video
mixer in gem but can be / should be modded when you want to make
a serious use of it..

You can for example render each element of the composition in an
diferent rectangle so you can modify rotation, position, size, etc in an
independent way, instead of doing that with the final mix.

Also | recommend to make abstractions like "pd player" "pd chroma"
"pd webcam".. So you will have a nice and clean modular interface.

1.5. ALPHA, SIZE..

To control the alpha and the independent size of a pix, we do the
next:

189

NOTE: We need to transform the colorspace into rbga and enable the
alpha blending. We can see which object do that function and where
they should be placed.

Z;emheaa
é[.l'l.ph; ;:olor' 1850
TT:I 1 I'.T:r'eate, 1
.if'm og |
Ppix_video ki
g‘tx_r‘gba 2
| <-ppacity
|| 8.618
| =
b e -5 5
glx_alpha 1T l<-scale X
:] =1.57
pix_texture =
=5 5
L 1 k-scaleY

gectangle 4 i\jz 165

1.6. COLOR.

With [colorRGB] we can colorize the video, images, etc.. there’s also an
object called [color] but in that case, we don’t have an independent
"inlet" for each color component. If you want to make changes in the
opacity, you have to add the [alpha] object before the [colorRGB].
Default values are (0 0 0 1).

Eemhead U pix_load

ix_video
aLpha=
R
5] G
B | s
—
1 j:l] A
.ﬁ’F
colorRGB ™2

éix_textur'z %reate, 1

= 3
square 3 CEWLN

2- ADDING WEBCAM / LIVE VIDEO INPUT:

In Gem, you can use a classic usb webcam as video source and also
any standard DV camera connected to the firewire port.

It’s also possible to connect several cameras into pd. In this case,
check the help of [pix_video] and you will see how.

This is the structure of a minimalistic "video input" apparatus: (for
more info cick help in pix_video.)

This is all we need to see the webcam in the GEM window in osX. for
linux

190

create, 1| <- clickme.
=

e
||I destroy

gemwin <- you need this..
emhead

ialog <- configure cam

|

éix_video

ix_texture

;‘ectan;le 43

To add pix_video to the gem string we make this:

%emhead 3 [create
openpanel ‘
dial
gpen $1 j? 0g estroy

| #men 512 384 T"'eset
| auto $1 r

=

= - - dimen 512 384
ix_film ix_wvideo
i genmi.n

ix_mix @ mixes between inlet 1 and 2

1'.J|t_‘cz3;nnturel=l texturizes the result inte...

E B
= =
Lectangle

Here | added the message [dimen 512 384(to [pix_video] to adjust
the dimension of the two sources to mix. If the size of the two
sources in pix_mix doesn’t fit, this will not work! .

By default, pix_video outputs 320x240 that is a decent resolution for
realtime live video mixing so if you want to work in any other
resolution, keep this in mind.

3-CHROMA KEY

Let’s continue modding the "mini_mixer" ..

191

%emhead) 2 255

255
operpanel| /G~ [
=
open $1 range 20 $1 §1
L/)E.“t“ 5 emhead 3
- : dialog
L - imen 512 384
direction §1 ———
pix_video

—_— :
ix_chroma_key <-combine streams, only some size

fli.x_texturz

J_-. Zr‘eute
;ectun?].e 4 3= gel o, |destroy

Here, instead of the [pix_mix] we have the object [pix_chroma_key].
this obect its useful to make compositions and making transparent
some parts. The [direction(message defines which video inlet will be
"processed".

Also in Gem we can use another standard blend modes like add,
substract, multiply, difference... we can find the objects in
/reference/Gem or we can call them directly: [pix_subtract] [pix_diff]
[pix_multiply] [pix_add].. It’s recommended to take a quick look into the
help of this objects before using it, otherwise, probably you will get
only Absolutely white images or absolutely black....

In this example, we can see [pix_diff], this objects shows the difference
between two pixes.

dlemh ead 2

openpanel
open $1
f{ %E'to 51 2 ;TIT; ’
EE;_F fj_]_;’/—: imen 512 384
e ix_video

pix_diff <-combine streams, only some size
%Lx_texturz Creates
;ectanzle 4 3= ge in| destroy

if we change "diff" for "multiply", this is what we get..

192

=emheud z

openpanel
open $1

Q = [gemhead 3
/ N

auto :‘3,-_//‘“ dialog
ix_film imen 512 384

/i‘—vide‘)

F 1tipl <-multiply the pixes
b (easy to get blaock..)

fix_texturz [ereate
;ectnnzlle 43 geriwi destroy

'=emhead Z

cpenpanel
open $1
Q = =emhead 3
auto :E/F'lg dial

ialeg
ix_film imen 512 384

f’/"gix_\rid -

ix_odd| <-odd pixes
(easy to get White..)

fix_textur‘z [Ermate
I;"Iectcmzll.e & 3= g i l?;Ilestr"ﬁn)"

193

45 PIX EFFECTS

In GEM, there’s a wide variety of effects and filters that can be
inserted in the GEM chain.you can find most of them in the folder
/reference/Gem.(listed mostly as [pix_"something"])

The structure of the pix effects in Gem it’s similar. we have at least
one inlet and one outlet that are used to integrate the effect into the
GEm chain and sometimes, additional inlets used to modify the
parameters of the effect. (via message or directly with a number) Of
course we can know more about the effects and his parameters by
clicking into his help.

| reccommend to integrate the effect in the gem chain just before the
[pix_texture]. any other effects can be added to the chain in any
desired order. (each order, probably will have different result..)

Since there are many effects in GEM (this could be a new book.), It’s
better to explain very clear how is the typical topology of a pix effect
and anyone interested in a particular effect, can check the help for
more info.

[PIX_LUMAOFFSET]

genheud Q pix_load

pd image

smooth $1

=2

| <-parameters
|offset
Fill 51| [

L o
==i.‘f._].ur"«.u:i’i’sEt <-pix effect

£i.x_textur'e= c‘:’%reate, 1

= :
square 3 CrLN

[PIX_DUOTONE]
w ' image
' -
@.2@8.18.2
I=I1 2 @ <-parameters
N
fi:f._duotone <-pix effect
£ix_texturz reate, 1
Square 3= %emin

link to pix_gain and pix_threshold zip file

gemheudﬂ pix_load

194

http://en.flossmanuals.net/floss/pub/PureData/GEMPixEffects/GEMPixEffects.zip

[PIX_GAIN]

= =
dimen 400 300, create, 1 push FO create import cyclonefcounter
Gem window = =
gemwin import Gem
open bee_rose. mov P e
emhead push to Load adjust speed
=
opeh £1 It b f
r frame metro 20 7 aadbang
E1% fllm:. 2 r wbf
urpack f £ f ==
= = cqgnég;
a rumber of frames
= nbf 5 frame @
r nbf

[pixz_gain] is an cbject for wideo that works similarly to
gain control in audic by multiplying the input with either
an overall factor or @ separate factor for each color
channel - red / green ¢ blus.

=
o

gererate color-wise factor for each color channel

Loadbang “__\: L =.=,——/.=./—
z 55|/ 255

;
] e

onfoff

[colorgrid] outputs numbers in the range 0-255
while Gem uses color values from @ to 1

J.x galn comment

ectangle 5.33 4

flx texture
r
=

[PIX_THRESHOLD]

195

dimen 408 208, create, 1 push to create

Gem window

gemwin
Epen baz_ rose. mow
emhead push to load
operpansl | your movies
open £1
r frame
=3ix F_i.'Lml=l
unpackl:f f f=
o] rumber of frames
=
s nbf
r mbf
comment
[o
[pix_threshold] is
above the value is
zeroed out.
loadbang _\b
1
onfoff

196

1x_threshold comment

L
fix_texture

= =
rectangle 5.33 4
=

=
import cyclomefcounter
= =
=.i'"p°r't Gem
r nbf
adjust speed

| —
tbf
—

metra 20 Loadbang

2 r nbf

counter

s frame @
=

a simply threshold filter. Any pixel
passed. any pixel below the value is

generate color-wise factor for threshold

[colorgrid] outputs rumbers in the range 0-355
while Gem uses color values from @ to 1

46 - RECORDING

Gem window

Here [pix_record] will be used to make a simple animation of png
images (including transparency).

The patch might look a bit complicated but basically:

- the top quarter allows to create a Gem window and import Gem and
cyclone/counter

- the lower-right part will mix two pictures at a certain rate given by
the [metro] object

- the lower-left part will trigger recoding through [pix_record]

Note that pix_record can (at the time of writing) only record one pix
chain - you cannot save a texture projected on a geometry (try with a
[cube] for example).

197

Fle Edit Put Fnd Windows Media Help

gem_recorddl. pd
rogem_win

=l @9 [gemrin 35 25 is the number

F
=.1.mp0r‘t Geml=I
Z = of frames per second

Eimpor‘t cyclone;"counte;
tbbhb

dest roy create, 1/ dimen 400 200 border 1, offset 0 0@
s i i jis

5 gem_wih s gem_wih |5 gem_win S gem_win

[gemhead @

Loadbang

b —=
metro 20| 2

=P L gpen 8. png open 1. prg counter 8 108
tbbbh ix_image fix_image S loa
T _ -
auto 1 slpha 1 alpha 1
. G.393
record @ codec jpeg /
file mymowie. mowv ix_mix

=
record 1 1x_texture
=

= . tangle 2 3|
codeclist [ectangle

o
gix_ record
=

wrrfpluginclrcus

198

47 GEM WINDOW
PROPERTIES:

This Chapter show how to go to fullscreen mode, (and leave it again)
and how to setup the Gemwindow to work on the second screen.

Another options that we can perform with gemwin for example are
killing the upper border, kill the macosX menubar and hide the mouse
cursor over the gemwin (@ must be for interactive installations..)

1- FULLSCREEN

<-- 1st you need to activate this
fullscreen §1
=
Ereutc <-=- then you will creote a fullscreen window.
destroy

to return to windowed mode:
gemir destroy, deselect the teggle and create again.

2-EXTENDED DESKTOP,

Most of the time, you have to deal first with your operating system
before even opening pd...

While nothing is attached to the video output of the computer, the
graphics card reserves for him all the performance, so usually you
have to connect the vga/s-video cable or in some computers, like the
new macs, you have to connect an "adaptor" (DVI-vga /DVI-
composite.) to "inform" to the graphic card that you want to use the
video output and then, your screen will turn black for one second (in
case of 0sX) and now you are ready to go to the display preferences/
screen settings .. and turn on the second monitor, set the resolution
and "extend desktop to that monitor" (in case of windows) and set
resolution and mirroring (on or off) in osX.

Note: Some times is better plug the video cable with the computer
"off" an then start the computer in order to let the system recognize
and adapt to the video output.

Mind that if we are using composite or s-video cable, resolutions
greater than 720 x 576 are only going to cause trouble..

Also when you use DVI/Vga, the more resolution you use, less
performance..

Apart of this things, When we want to use another screen or when we
want to "project” the output of Gem, we are going to use at least two
basical things: "fullscreen" and "offset".

in this patch we can see how it works..

199

=
create, 1

[gestroy

|
|,|;:| <--on/Soff

I
| =Ful].scr‘eer' $1

jsFFset 148 @

gemi.r'

Just mind that until you destroy and create the gemwin again, the
changes in "fullscreen" or "offset" doesn’t take effect.

Offset it’s the amount of pixels that you have to displace the gem
window. Tipically, you just need to displace the gem window in the X
axis as much as the width pixels your screen has. (1024, 1280, 1440..). In
the case of laptops, sometimes it’s required also to add a little bit of
offset in the Y axis, Something like 20 or 40 should be enough...

Remember also that GEM it’s able to perform complex 3d things, so in
addition to this basic setup objects, we can also set up a "lightning", a
background color, a "camera position" and also fog! ?!

200

48 - VIDEO TRACKING

A precondition of a good working simple motion detection is that you
can disable the autofocus on your camera and that you have a good
control over the lightning situation (so no sun/cloud change or large
shadows).

The first step to determine the position of a moving item in the field
of view of your camera is to compare frames to each other. In a
stream of video you can either compare the previous to the current
frame or a previously selected frame to the current one. The fist
method will give us the movement, but we will lose the coordinates
when the movement is very small or stops.

[pix_movement]

Comepare the previous frame to the current one. It takes a threshold
value (0-1) as an argument and in the second inlet.

=

= .

create, 1 fenr‘euc
@, destroy . .

s ix_wvideo taokes the video image from your comera

gemwin -
ix_movement @.2 compares the frames

=
lﬂ_tEKtLlr"F: textures the video image

rectangle 4 3 onto an rectangle

This will result in all pixel information blacked out exept the space
where a difference is detected relative to the previous frame. We will
get to the point how to measure that to trigger things when we
compared it to

[pix_background]

It is the cousin of pix_movement with the difference that we can set
the reference frame to which the current frame is compared. This is
called background substraction.

create, 1 emhead
= .

2, destroy —
' ix_video

germwin =
reset

Isl
T

: =
f. ¥_background
f’. x_textur‘z
[

ectangle 4 3

Click on the reset message to pix background to set the current frame
to the reference frame.

A drawback of pix_background compared to pix_movement is, that if

lightning situations change, we will have to re-reset the frame to
compare the current frames to.

[pix_blob]

201

either way, we need another object: [pix_blob]. The monochrome
information we receive of Pix_movement/pix_background are called
blobs. The [pix_blob] object will give us mre infomations about those
blobs, which we need if a) we want to trigger things if something
moves in the field of view of the camera (pix_movement) or b)
something is in the field of view of the camera what wasn't there when
we set the reference frame (pix_background).

=c'r'ec|te, 1 ienl"eud

@, destroy

ks ix_video

rgEr"M"i.l" 5
ix_rgba comverts the colorspace

pix_movement 0.2

=s"Ei.

olpha enables the alpha channel

ix_textur‘z

Bixplod &

o

Q1

L

Zectur'lzll.e 4 3l‘=

With this patch, if you move in front of the camera, you will see the
output of pix_blob's last outlet changing. Where | left the empty box
you can continue to add something you want to have triggered.
Possibly a [> 0.001] which is the threshold followed by a [change] and a
[select 1] to generate a bang each time the movement goes higher than
a defined value.

Getting the coordinates

OK, we built a motion detector, but what about the coordinates?
Where is the actual movement happening in the image? [pix_blob] has
two more outlets which are just that.

note: i was trying to translate those patches into a manual:
http://www.uni-weimar.de/medien/wiki/Bewegungsmelder

The Chapter needs to be extended to cover pattern recognition
(TUIO), pix_opency (face recognition), blobs and multiblobs, IR
illumination, multitouch technology and Kinect depth
information/skeleton data.

202

SENSORS

49. GAME CONTROLLERS
50. PDUINO:

51. INSTALLING ARDUINO ON FEDORA 12
(X86_32)

52. SOMEBODY SHOULD SET THE TITLE
FOR THIS CHAPTER!

53. INSTALLING EXTERNALS

54. SOMEBODY SHOULD SET THE TITLE
FOR THIS CHAPTER!

55. PDUINO LIGHT SENSOR

203

49 - GAME CONTROLLERS

First, download the patches for this chapter: GameControllers.zip

There are many off-the-shelf Human Interface Devices (HIDs) which
can serve as performance controllers. Most game controllers perform
quite well in live performance since they were designed for fast paced
video games. Gaming mice and joysticks and graphics tablets are
especially good controllers. These types of devices can be used with
Pd with very good accuracy.

START WITH THE KEYBOARD

The most basic game controller is the keyboard, and basically every
computer has one, so its a good place to start learning about how to
use game controllers with Pd. Pd comes with a set of very simple
objects for getting the key press information: [key], [keyup], and
[keynamel]. In the example below, you can see the result of pressing
and releasing the "Escape" key.

key keyup keyname
L L Z =
27 EZF o Escape

Let's start with [key] and its partner [keyup]. [key] outputs when the
key is pressed down, and [keyup] outputs when the key Both of these
have a single outlet which outputs a number based on which key was
used, so here "Escape" has a key number of 27. This key number is
based only on the position of the key, not the letter it types. This is
useful since there are many keyboard layouts for different languages
and countries.

key keyup key keyup

Escape(27): select Zz select Zz Spoce(32): select 3Z select 3Z

So we can now attach messages to the [select] boxes to make the
space bar (key number 32) control a noise burst, and the Escape key
(key number 27) control a 250 Hz sine wave. We make [key] send a 1
to make the [noise~] output sound to the [dac~], then [keyup] sends a
0 to turn off the noise.

key keyup key keyup
Escape(Z7): select 2? select 2? Space(32): select 32= select 32=
T = I = z = I =
1 [] 1 []
.—"= = .-"-=
05C~ ZSBI ’__---""- mise~I L
_..__‘_‘___“: - ..,\‘1: -
dac~ dac~

So that illustrates the most basic way of getting data from the
keyboard. It is useful for many things, like turning the DSP on and off,
creating the [gemwin], or toggling different parts in a performance
patch. You could all of the keys to make a laptop piano.

MOUSE CURSOR

204

http://en.flossmanuals.net/floss/pub/PureData/GameControllers/GameControllers.zip

Basically every computer has a mouse that controls a little arrow on
the screen. This little arrow is the mouse cursor. In Pd, we can get
information about that mouse cursor using the [cursor] object. One
piece of information that is fun to play with is the position of the
cursor on the screen, called the x, y coordinates. When you bang the
[cursor] object, it will output the current information about the position
of mouse pointer. The "motion" message gives us the x, y coordinates.
The message looks like "motion x 361" where 361 is the x position in
pixels, or there is also "motion y 237" and 237 is the y position in
pixels. If you use [print] you can see the "motion" messages in the Pd
window.

Tba ng

[e
print

print: motion x 361
print: motion y 237

Right now, we are only interested in the "motion" information, so we
are going to use [route] to get just the "motion" messages from the
first outlet on [cursor]. To get updated position information
automatically, we can "turn on" the [cursor]. It has a built-in clock, so
you can turn it on just like [metro]. The difference is when you turn on
[metro] you get regular bangs, when you turn on [cursor] you get
regular information about the mouse cursor and mouse buttons. A few
[route] objects will sort this information to get just the x, y position off
the cursor on the screen. The [route motion] sorts out just the
messages related to the mouse motion, or x, y position. Then [route x
y] sorts out the x and y positions to separate number boxes so that
we can see them.

Cursor

route motion
=

route x
LY L
= &
g @

So now we have two floats to work with, perfect for controlling the
frequency of two [osc~] sine wave oscillators. Create two [osc~]
objects, then connect one float to each, then connect both [osc~]
objects to a [dac~] to output the sound to the speakers. Be sure to
turn on the DSP audio computation, and you can now control these
two oscillators with the mouse!

cursor
route motion
route x

Lol B8l
=] =)
®x 378 495 ¥

O5C~ OSC~

dac~

USB HID

205

You can also use just about any HID, such as joysticks, digitizer tablets,
gamepads and ‘stomp-pads’ are widely available and inexpensive. Most
of these HIDs are well built but not expensive, since they are made for
the mass game market. The HIDs that are designed for "gamers",
serious video gamer players, are very good quality but can cost quite
a bit more.

Plug your USB joystick or gamepad into your computer, for example,
and they will be recognized by your operating system as HID devices.
Pd can get data from HID devices that your operating system
recognizes using the [hid] object. For this example, we are going to
start with a gamepad. This one is called the Logitech WingMan
Gamepad Extreme, it is old so you can buy it for less than US$20. It is
more fun than your average gamepad because it had a tilt sensor in it.

Pr—— Pd
IN out compute audio
0 0 DIO peak meters
CLIP cLP ¥ console

Device 3: 'Apple’ 'Trackpad' version @ @ location x5 @ ()) Untitled-1

device type: page: @xff, usage: Bxl usage 1 0
x0Ba1
wvendorID: @x@5ac productID: @x@Zla
Device 4: '' 'Trackpad' version @ & location @x5dZ@od f"i"t
device type: mouse usage page: Ox9ool -
vendorID: @xB5ac productID: @xB2la |hid|
Device 5: 'Apple Computer” "Apple Internal Keyboard loc
ation @x5d200800 P
device type: consumer usage @x1 usage page: @m usage: m1
wvendorID: @x@5ac productID: @x@Zla
Device 6: 'Legitech Inc.' "WingMan Gamepad Extreme' wersion 252 @ location @xlaZ
Dodos
device type: joystick usage page: @x@oel usage: @xoop4
vendorID: @x@46d productID: @xcZ08
Device 7: 'Logitech' 'USB-PS5/2 Optical Mouse' version 8448 @ location @x3a2@e00@
device type: mouse usage page: @xeoeL usage: @xeenz
vendorID: @x@46d productID: Bxc@ld

Start by creating an [hid] object and see what it finds. Send the "print"
message to [hid] to get the list of HID devices that the operating
system recognizes. We are looking for Device 6: 'Logitech Inc.’
'WingMan Gamepad Extreme’ version 259 @ location 0x1a200000, the name
matches the name of the gamepad above.

206

N ¢

The gamepad is device 6, so send [hid] the "open 6" message. Then
create a "toggle" from the "Put" menu, hook it up to the left outlet of
the [hid] object. [hid] has two outlets: data comes out of the left outlet
and status messages come out of the right outlet. We want the data,
so we are only going to use the left outlet for now. Create a [print]
and attach the left outlet of [hid] to that [print]. Now we are ready to
see some data in the Pd window, turn on the toggle and you should
see a lot of data when you move the gamepad and press buttons.
NOTE Make sure you select your (device #) before turning on the
toggle switch in order for it to work properly.

—~ P
IN out compute audio
0 0 DIO peak meters
cup CLIP console
Device 5: "Apple Computer' 'Apple Internal Keyboard / Trackpad' version 24 @ loc F
ation @x5d2eo000 ® O O Untitled-1
device type: consumer usage ©xl1 usage page: €
wvendorID: @x@5ac productID: @x@Zla =
open &
Device 6: 'Logitech Inc.' 'WingMan Gamepad Extreme’ : = 1laZ
20000 | lrint
device type: joystick usage page: @x@@@l
vendorID: @x@46d productID: @xc2@8 |
Device 7: 'Logitech' 'USB-P5/Z Optical Mouse' wversior print
device type: mouse usage page: Bx@00L A
vendorID: @x@46d productID: @xc@ld
print: abs abs_x 496
print: abs abs_y 462
print: abs abs_x 358
print: abs abs_y 596
print: abs abs_x 277
print: abs abs_y 758
print: abs abs_x 493
print: abs abs_y 618 1
print: abs abs_x 551 a3
print: abs abs_y 395 4

Now we can do something a lot more fun, let's make a simple
instrument. We can make the left-right X axis of the gamepad control
the frequency and the back-forth Y axis control the amplitude. We
need to understand a little about the messages coming out of the left
data outlet to use them. The data messages that come out of the left
outlet of [hid] always have three parts: "type", "element", and "data". A
message representing the gamepad's left-right X axis might look like
"abs abs_x 254" or "abs abs_x 3". So we need to [route] those
messages to get just the numbers. Then hook up some number boxes
to see the numbers change.

hid)

route abs

route abs_x aobs_y,

527 | 481

207

Now, the last step is the best, we get to make some noise. This
example uses an [osc~] but you can use any synthesizer that you want,
or even movie players, 3D shapes, or whatever else you can control
using numbers. After all, once you have a number in Pd, it is just a
number no different than any other, and you can use that number to
control anything else. So we can use the X value directly to control the
frequency, so hook that up to the left inlet of the [osc~]. Then create
a [*~] to control the amplitude. For amplitude we want a number
between 0 and 1. This gamepad has a maximum value of 1023, you can
find that out by moving the gamepad around and watching the
numbers. So we will divide the Y value using [/ 1023]. Then connect the
[/ 1023] to the right inlet of the [*~]. Last, create a [dac~] to output the
sound to the speakers, and connect the outlet of the [*~] to the
[dac~]. Turn on the DSP, and you have a simple instrument!

Eper' 6 Eper‘ & Eper' 6
| orint \ print \ lprint
%-.j %j %-.j
hid hid hid
route |:|b5= route ubs= route |:|b5=
route abs_x abs_y, route abs_x abs_y, route abs_x abs_y,
X 578 el Y X 578 481 Y X 558 1823 |Y
_oscf' osc- 7 1023
%}per' &
"-, Zr'i.r't
\ J
hid
route abs

route abs_x ubs_};

X 539 491 |Y

osc.| |/ 1823|

What do "abs", "rel", and "key" mean?

Any data message from [hid] that has "key" as its first element means
that it is a button or key of some kind. This includes keyboard keys,
mouse buttons, joystick buttons, etc. The X,Y,Z and other axes are
often labeled as "abs", which is short for "absolute". That means that
a given left-right position of the gamepad will always have the same
value. So it is an "absolute" measurement of the position. There is
another kind of data that is in contrast to the absolute "abs" data, it is
"relative", which [hid] calls "rel". A mouse outputs relative data, for
example. Each time it outputs data about the left-right X position, it
reports how much it moved since the last time it sent the X position.
So it tells you the "relative" position of the mouse, it is always
"relative" to the last time the mouse sent data.

MAKE YOUR OWN HID

It’s possible also to build a custom USB HID device with a
microcontroller and few more parts to plug analog sensors to it and
then send the data to pd. This is a USB HID board called "minia" based
on the microcontroller atmega 8:

208

and this is the USB HID controller finished with infrared sensors,
accelerometer, potentiometers, and pushbuttons.

HID It’s also the protocol used to transmit the data of the sensors,

buttons, etc, through the usb cable and also via bluetooth or
infrared...

One of the advantages of this protocol is that is "plug&play" by
definition and most of the USB HID devices doesn’t need any drivers
to work.

Another good thing about HID protocol is that it’s optimized for usb,
so is faster and easier to use respect to other protocols like "serial"
that requires more complex hardware and it’s own drivers.

HID TO PD

To read HID data from a device in pd there are several possible
objects. we can use the object [hid] in linux / osX and [hidin] in
windows.

Before opening pd, we should plug the device, otherwise this probably
will not show up..

To "inspect" for HID devices (internal and connected to the usb) we
send the message "print" to the object [hid] and then, we can see in
the console which HID devices are detected with pd

NOTE: In some computers, there are small electrical differences
between the USB plugs so sometimes, if a USB HID device doesnt
show up, we can solve this by changing the plug and restarting pd.

209

To "inspect" for HID devices (internal and connected to the usb) we
send the message "print" to the object [hid] ([hidin] in windows) and
then, we can see in the console which HID devices are detected.

We can see here also that pd assigns a number to each device.

this number is used to select which HID device we are going to use to
get data.

[hid] ®.7, written by Hans-Christoph Steiner <hans@eds.org>
compiled on Jul 29 2008 at 03:26:57

® O O * HIDinspector.

Device @: "Apple Computer' 'Apple Internal
@ location @x1dZe0000

device type: keyboard usage page

vendorID: @x@5ac productID:
Device 1: "Apple’ 'Trackpad' version @ @ 1
device type: mouse usage page
vendorID: @x@5ac productID:
Device 2: 'Apple’ 'Trackpad' version @ @ location @x1d20e0oe
device type: page: Bxff, usage: @x1 usage page: BxBBff usa
ge: BxBoOL
wvendorID: @x@5ac productID: @x@z2ib
Device 3: '" 'Trackpad' wersion @ @ location @x1dZ200060
device type: mouse usage page: @x@od1 usage: @xoonz
vendorID: @xB5ac productID: @x@2ib

Device 4: "Apple Computer' 'Apple Internal Keyboard / Trackpad' wversion 24
@ location @x1dZe0000

device type: consumer usage @x1 usage page: @x@0@c usage: @x@@
528
vendorID: @x@5ac productID: @x@Zlb
Device 5: "Xxxxx' "X0xx-avr® version 256 @ location @x1dl9eope
device type: joystick usage page: @x@@@l usage: @x0op4
vendorID: @x@e0e productID: @xeeal

A

This device "5" (xxxxx-avr) is that USB HID device with sensors and
potentiometers that we can see in the other picture.

® 00 - hidsim'a'léj'Pd"' -

EIIIIIQIIIIIIIIISI

open 5 you need to specify in the diol which device you are using

rint press here to print HID devices into the conscle
j you need to turn on the [Hid] to make it work

hid @

route abs route the absclute volues received by the device
T =

route abs_x abs_y abs_z abs_rx abs_ry abs_rz abs

717 | ez | de2s | lezz | fezz | et

throttle|

I]s[fu

210

5 O - PDUINO:

Arduino is another microcontroller interface for creating alternative
tools to map physical interaction. It is the result of an open source
hardware project aimed at providing the art and design community
with a tool for creating electronic interfaces. By allowing users to
interact in various new ways, these new interfaces can be seen as
enabling more natural bonds with computers. Arduino consists of an 8-
bit microcontroller and a port through which to communicate with a
computer. This allows a connection to existing software packages such
as, Pure Data.

Pduino library provides communication between Arduino and Pd
objects, which enables us to control analog and digital sensors with Pd
interfaces. T his involves receiving input data throughout the sensors as
well as sending data to control and change states of the sensors. In
order make this communication happen there are some steps before
you can connect the Arduino board to your computer.

211

51. INsTALLING ARDUINO ON
FEDORA 12 (X86 32)

Software name : Arduino

Homepage : http://www.arduino.cc/

Software version used for this installation : Arduino 018 Alpha
Operating System use for this installation : Fedora Release 12
(Constantine)

Recommended Hardware : 300 Mhz processor (CPU) minimum

For an updated installation guide of the Arduino Software on Linux go

to: http://www.arduino.cc/playground/Learning/Linux.

Requirements:
® Sun Java SE runtime enviroment (JRE RPM.bin Package)

Check if Java is installed by typing

java -version
in a Terminal which can be found in "Application/System T ools"-Menu.

If Java is not installed or a version older then 16.0 is found, download
and install Java from http://java.sun.com/javase/downloads/index.jsp or
use yum:

su-
yum install java-1.6.0-openjdk

Next the packages uisp, avr-libc, avr-gcc-c++, rxtx and avrdude are
required, type:

su -
yum install uisp avr-libc avr-gcc-c++ rxtx avrdude

Now download the Arduino-Sotfware from

http://arduino.cc/en/Main/Software. Unpack the downloaded archive. If

you use the Arichive Manager, double-click the file and and click
"Extract".

BEE

=

File Edit View Help

] [lopen ~ ‘gExtract‘ @ %
Location: [@f

Name v | Size Type

| | I El
1 object (6.4 MB), 1 object selected (0 bytes)

212

http://www.arduino.cc/
http://www.arduino.cc/playground/Learning/Linux
http://java.sun.com/javase/downloads/index.jsp
http://arduino.cc/en/Main/Software

In Terminal:

tar -xvzf arduino-00??.tgz

In order to enable the communication with the Arduino with your user
account, add your user to the groups uucp, lock and dialout to

enable the necessary permissions.

su -
usermod -G uucp,lock,dialout username

Alternatively you can use the graphical user interface "Users and
Groups" which can be found under "System/Administration". First of all

you have to disable "Hide system users and groups" in
"Edit/Preferences" for showing the needed groups.

e)|
User and Group Lists | Qic

[] Hide system users and groups

New Users
Automatically assigned UID must be highest
Automatically assigned GID must be highest
Prefer that private group GID is the same as UID

Close

Select the groups, one after the other, click on "Properties/Group
Users" and activate your username. After logging off and logging in,

the changes take effect.

Start the Arduino Software with

cd <path to arduino>
./arduino

213

52 SOMEBODY SHOULD SET
THE TITLE FOR THIS CHAPTER!

Software name : Arduino

Homepage : http://www.arduino.cc/

Software version used for this installation : Arduino 018 Alpha
Operating System use for this installation : Mac OSX 10.4.11 and
Mac 05X 10.4.8

Recommended Hardware : PowerBook G4

Preparations

* check out http://arduino.cc/en/Guide/HomePage
» download and install Arduino.app and driver
Installing Arduino on Mac OS X

066 — Arduino

b 4 3 Objekte, 89,9 MB verfugbar

B &

Arduino.app Applications

-

FTDIUSBSerialDriver_10_4_
10_5_10_6.mpkg

* move Arduino.app into your applications-folder

* double-click "FT DIUS....mpkg"

666 & FTDIUSBSerialDriverinstaller” installieren

Willkommen bei: FTDIUSBSerialDriverinstaller

zum Installati von Mac 05 X.
© Einfiihrung Dieses Installationsprogramm fuhrt Sie Schritt fir Schritt
. durch die Installation
Zielvolume wihlen
nstallationstyp
nstallation
Zusammenfassung
Zuriick) (Fortfahren

* and follow the steps to install the usb-driver... .

214

http://www.arduino.cc/
http://arduino.cc/en/Guide/HomePage

215

53 - INSTALLING EXTERNALS

There are many people out there writing their own libraries for Pd,
often called externals. There are many of these libraries included in
the Pd-extended package, but not everything. Sometimes they are just
too new, or they are still in development, so they have not yet been
included in the package. When you might find a really useful library that
you want to use with Pd-extended, you need to install it in the right
place so that you can use it in your patches.

The Arduino (http://arduino.cc) is a tiny computer that is meant for
getting data from sensors and switches, controlling lights and motors,
and many other things that you can do with electricity. Like Pd, it is
free software, and it is a programming environment designed to be
intuitive and straightforward. There is a library for Pd called Pduino
that makes it easy to use the Arduino with Pd, via the Arduino library
called Firmata.

DOWNLOADING AND INSTALLING

First, we need to get Pduino, you can find it at
http://at.or.at/hans/pd/objects.html# pduino. Download the Pduino-
0.4beta2.zip (the version number might have changed since this book,
so just look for the Pduino zip file). Once you have the zip file, unzip it,
usually you can just right click and "extract" or "uncompress" the file.
On some computers like Mac OS X, you can double-click it to
uncompress it.

‘o G ; ‘hltp:Hat.or.at,n’hansfpdfobjecls.hlml#pduino

Once you have uncompressed the Pduino zip file, then look in the
Pduino-0.4beta2 folder. Inside is a bunch of files, the first ones to copy
are arduino.pd and arduino-help.pd. We are going to copy this into a
folder where Pd-extended automatically looks for user-installed files.
This file has a different location depending on which operating system
you are using.

GNU/Linux
In your home folder (also called ~), create a folder called pd-

externals. Copy arduino.pd and arduino-help.pd into ~/pd-
externals/

Mac OS X
In your home folder (also called ~), open up the Library folder
and create a folder called pPd. Copy arduino.pd and arduino-
help.pd into ~/Library/Pd.

Windows
Open up the folder in your main drive (usually c:) where the
programs are installed, in English, it is usually called Program Files.
Inside this folder is another folder called common Files, open
Common Files then create a folder called pd. Copy arduino.pd and
arduino-help.pd into \Program Files\Common Files\Pd.

216

http://arduino.cc
http://at.or.at/hans/pd/objects.html#pduino

In other languages, this folder is named in that language. For
example, in German, it is called \Programme\Gemeinsame Dateien\Pd,
in Spanish, \Archivos de programa\Archivos comunes\Pd, in
Portuguese, \Arquivos de programas\Arquivos comuns\Pd)

Once you have copied arduino.pd and arduino-help.pd into the right
place, you can now create an [arduino] object in any patch. Create a
new patch and try creating an [arduino] object. If that works, then try
opening the help patch by right-clicking and selecting "Help". If there
was a problem with either one of these steps, then the arduino.pd and
arduino-help.pd files are not in the right place. So carefully read the file
locations again. If it is still not working, then try getting help from the
Pd mailing lists, forums, or IRC chatroom.

INSTALLING ANY EXTERNAL

This same process that we went through above is the same process
for installing just about any object or external library. There are only
minor differences, for example, some libraries are organized all into a
folder, so instead of copying the objects and the help files, you can

just drop the whole folder into the externals folder described above.

217

54 SOMEBODY SHOULD SET
THE TITLE FOR THIS CHAPTER!

Preparing Pduino

* download the Pduino..zip-file from here
http://at.or.at/hans/pd/objects.html# pduino inside you
will find pd-files (You will need them later!) and the maching Firmata-
firmware-library for your arduino.app.

« update Firmata-library in your Arduino installation: you have to
replace the old Firmata-folder with the new one. You should do this, to
make sure, that the [arduino]-object and version of Firmata-library is
matching. It is located here on Mac OS X:

.. [Applications/Arduino.app/Contents/Recources/Java/libraries

1. delete the existing 'Firmata’ library in the above location
2. move the included "Firmata" folder into your Arduino installation.
(Do not

move the whole "Firmata-xx.xx" folder, just the included "Firmata"
folder.)

& arduino-help.pd _| ChangelLog [___" examples
k' arduino-test.pd L_: = Firmata.cpp
& arduino.pd =| README.txt Firmata.h
| Changelog keywords.txt
[~ Firmata-2.1beta? =) LICENSE.txt
- make-release.sh - TODO.txt

README.txt

For Linux replace the files in <path to arduino>/examples
* connect Arduino board and lauch Arduino application

* now setup your board:

218

http://at.or.at/hans/pd/objects.html#pduino

select your Arduino board type
.' Arduino File Edit Sketch Help
SimpleAnalog Auto Format ®/T
Archive Sketch

Fix Encoding & Reload
Serial Monitor {rEM

/% Supports 6s many onalog inputs oy - =
L v L » v Arduino Duemilanove or Nano w|

* This exanple code is in the publd Serial Port Arduino Diecimila, Duemilanove,
o Arduino Mega
Arduino Mini
Arduino BT
LilyPad Arduino w/ ATmega328
LilyPad Arduino w/ ATmegal68
pintodz(pin, OUTRUT); Arduino Pro or Pro Mini (3.3V, 8
j Tleakielpin, vawe); Arduino Pro or Pro Mini (3.3V, 8
Arduino NG or older w/ ATmega
void setup() Arduino NG or older w/ ATmega
{ Firnota,setFirmworedersion(, 1);

Firnta.attach (ANALDG_MESSAGE, analoghriteCal lback);
Firncta.begin(57668);

#include < irnata.be Burn Bootloader
byte analagPing

void analoghriteCal lback(byte pin, int value)

void Loop()

whi Le(Firmata.ovat Lab Le()) {
Firmata.processInput);

¥
For{analaghin = B; onalogPin < TOTAL_ANALDG_PINS; analogPine) {

and your serial port

@ Arduino File Edit Sketch [EEIEJ| Help

Auto Format BT
Archive Sketch

Fix Encoding & Reload
Serial Monitor 8EM

Supports as many ang
*

gz possible.
L

Board >
Serial Port

s
L

*# This example code if
#
#include =F irmoto.he

/dev/tty. modem
fdev/cu.modem
v [dev/tty.usbserial-A6008c77
[dev/cu.ushserial-A6008c77
[dev/tty.Bluetooth-PDA-Sync
[dev/cu.Bluetooth-PDA-Sync
pinMode(pin, OUTPUTY; /dev/tty.Bluetooth-Modem

3 analogiritapin, value); /dev/cu.Bluetooth-Modem

void setup()
I ” -

Here you can see if the usb-driver is correctly installed. If the usb-port
/tty.usbserial... does not appear in the list you have to install the driver
again.

Burn Bootloader

bwte analogPing

woid analogWriteCal lback{byte pin, int valued

219

After setting up the board and serial port, in the tool bar click the "

Verify button "

* in order to upload firmware, first press the reset switch button on
your Arduino board, which is located closer to the main Atmel AVR
AT mega chip on your board. The location of the reset switch on the
board might vary based the type of the Arduino board.

* now open menu >File >Examples >Firmata >SimpleAnalogFirmata and
the Fimata will be opened in your Arduino application.

In this chapter we will introduce analog sensor examples; therefore we
will upload SimpleAnalogFirmata to the board. For other types of
sensors, such as any digital sensor or servo motor sensor, you need to
choose the related Firmata based on your sensor type.

@ Arduino Iaﬂ Edit Sketch Tools Help
New 38N rduino 0018

Open...
Sketchbook

Analog

Close _W ArduinolSP
Save #S Communication
;/T”‘S “H Save As... {888 Control
#include = Upload to 1/0 Board #U Digital
Display
byte onalog Page Setup - #P Sensors
void analog) Print ®p Stubs
pirModepin, OUTPUT 1 EEPROM
araloghrite(pin, value); Ethernet

Firmata

AllinputsFirmata

YYYVYYRIVY VVYVYYVYYVYY

zﬁiﬂ setup() LiquidCrystal AnalogFirmata
Firmata.setFirnuareVersion(8, 1 Matrix EchoVStrmg
Firnata.attach(ANALOG_MESSABE,, onalogiritel S€rvo 12CFirmata
Fromata.beain(57608); Stepper OldStandardFirmata
¥ Wire ServoFirmata

SimpleAnalogFirmata

SimpleDigitalFirmata
uhtle(Firnata.ovatlable)) { .
Firnata.processInput(; StandardFirmata

}
for{analogPin = 8; analogPin < TOTAL_ANALOG_PINS; aralogPine+) { v

vaid loop()

* press the upload-button in Arduino.app

220

@ Arduino File Edit Sketch Tools Help
066

SimpleAnalogFirmata | Arduino (

* Supports gz mony analog inputs and analog PWM outpu
*

#* Thiz example code iz in the public domain.
*
#include o irmoto.h=

if it is finished you can see this at the bottom of the Arduino-window:

o me ma mmeeemm e e atin e

Firmata.zendénologfanalogPing, onologRead{analogPin’)
¥

}

sketch size: 5186

* now you can close Arduino application

Installing Pduino-objects

» move the 3 pd-files, so called "pduino-objects", to Your pd-patches-

folder

[Pduino-0.5betat
_| Changelog

[7 Firmata-2.1beta7? S

make-release.sh

= README.txt

[mig

It

or create a new folder:

I' GBS AT EGE File Edit Put Find Media Window

About Pd...

Preferences » Path...

Preferences... = Startup...
Audio Settings...
MIDI settings...

Services >

Hide Pd-extended 3H
Hide Others HH

Shrw All

221

[IRTVL PR

Quit Pd-extended 3Q

i’ Pd-extended File Edit Put Find Media Window Help
)) O) PD search path for patches and other files

/Applications /pd_extended_41.4/Pd-extended.app/Conteq 4
/Applications /pd_extended_41.4/Pd-extended.app/Conte
/Applications /pd_extended_41.4/Pd-extended.app/Conte
/Applications /pd_extended_41.4/Pd-extended.app/Conte
/Applications /pd_extended_41.4/Pd-extended.app/Conte|
/Applications /pd_extended_41.4/Pd-extended.app/Conte|
/Applications /pd_extended_41.4/Pd-extended.app/Conte
/Applications /pd_extended_41.4/Pd-extended.app/Conte
/Applications /pd_extended_41.4/Pd-extended.app/Conte
/Applications /pd_extended_41.4/Pd-extended.app/Conte

New... Edit... Delete

fuse standard extensions __ verbose

Cancel Apply

Lauch Pure Data

In Pure Data [arduino] object will set the connection with the firmata
that you just uploaded to your Arduino board. When you create an
[arduino] object in your patch, all the abstractions that are required for
Pduino library will be loaded as well. The inlet of this object lets us to
send messages to start serial port communication between the
computer and Pd. Since there are more than one serial port in a
computer, first we have to figure out the number of the serial port
that the Arduino board is connected. Simply by sending a [devices(
message to the [arduino] object, you can get the list of devices
connected to your computer on the main Pd window.

=
devices| =. list devices

arduino 1

Once you are sure that you have connected your Arduino board to the
computer, click the [devices(message box and you get similar type of
information in the main Pd window as below.

[comport]: available serial ports :

4 /dev/ttyUSBO

222

In this case, Arduino board is connected on the port /dev/ttyUSBO and
its port number is 4. Therefore, in order to start Arduino - Pd
communication, related to the above example, you send [open 4(
message to the [arduino] object.

[T T W]

4

= <- select the radio button to set the rumber of option
opan §1 which has the serial port connected to your Arduino board.
S This will apen the serial port connection.
clasa . .
=- close the serial port conmection
=info =- current serial port comnection
devices =- list devices
wersion =- firmware version
d R .
SrehEre 1 =- imitial walue for the serizl port rumber
= =

Main Pd window will display similar type of below information if the
serial connection is opened successfully.

get_baud_ratebits: 115200.000000
set_baudrate baudbits: 4098

[comport] opened serial line device 4 (/dev/ttyUSBO)

Once you open the serial port connection, you can immediately receive
data from your Arduino board. First you need to enable sensor data
to pass through [arduino] object and later separate the sensor data
types. In this below example, we focus on analog input sensors;
therefore [route] object only enables analog sensor type. The later
[route] object separates the analog input data so that you can receive
each sensor data in a separate number box.

223

[T T W]

4 =- select the radic button to set the rumber of option
which has the serial port conmected to your Arduino board.

open 1 This will open the serizl port cornection.
=
close =- close the serial port conmection
= <- current serizl port connection
info
T =- 1i i
devicas list devices
i .
. =
e firmiare wersion
[— .
arduino 1 =- initial walue for the serial port number
=
Eﬂ =- etable sensor imputs
spiget
REEE analog <- seperates analog input sensor data

route @1 2 2 4 56 7 <- seperates analog input pins

P A NS
E’,rjgd display Ualuesiylthq%; pegg:?g the CPU

0.741 0O 3558 0.355 0584 0.575 0. %68 =.E| =.E| =- analog imput pins
10} 1 az a3 ad aS akb a7

<- CPU friendly values

o

send sensor) = semd sensor data

Even though there is not any sensor connected to the Arduino analog
pins yet, when you enable the data to flow through [arduino] object,
analog input pins number boxes in above patch receive flow of

numbers. These are simply noise data that the empty pins on Arduino
board generates.

224

55. PDUINO LIGHT SENSOR

Below images show a basic photoresistor sensor connection with
Arduino board. In this circuit 5V power, ground and Analog in O pins
are used. After you build up the photoresistor circuit below, simply by
blocking the amount of the light that photoresistor receives, you can
change the value of the electric current in this circuit and you can
receive the value changes in the above Pd patch.

225

1y
L%

: \@\] § SUGna B 40348

226

Because in this circuit there is only one analog sensor and it is
connected to the Arduino Analog in O pin, if you connect a0 number
box output to a [send] object, you can receive the sensor data in
different Pd patches as well. Just a reminder, you should use the same
target name in both [send] and [receive] objects.

Below Pd patch example receives the photoresistor sensor data to
control the amplitude value and the central frequency of the bandpass
filter.

sensor data controlled bandpass filter on noise-

= a - i
e p— noise

receive sensor

b

E

=- recelve sensor data

=- multiplies the audio signal by the values coming from
sensor data

receive semsor =- receive sensor data

autoscalf @ 20000 . .cales the sensor data to the range between O and 2000

bp- 1000 1 =- scaled sensor data changes the center frequency in
bardpass filter

v =- digital te analog converter

These are the basic examples for Pduino library; however arduino-
test.pd includes other type of sensor connections through [arduino]
object.

227

NETWORK DATA

56. [NETSEND] AND [NETRECEIVE]
57. OPEN SOUND CONTROL (0SC)

228

56 [NETSEND] AND
[NETRECEIVE]

The [netsend] and [netreceive] objects are for transmitting and
receiving messages over a network. An example use would be an
installation where two computers are needed to communicate with
each other to lighten the processing load. Because these two objects
are intrinsically linked, we will talk about them together.

[NETSEND]

Creating an instance of [netsend] will open a network socket to
another computer. Both TCP and UDP protocols are supported.
[netsend] defaults to a TCP connection. You can change to UDP
adding the argument 1 when creating the object. You will need to
supply an IP address or hostname, of a host machine, as well as a
port number. You can provide this information with the message
"connect IP_address port_number".

Eor‘rect 10.0.0.1 13001 Eor‘r'cct 10.0.0.2 13001

éetscr‘d .E.Etsc'"d 1

TCP connection to UDP connection to
IF address 19.98.8.1 IF address 19.2.8.2
on port 13881 on port 13881

The outlet on the [netsend] object indicates if it is connected to a
remote computer or not. It will report 1if it is connected, 0 if it is
disconnected.

Once you have established a connection, you may send messages. You

must prepend all messages with the word "send". For establishing a
stable protocol, it is advisable to name each message being sent.

Zor'r'ect localhost 13@@1
N

AY ?er‘d MyText anything| <-- this will send the message "MyText anything”

\
\
AN
N end Myvarl $1 <-- When you change the number box,
Ay the messoge MyWarl will be sent along
N 7 with the number

netsend

M s

1 the 1 indicates
= we are connected

You can terminate a connection with the message "disconnect".

The messages are sent using the FUDI protocol. If we were to
examine one of the messages sent above, it would appear like this:

MyText anything;

[NETRECEIVE]

229

Creating an instance of [netreceive] will open a network listener socket
on the local computer. Just like [netsend], UDP and TCP are
supported. [netreceive] takes one argument, the port it is listening on.
An optional second argument will change the object from TCP to UDP.
[netsend] has two outlets when it is listening for TCP, and one when
listening for UDP. The left outlet prints out any data it has received.
The right outlet reports the number of active connections.

netreceive 13222 netreceive 13893 1
print TCP] print UDP
A TCP connecticn A UDP comnection on port 138@3

on port 13822

An example with multiple arguments is below.

connecting to port 13881

received: MyVarl 1 =

received: MyVarl 2 connect localhost 13881
received: MyVarl 3 % g,n
:gzgngf m:g:} ; send MyVorl $1/ [send MyVar2 $1
received: MyVar2 -8.01 e

received: MyVarZ @ s

received: MyVar2 8.01 1

received: MyVarZ @.82

received: MyVarZ @.83

received: MyVarZ @.85 netreceive 13981
received: MyVarZ ©.06 L

received: MyVarZ @.07 _— 1
received: MyVarZ @.08 = -

received: MyVarZ ©.09 print received Emute MyVarl MyVarZ)
received: MyVarZ @.1 6

received: MyvVarz @.11 8.11
received: MWarl &

CONNECTING WITH OTHER APPLICATIONS

[netsend]/[netreceive] can communicate with other networked
applications that communiate via TCP and UDP. Max/MSP has a pair of
objects with the same name created by Olaf Matthes. A PHP script
connecting to a UDP netreceive object on port 13000 would look like
this :

$socket socket_create (AF_INET, SOCK_DGRAM, SOL_UDP);
$result socket_connect($socket, $address, 13001);

socket_send($socket, $data, strlen($data), MSG_DONTROUTE);

230

57 OPEN SOUND CONTROL
(OSC)

zip file of patches

The OSC objects are for sharing musical data over a network. OSC is
standard that lets you format and structure messages. OSC enables
communication at a higher level than the PureData [netsend] objects
and is both more flexible and more precise than MIDI. OSC is network
enabled, using common network cables and hardware.

Using OSC you can exchange data with a number of devices, such as
Lemur, iPhone (through OSCulator), Monome, or applications such as
Ardour, Modul8, Reaktor and many more. Most modern programming
languages are OSC enabled, notably Processing, Java, Python, C++,
Max/MSP and SuperCollider.

SETTING UP AN OSC CONNECTION

There are several OSC implementations in PureData. At the time of
writing, the mrpeach implementation is best supported. PureData is in
the process of migrating to mrpeach OSC objects, but in the current
release you still have to import them explicitly.

Sending a simple message
sending 05C messages

=i'mp0rt mrpeach =—— import mrpeach objects

Eonnect localhost 981 <-- connect to port 9881
oh the local computer

Eisconnect
7
.__,r'
/=
.-"r. g
J,-"r zend /test $1) «— prepare an 05C nessoge
/
/ gluckDSCI=I «— pack the message
J/ /" as oh array of bytes
Ird
L
gdpsend «—- =send the packed message

osc_udpsend.pd

Sending a connect message to an [udpsend] object opens an UDP
connection to another computer. As with [netsend], you have to
provide an IP address or hostname, and a port number.

The UDP connection you just opened can only really send bytes. In

jo]

order to send an OSC message over the opened connection, you have

to pack it first, using the [packOSC] object.

Receiving a simple message

231

http://51858360.de.strato-hosting.eu/puredata/osc_patches.zip

receiving 0SC messoges

Tﬁport mrpeach <-- import mrpeach objects

udpreceive 988}= «—- ligten to port 9881

unpacklsc, <—— uWhpack the 05C message

print

osc_udpreceive.pd

The [udpreceive] object tells the patch to listen to a given port
number.

The OSC message has to be unpacked using the [unpackOSC] object.

IP addresses, hostnames

If both sending and receiving PureData patches are on the same
computer, you can use the special loopback interface: the IP address is
127.0.0.1 and the hostname is "localhost".

If both computers are on a local network, you can use their network
names, or else, to find out a computers IP address, open a terminal
and type "ifconfig" (Mac/Linux) or "ipconfig /all" (Windows).

If you want to open a remote connection to a computer over the
internet, consider using TCP instead of UDP (see below) and proceed as
with a local connection.

Ports

Every computer has a large number of ports. Each service (such as a
webserver, a database etc) may listen or send data through it's
assigned port. Which port is used for what is a matter of configuration,
but PureData uses port 9001 by default. You can choose another port
if you want to, just make sure the port you choose is not already in
use. If you are communicating with another application, you will have to
find out which port it is using.

UDP vs. TCP

In all these examples, you can replace the [udpsend] and [udpreceive]
objects by their corresponding TCP counterparts [tcpsend] and
[tcpreceive]. The TCP protocol is much more reliable than UDP, so if
you are connecting to a computer over the internet, or data packets
are lost or shuffled underway, use TCP.

THE OSC ADDRESS PATTERN

The first part of an OSC message is an URL-style address (in the
previous example, “/test”). The address lets you route the data on the
receiving end.

This example sends 2 different OSC messages. Messages are told
apart by their address components (/test/voice and /test/mute).

232

zending 05C messages with different addresses

Zmport mrpeacl;

Eonnect localkhost S8R <—- connect first
Eisconnect

a HIDI note

\ 6] <-- zehd o MIDI note

zend Atest/voice $1

Eend stest/nute - mute

g

gdpsend

osc_pathsend.pd

On the receiving end, the messages are routed using the [routeOSC]
object and used to control an oscillator.

receiving 05C messages with different addresses
?mport mrpeach =—— don't forgst to import mrpeach objects

udpreceive 9881=

unpcnckUSCl=I
routedsC Stest|

route0sc Hloice x’mute= «—— route messoges

tfh
=
messoge wos Svoice ——» mtof \\‘ 5 <—— MEssOge wos Smute
= \\
03C~
,
=3
f «—— zet volume
dbtorms
=='_p
*~ 0.5
dac~

osc_pathreceive.pd
It is important to understand that OSC does not come with

predefined messages, like MIDI does. It is up to you to define the
messages you want to send and receive.

OSC ARGUMENTS

An OSC message can have any number of arguments. T his example

creates a message with 2 arguments for note (MIDI note number) and
amplitude.

233

zending 05SC messages with arguments

zmport mrpeuch:l

Eonnect localhost. 9881
l

- connect first
Eisconnect

a MIDI note

\ g

I|

\

anplitude (@ to 1883

send /test/voice $1 $2| < prepare o messags

with 2 arguments
\

JEend Jtestsmute| = mute

L~

lJ.dpsend

osc_argssend.pd

On the receiving patch, the arguments are unpacked using the [unpack]
object, and used to control an oscillator's pitch and amplitude.

receiving O0SC messages with arguments

zmport mrpeuch:.

udpreceive 9881=
unpuckDSC=

routelsC Jtest
o =

o
;outeDSC Jvoice Jmute =— route messages
&
meFEage was Avoice ——= unpack ff
unpack the MIDD note
and the anplitude o dbtorms| B <= MESE00e WaS /mute
eS| //
s
*~ 0.5
dac~

osc_argsreceive.pd

TYPES

The previous examples all send typed-guessed messages. It is also
Common types are:

possible (and good practice) to set the types of the arguments.

i integer

234

f: float
s: string
T: TRUE

F: FALSE

This example uses the [sendtyped] object to send a boolean (true or
false), an integer (a MIDI note number) and a float (amplitude)
zend typed 0SC messages

Emport mrpeucrl;I

Eonnect localhost 9881 «- connect first

dizconnect
\

prepare q typed messoge
(TRUE, integer and float}
iendtyped frestAvoice Tif 68 B.5

Eendtyped stestsvoice Fif 68 6.6

ghother message

(FALSE, integer ond float)

Eend Atest/mute nute

e

=
gdpsend

osc_typesend.pd

Depending on the value of the first argument (the boolean argument),
the receiving patch puts out a sine or a sawtooth wave.

235

receiving typed 05SC messages
zmport mrpeach:
udpreceive 9881

unpuckDSC=

routediC /test)

routedsC Jvoice /mute <— route messoges

mesEsage wos Avoice ——» unpack f f f
=

unpack the arguments

=
|

5] nessage was Smute
F
1 i
\ /
1 7
\ /
\ /
\ /
\ /
autput a sine or saw —-= pyx~ \ rd
. \ /
accarding to the value | /
- /
of the first argument I'. /
/
/

I'. /

II _r"r

=

* A5
dac~

osc_typereceive.pd

Note that PureData and OSC use different types. PureData only
knows floats, strings and symbols.

BUNDLES

Sometimes you might want to send several messages at the same
time. This example sends one bundle containing 3 notes.

Bundles are enclosed in square brackets. Inside the brackets, you can
pack any number of messages.

236

zending 0SC message bundles
Zmport mrpeuch:l
Eonnect localhost 9861

<- connect first
Eisconnect —
| T [<~ choose a base note
| I
1
| trigger b f f f b
\ =
\] =\"‘x_
| close bundle | -
| | . open bund Le
L
\ il Feest/voicel $1 I
\ A ==
I'I \ II + 4 /
\ A\ \
I'. \\ |I =,J=tes SwoiceZ $1 /
\
| '\\ |
II
\
\

/ bundle contents
+ 5= / 3 messages
/!
i

)

)

|

fSend test/uts| nute

gdpsend

osc_bundlesend.pd

Receiving a bundle is no different than receiving a single message.
receiving 05C message bundles

Zmport mrpeuc};

udpreceive 9881=

unpuckDSEl::

routedsc stest)

routedsc Avoicel Avoice2 Avoiced Hmute={—— route messages

dac~

osc_bundlereceive.pd

a

r vol

dbtorms
=

\Emessuge wos Smute

- et volume

237

DESIGNING YOUR NAMESPACE

Unlike MIDI, OSC requires you to define your own messages. T his is
one of OSC's main advantages, and if you are doing anything more
complex than the examples above, you should start by getting your
set of messages (your namespace) right. There is no single strategy
to do this, but here are some ideas to get you started.

Connecting to hardware or external applications

The easiest case, since these will come with their own predefined set
of commands. You will find them specified in the documentation. Not
much you can do here but stick to the specs.

Connecting to another PureData patch or to your own
application written in another language

Avoiding name conflicts: Keep in mind that you, or the person using
your patch, are on a network. T his network is shared by a number of
computers running a number of applications, some of which might be
using OSC too. So you should be careful to avoid name conflicts. A
conflict happens when two applications use the same address pattern
but mean different things. To avoid this, the first part of your address
pattern should be unique. A foolproof, albeit pedantic, method is to
use your domain as a prefix for all your messages e.g.
/net/mydomain/...

Type conversion caveats: PureData and OSC use different data types,
so type conversion takes place every time you send or receive
anything else than a float or a string. Due to the way data is handled
internally, PureData can only work accurately with 24 bit numbers.
Above this, integers gradually loose precision. Since OSC can carry 32
bit integers, you will get strange results above 16777216.

Using a predefined namespace

If this is your life's work (or your idée fixe), then using a predefined,
domain-specific namespace might be a good move. Examples of these

include: SYNoscopy for MIDI style controls (specification and examples)
and GDIF, for music related movements and gestures. You can also

look at one of the many open source applications listed at
opensoundcontrol.org for inspiration.

238

http://stud3.tuwien.ac.at/~e0725639/OSC-SYN.txt
http://gombology.net
http://www.gdif.org/
http://opensoundcontrol.org

MIDI

58. MIDI

239

58 - MIDI

This chapter will show you how to use midi to receive notes from midi
keyboards or control messages from standard midi devices and also
how to send midi to other programs or to midi hardware.

SETUP

Before start working with midi, you should select your device in the
dialog: Preferences/midi settings

OB CLGEGE File Edit Put Find Media

About Pd... _
Pat..

Preferences.. 38, Startup...
. Audio Settings...
Services % MIDI settings...

Then select which device you want to use for input/output midi, by
default no device is selected. Before starting pd, you should plug your
midi hardware, otherwise it will not show up in this dialog. In this case,
we have selected our hardware "USB MIDI 1x1" (a midi interface) and
the rest of "devices" called IAC are internal midi buses in osX.

M
inpul none

Driver IAC: Bus IAC 1

Driver IAC: Bus IAC 2

(‘us¢ Driver IAC: Bus IAC 3

Driver IAC: Bus IAC 4

Driver IAC: Bus IAC 5

USB MIDI 1x1: Port 1
[Cancel) [Apply) [OK)

Note to OSX Users : In some cases with OSX you will need to check
and activate the device in this "Audio midi setup" app. This can be
found inside the utilities folder as shown below.

outpu

4

I Audio Devices | MIDI Devices |

—G— (Poromsien) fwf S we W A

W R
Icon Size Configuration Add Device FRemove Device Show info Rescan MIDI Test Setup

Driver IAC ﬁ
p - USB Uno MIDI Interface
\;F.,, e

. (&l

UC-16 USB MIDI Controller

e
[w]a]

240

CHANNELS AND PORTS

Once we have chosen the midi device, we can check if it’s working. To
do this you need to know a little about the concept of midi channels.

Midi channels are used to identify devices so you can receive and send
notes with specific hardware (or software!). Usually midi devices use
one 'channel' for sending and recieving this information. There are
usually 16 midi channels in total.

Multiple Devices

Pd can use also multiple midi devices, so in the midi settings window
(seen before), you can add more devices by clicking on the button "use
multiple devices" and adding it in any free "port" (each one with the
respective 16 channels..)

You can also in pd "filter" the midi messages by specifying which
channel/port we want to "hear" with an "argument" in the midi object.

objects used to receive and send notes are [notein] and [noteout]
respectively.

Here is an "extract" of the help for [notein], the object we will use
when we want to connect a midi keyboard (or any other midi device
that generates notes!) to pd in order to play sounds or doing
anything.

notein - read incoming streom of MIDI notes.
[t =)

The [notein] cbject reads inrcoming MIDI notes and reports
their note number, velocity and chanrel number. Without the
argument it reads froem all MIDI channels (omni).

notein inlets : none
TT1
L | | outlets:
[| || left: MIDI note number
2 | middle: velocity
=4
] right: MIDI channel number

Note: remember that o "note-off’ is a note with velocity=8.
Therefore [notein] reports each note twice (note-cn when a
key on your keyboard is pressed and note-off when the key
is released). This could be sometimes misleading when
tracking notes.

notein 1 notein listening only to channel 1
=

--\----\-'b
9 o
note number wvelocity

notein 17 notein listening only to channel 1 on port 2
=

.

=

note number =\relocity

3-MIDI HARDWARE:

Since midi was developed in the 1980’s you can find many devices
compatibles with it that you can use with pd. Typically you can find
synthesizers, midi interfaces, midi controllers, midi hubs and of course,
the symbolic midi cable. the cable it’s a DIN 5 pin cable with two male
conectors. the midi conector in the devices it’s always female, it doesn
‘t mater if it’s input or output so you have to take care when
connecting the devices because it’s possible and easy to make a bad
connection and then, your system will not work..

241

1- To connect any midi keyboard to pd, you have to connect the "midi
out" of the keyboard with the "midi in" of your midi interface.

A midi interface it’s a device that adds standard midi hardware ports
to the computer, tipically via USB connection.

—

Note: There are modern keyboards that have an USB/ midi interface
integrated to transmit midi directly to the computer via USB cable.
in this cases, you will not need the classic midi cable.

242

note DOteIn check it

rote

This is the setup Midi keyboard-->midi interface-->computer. In the
midi settings configuration, you have to select your midi interface as
midi input. when you create an [notein] object in pd and you play
notes in the keyboard, you will see which note/s you are playing, the
velocity and the channel. Here, we can see that this
keyboard is transmitting only in the channel 2. Usually you can change
the transmitting channel of the keyboards by looking in his own
configuration.

4- MAKING NOTES IN PD, SENDING /
RECIVING NOTES.

A standard midi note it’s a message formed by a number that
determines the pitch of the note, the velocity (volume) and the note
off message that is the same note but with the velocity=0

to send notes with pd to external hardware/software, we use the
object [noteout],

This example patch, generates random numbers, then "format" this
number into a midi note with velocity and note off message and then
send it "out" using the object noteout.

When you have selected the same internal midi bus in midi devices for
infout, ex: device in = IAC1 / device out= IAC2, then you can create in
pd a [notein] object to send midi notes to other pd patches.

243

yoeu need this to activate...

b (metro 502 ecach 580 msec

=
ndom 82 generates a rand number between @ and 82

2&}
+ ? sums 2@
\%%

\
Tz;\ velocity (127 is the max)
= W,
.'I ':3'39 duration
L ==
makenot
=

3 &
T 127
O

noteout

N
e

T tr\“i\s object "formots” the note
/ \,

e
2 My keyboard only listens the chanel £

This is the setup Pd-->midi interface-->hardware synthesizer.

In this case, you need to select the midi interface as midi output device
in the pd midi settings.

In this case, was needed also to add (and bang) the message "2" into
the right inlet of the object [noteout] because this roland synthesizer
only listens channel 2. We know this because before we connected the
keyboard as input in Pd and then, we could see that this machine
works only on channel 2.

5- MIDI CONTROLLERS

When we want to control our pd patches with a midi controller we use
the object [ctlin], this has 3 outlets, the left one outputs the controller
value (0-127), the middle one outputs the controller number (cc) and
the rightmost one outputs the channel and Port (channel "17" in Pd
means midi channel Tin port 2). In this picture we can see the output
of [ctlin] object when | move one encoder in the midi controller
"BCF2000" connected to the port 2.

244

anon midi
input device 1: f Driver IAC: Bus IAC 1 '\l

input device 2: m
input device 3: @
input device 4: @
output device 1: @

output device 2: (_none __]

[Cancel) [Apply) (OK)
ctlin Inlets: none. Reods dota directly from the MIDI port
. Z T' T Outlets:
¢ 1 1st (leftmost): Controller walue
y = 72 Middle: controller number
b = ‘J-"l? rightmost: Channel number

When you create the ctlin object without arguments, it’s listening to all
cc’s and to all channels. This is useful as an analysis tool to know
which cc and channel sends each fader/ knob of your controller.

In some midi controllers, some faders send the same cc number than
others but in other midi channel.

Tipically, we add the arguments cc (control change) and channel/port
to the ctlin object to make it "hear" only the cc and channel specified
because usually midi controllers have many knobs, faders, etc.. so
each fader/knob it’s going to make only it’s specific/s function/s that
you choose..

When we analyze each fader/potentiometer/button/etc, we can create
a specific ctlin message to listen only one thing, this is the way to do
an abstraction to have all the cc’s of our midi controller assigned to an
individual output.

This is how it looks like my object "pd ucl6", ready to receive the cc’s
from my cheap midi controller evolution uc-16. it also reports in a
"bang" which output of the abstraction correesponds to each
potentiometer.

ctlin 1 1) ctlin 2 1) ctlin 3 1) ctlin # 1) ctlin 5 1
utlet ,'I outlet

ou/tlat/ louttet| _lowtTet]
) o

~ | —
ft).’u‘rﬁ cttin 1@ 1) ¢tlin 11 ctlim13-1 ctrim1s I wttin15 1 ctlin 16 1
outlet outlet outlet outlet outlet outlet outlet outlet

This is how a "tuned" uc-16 looks..

245

6- SENDING MIDI TO OTHER
SOFTWARES, SENDING CC (CONTROL
CHANGE).

we can use the same random notes patch we’ve seen before also to
send notes to any other software running in the same computer.

Here, the trick is to have the same midi bus selected in Pd midi out
device and in the midi in of the software you want to use..

Control change messages:

These are special messages used to change parameters in the midi
devices such as "cutoff frequency", "resonance"... etc.. There are
about 127 different cc’s possibles in each midi channel.

In this patch we send the values of the slider to the cc number 7 in the
channel 1.

2 63 127

E:I] ctlin 7

127 I R\‘\«,:,
Az7 i

ctlout 7 ctl. value Chan. no.

7- ANOTHER MIDI OBJECTS:

There are more midi objects in pd and almost all of them are
documented in the pd help.

[pgmin] / [pgmout] T his objects receive and send "program changes".
Program changes were used to change "programs" or sounds in
synthesizers, patterns in rythmboxes, etc..

[bendin] / [bendout] T his objects receive and send "pitchbend" changes.
Argument is midi channel.

All the objects we have seen till now are the "basic" midi objects
included also in pd vanilla but there are more objects like
[midiin][sysexin] that runs only in linux or [touchin] and[polytouchin]
that are not docummented yet..

In pd extended there are more "advanced" midi objects inside libraries
such as maxlib or cyclone. In the chapter "list of objects" you
have a short explanation about this new objects.

246

http://en.flossmanuals.net/bin/view/PureData/MidiObjects

STREAMING

59. STREAMING AUDIO
60. OGGCAST ~

247

59 - STREAMING AUDIO

We shall look at streaming mp3 to a streaming server using Pure
Data. You should have a running version of Pd installed.

Additionally, you should have access to a streaming server.

If you have somebody that can lend you a server for this trial, then
you will need to know to from them the following:

what mountpoint do you use?

the hostname or IP Address of the server

the password for sending streams

the port number of the server

the type of server (Icecast2? Icecast!? Darwin? Shoutcast?)

1. CREATE THE MP3CAST OBJECT

Now create a new object and type mp3cast~ :
3 ast-

If all is installed well the object will look like the above. If there is a
problem the object will be surrounded by dotted lines, this means that
the object couldn't be created.

2. CONNECT AN OSC~ OBJECT

If all is ok, you can now add an audio object to the page so that we
can send some audio to the signal inlet of the patch. We will use the
osc~ object.

The osc~ object is created in the same way and it we will also give it a
parameter. T his parameter sets the frequency of the osc~ sound
wave, and we will use 440 (Hz). Then attach the signal outlet of osc~
to the signal inlet of mp3cast~:

Now we have a mono input to mp3cast~ but we want a stereo
connection, so we will connect the same signal outlet to right signal
inlet of mp3cast~ :

3. SETTINGS

We now want to send our server details to the mp3cast object so first
we need to create 4 empty messages boxes. Put them on your
document like so:

248

osc~ 440

HHAN

Jcast~|

Enter the following into these newly created message boxes. One
should contain the following:

passwd

another should have:
connect

the third should have:
mountpoint

and the last:

icecast2

Jcast~

OK, so now we are ready to enter the details of our streaming server.

In the passwd message box type a space after 'passwd' and enter
your password. In this example the | will use the password 'hackme’,
and | would type this:

passwd hackme

So | get this:

passwd haclane|

Then we enter the mountpoint in a similar fashion into the
mountpoint message box . | will use the mountpoint live.mp3.

Emmtpoint live. mp3[

note : you do not need to enter the suffix ".mp3" in the mountpoint.

We also wish to enter the hostname and port of the streaming
server. | will use the non-existant ice.streamingsuitcase.com as the
hostname and port 8000:

249

Em’mect ice.streamingsuitcase . com BI]I]I][

note : do not put in the leading http:// in the hostname.

Lastly, we have the icecast2 message box. This defines what kind of
server you are logging into. If you are using an Icecast]1 server you
would instead have icecast in this box. Similar for shoutcast. If you
are streaming to a Darwin server use icecast.

Connect all the control outlets from these message boxes to the
left control inlet of the mp3cast~ object box. You may have to
move the boxes around a bit to make space :

asswd haclkame|

Eurm.,..t\é.ce . streamingsunitcase.con Bl]l]l](

ounEpoint Tive.mpa[

4. START THE STREAM

Now, to start to stream you must goto run mode and press the
boxes in the following order:

1. press passwd to set the password

2. press icecast2 (or whatever server type you are using) to set
the server type

3. press mountpoint to set the mountpoint

Now..this process has loaded mp3cast~ with the server settings. Click
the connect message box and you should be streaming!

To test connect with your favourite player using the the following
syntax :

http://hostname:port/mountpoint

In my case this would be:

http://ice.streamingsuitcase.com:8000/1ive.mp3

5. STREAMING FROM THE MIC

Lets replace the osc~ with adc~ like so:

asswil haclane|

Em’mﬂéul' ice.streamingsuitcase . com Bl]I]l](@

250

http://en.flossmanuals.net/bin/view/PureData/AudioStreaming

The adc~ object takes the input from your computers sound input.
adc is short for Analog Digital Converter. If you now stream the
sound will be coming from your soundcard input!

6. DISCONNECT

Incidentally, if you need to disconnect the stream make a new
message box , type:

disconnect

then connect this to the left control inlet of mp3cast~ , return to
run mode and press it.

asswid haclkme|

scomietl ——

251

60 - OGGCAST~

oggcast~]

Oggcast is known as a Pure Data External, it is not part of the Pure
Data 'native' packages. Oggcast was written by Olaf Matthes.

Oggcast is a streaming object. It enables you to send audio encoded
in ogg vorbis to an Icecast2 or JROAR streaming server. T his means
you can send live audio through the internet or a local network from
Pure Data, and one or more computers can pick it up from the
streaming server, like so:

This means you also need to have access to a streaming server. If you
have not set one up before this might be tricky. You could also try
borrowing some server time from someone. You will need to get the
following details from the streaming server administrator to be able to
stream to the server:

Server address (hostname) of the server

Port to stream on (usually 8000)

Password

Mount-name (the name of the stream you will create on the
server)

PARAMETERS

All Parameters are listed here:

252

passwd letmein|

Em’mect localhost puredata. ogg BI]I]l][

disconnect

[vorbis 44100 2 144 128 96(

by 44100 2 0.4

IARTIST youxr name
TITLE your_title|

EERFI]RMIER perfomers_name(

[DESCRIPTION description_of andio|

[EEMBE genre_of_andiol

[LOCATION wrl_of_hosting web_page|

EIJPYRIBHT copyr:i.ght_mmer(

iy [CONTACT who_to_contact]

[DATE eamdate_of_str(

oggeast~ 2 512

passwd letmedln|

The passwd parameter is passed to the oggcast~ object through a
message box.

STREAMING FROM YOUR SOUND CARD

Streaming from your sound card is really easy with oggcast~, you just
need to try this patch:

Eunnect localhost mystream.ogq Bl]l]l][

In the above example you would replace :

e |ocalhost with the IP Number or hostname of your streaming
server

e mystream.ogg with the mount point (name) of your stream

e 8000 with the servers port number (it is usually 8000)

e hackme with your servers password

In the above patch you will need to first press the password message
box while Pd is in run mode, and then press the connect message box.

STREAMING FROM PURE DATA AUDIO

Alternatively you can create a patch for synthesising sound and then
stream this. Here is a simple example using a osc~ object.

253

Em’mect localhost wysteam.ogy Bﬂl]l][

Again, in the above example you would replace :

e localhost with the IP Number or hostname of your streaming
server
mystream.ogg with the mount point (name) of your stream
8000 with the servers port number (it is usually 8000)
hackme with your servers password

Tips

e changing the parameters of oggcast~ while streaming can cause
the stream to drop out

254

LIST OF OBJECTS

61. OBJECT LIST

62.
63.
64.
65.
66.
67.
68.
69.
70.

GLUE

MATH

TIME

MIDI

TABLES

MISC

AUDIO GLUE

AUDIO MATH
OSCILLATRORS AND TABLES

71. AUDIO FILTERS

72.
73.
74.
75.
76.
77.
78.
79.

AUDIO DELAY

SUB WINDOW

DATA TEMPLATES

GEM

PDP

PHYSICAL MODELLING
OBSOLETE

USING LADSPA PLUGINS

255

61 - OBJECT LIST

As Pd-Extended is constantly growing at the hand of several
developers all around the world, it isn't possible to have a 100%
complete list of objects. Neverthough, the next chapters include many
of the most important libraries.

The chapter division takes the original categories designed by Miller
Puckette. Only specific libraries which have a closed identity - for
example like GEM - have a page of their own. The categories for now
are:

Dataflow
e Glue - General dataflow control
e Math - Mathematical operations
e Time - Time-related operations
e Midi - Midi Input/Output
e Tables - Table and array management
e Misc - Objects that don't fit any previous category

Audio

e Audio Glue - General audio control

e Audio Math - Mathematical operations

e Audio Oscillators and Tables- Audio generators and table
readers

e Audio Filters - Filters and convolvers

e Audio Delay- Time-related operations

Patch Management

e Subwindows - Patch structuring
e Data Templates and Accessing Data - Objects related to data
structures

External libraries

e GEM - OpenGL graphics and video library

e PDP - Video library to provide a way to use data packets as
messages

e Physical Modelling - Physical modelling library

Obsolete - Objects that for some reason became obsolete. Most of
them are still available, but you should avoid using them.

VANILLA AND EXTENDED OBJECTS

Each distribution of Pd comes with the core objects, which belong to
Miller Puckette's original version - Pd-Vanilla. Besides that, it is possible
for each user to use libraries of externals compiled by other users.
Most people use Pd-Extended, which bundles many externals
automatically - others prefer to download and install these libraries
themselves.

Each page of this list is divided into two sections, Vanilla Objects and
Extended Objects. In many pages you'll see many more extended
objects than vanilla ones.

256

ORGANISATION

Each chapter has a table with the following columns:

e Name - Name of the object

o Library/Path - name of the library to where it belongs (these
libraries are stored in your pd/extra folder)

e Function - Short description given by the author

Due to the decentralised development of Pure Data externals, it
sometimes happens that some name clashes between objects happen
- sometimes even for objects with very different functions! In case the
object you saw from the list isn't the object you were thinking about,
the easiest way to make sure you have the right object is to write its
complete namespace: for example, if you want to use the
[makesymbol] object from the zexy library, you can either write
[makesymbol] or [zexy/makesymboll.

NAME LIBRARY/PATHIFUNCTION

257

GLUE

Vanilla Objects

bang send 'bang' message
change eliminate redundancy
g in a number stream
float store a floating point
number
int store an integer

makefilename

format a string with a
variable field

part a stream of

moses
numbers
combine several
pack atoms into one
message
. rint messages to the
print P . . 8
terminal window
. receive messages
receive .
without patch cords
route messages
route according to their first
element
compare numbers or
select
symbols
send messages
send .
without patch cords
. pass or block
spigot
messages
swap two numbers,
swap respecting right-to-
left order
symbol store a symbol
sequence messges in
trigger right-to-left order and
convert data
split a message into
unpack P g
atoms
until looping mechanism
nonlocal shared value
value

(named variable)

Extended Objects

convert "anythings" to

a2l any2list flatspace zexy Wlists”
-dsp dspO1 jmmmp DSP switch
store and recall any
any message (like f, or
symbol)
. report if window is
active cyclone

active / inactive

add2_comma

flatspace iemlib

add a comma after a
message

add2_comma

iemlib

add a comma after a
message

258

lets only "allowed"

allow flatspace maxlib floats or symbols

through

alternate between two
alternate flatspace markex

outlets

return the amplitude
amplitude_n la-kitchen mapping covered by the last n

values

any_argument float_argument
symbol_argument

initiate internals

any2string string2any

flatspace iemlib

converts ASCIl strings
to pd messages

append a list to the

Append cyclone . .
PP Y incoming list
convert a stream of
ascii->int float->ascii hcs ASCIl digits to a single

value

convert ASCIl to

atoi flatspace zexy .
integer
eat N bangs in ever
bang-eater flatspace s y
M bangs
bangban cvclone send a number of
ghang Y bangs in order
bfilt cxc flatspace modulo + select 0
bfilt2 cxc flatspace bang filter
synx a group of
bondo cyclone Y group
messages
bpe flatspace iemlib break point envelope
ass numbers from
Bucket cyclone P
outlet to outlet
sync incoming data,
buddy cyclone output when all inlets
received data
button flatspace ggee a bang with a label
. returns O if the last n
change_n la-kitchen
datas are the same
search for a best
choice vanilla/choice match to an incoming
list
store and edit
coll cyclone collections of
messages
. test if two anythings
compare-any list-abs
are the same
count_n la-kitchen counts from O to n-1
counter cxc counter -> NV

counter gem-counter

cyclone flatspace
markex

counts the number of
bangs received

cup

ekext flatspace

counts up

cycle

cyclone

send data to individual
outlets

debounce mapping

la-kitchen

blocks the value of
incoming data for the
further n samples
after ech change

debounce_b

la-kitchen

blocks the input until a
specified duration is

259

over

decide cyclone output 1/0 randomly
sent out 1/0 to a
Decode cyclone e
specific outlet
default iemlib replace initial

argument, if it is zero

demultiplex demux

flatspace zexy

demultiplex the input
to the specified
output

blocks "denyed" floats

den flatspace maxlib
Y P or symbols
extract values,
. . contents, attributes
detox jasch_lib
- from xml-tag
structures
disioin ioin mapbin split / joina range into
Join | PPINg two (0-1)
. . send data to a list of
dist flatspace maxlib . .
receive objects
receive parent initial
dollarg flatspace iemlib arguments <list>, like

a $n

downsample

mapping

output 1 over n data

unfolds a package to

dri flatspace zex
P P Y a sequence
N control audio,
dsp dsp~ iemlib
measure dsp load
. detect rising or fallin
edge flatspace maxlib . s s
edge in floats
entry flatspace text entry box
normal / positive /
env env+ env- mapping megative envelope

follower

exp_inc

flatspace iemlib

linear and/or
exponential increment
counter, bang
controlled

f+

jmmmp

counter with variable
increment

fifo

flatspace maxlib

first in first out buffer
for floats

fifop

flatspace zexy

first in first out stack
with priorities

float24

flatspace iemlib

concatenate a list of
float-fragment-strings
to a 23 bit accurate
mantissa

for++

flatspace iemlib

incremental counter
(triggered by internal
metro)

forward

cyclone

send remote
messages

fromsymbol tosymbol

cyclone

transform symbol to
numbers or messages
and vice versa

ftos

ext13 flatspace

float to symbol

260

PR PR I [T

Ldg ddild based oIl wne

funnel cyclone inlet it arrived in
ate cyclone iemlib send data out the
i Y specified output
gcanvas flatspace ggee CI.ICk and drag to get
pixel values
glue together 2
glue flatspace zexy packates (append,
prepend, ..)
intercept the output
grab cyclone of another object
hid_one2twohid_one2threehid_one2four|hid on(Ie—to—x mapping
- - - object
hysteresis mapping .add hysteresis to
input data
iem_anything iemlib latch for anything
iem_append iemlib append a message to
- any messages
iem_i_route flatspace iemlib variation of route

(abbr. iiroute)

prepend a message to

iem_prepend iemlib
- any messages
receive object with
iem_receive iem_r iem_send iem_s iemlib changeable receive

label

iem_route flatspace iemlib improvement of route
control a message-
iem_sel_any flatspace iemlib box with multiple
content
lets information
. . through only when it
ignore flatspace maxlib g y Wi
was present at input
longer than N ms
. create a symbol->int
index flatspace zexy
map
init initialize a message via
loadbang (abbr. ii)
queues up lists of
iso flatspace maxlib pitches and attack
points
. split a list into a series
iter cyclone
of numbers
iXprint cxc flatspace print without identifier
k_receive
k_send

kalashnikov uzi

ext13 flatspace

send a specified
number of bangs as
fast as possible

knob flatspace
save the n last
last_n la-kitchen mapping incoming datas into a
list
. make a list of the last
last-x list-abs
x floats
. loadbang which can be
Ibang jmmmp .
triggered more often
length flatspace zexy get the length of a list

261

last in first out buffer

lifo flatspace maxlib
P for floats
. last-in-first-out stack
lifop flatspace zexy . -
with priorities
. line with 3rd order
line3 flatspace
polynome
. . apply abs() on floats
list-abs list-abs PPY. 0
of a list
apply the object
list-apply list-abs created by [argl arg2]
on every list element
list-clip list-abs clip for lists
. . compare two lists
list-compare list-abs
element by element
. . delete element at a
list-delete list-abs L
position
. . . drips or serializes a
list-drip list-abs rp
list
drips two lists in sync
list-drip2 list-abs (as long as st list
lasts)
. . . serialize a list on
list-dripslow list-abs
demand
serialize a list and put
list-enumerate list-abs numbers in front of
each element
build a list from
list-extend list-abs incoming lists and
output stored list
list-fifo list-abs first in, first out
returns a sequence of
— . items for which the
list-filter list-abs . L
adjusted operation is
true
L . find positions of a
list-find list-abs P .
value in a list
o . et element at
list-idx list-abs get eem
position idx
insert LIST before
list-insert list-abs ELEMENT at position
POS in original list
. . concatenate a list into
list-12s list-abs .
a single symbol
. . make a list of the last
list-lastx list-abs
x floats
. . calculate lenght of a
list-len list-abs . 8
list
list-lifo list-abs last in, first out
change symbols in a
list-makefilename list-abs list, floats pass
unchanged
. . swiss army knife of
list-map list-abs . .
list operations
map an operation on
list-map2 list-abs element pairs from

two lists

262

list-moses list-abs like moses for lists
. . list with optional
list-onearg list-abs

aegument

list goes element per
. . element through a
list-reduce list-abs . &

user-defined

operation

replace (overwrite) a
list-replace list-abs list from position POS

with a new list
list-rev list-abs reverse a list's order
list-rot list-abs rotate a list
. . walk through a list
list-seek list-abs 8

element by element

look up ocorrence of
list-sieve list-abs incoming floats in a

list
. . advanced list-split
list-splat list-abs . o

with negative indexes
. . cast all floats of a list
list2int 12i flatspace zexy .

to integers

convert some kind of
list2send flatspace iemlib lists to a sent

message

convert a list <->

list2symbol 12s symbol2list s2I

flatspace zexy

symbol

lister |

flatspace zexy

stores a list

listfifo

flatspace maxlib

first in first out buffer
for lists

listfunnel

flatspace maxlib

send values out as list
with source index

listmoses

ekext flatspace

splits two lists

according to the
values contained
within the Tst list

listto

mapping

separate a list into a
stream of atoms

local_max local_min

mapping

give the value of
every local maximum /
minimum whenever
there is a change in
direction

write data to the

Ipt flatspace zex
P P Y parallel port
concatenate lists to
makesymbol flatspace zexy
formatted symbols
exclusive-OR mask
maskxor ekext
map
look for a series of
match cyclone flatspace numbers and output

as a list

mergefilename

flatspace iemlib

merge a list of
symbols and floats to
a symbol

modulo_counter

flatspace iemlib

increments counter-
number from 0O to
max-1by a bang

263

multiplex mux

flatspace zexy

multiplex the selected
inlet to the outlet

multiselect multisel

flatspace markex

select object which
accepts a list in the
right inlet

nchange flatspace maxlib a "new" [change]
try to separate
next cyclone messages into logical
parts
. divide a package into
niagara flatspace zexy
2 subpackages
nop no operation
. rout if Nth element is
nroute flatspace maxlib
matched
N only the first message
once iemlib Y r 8
passes through
traffic control for
onebang cyclone
bang messages
blocks after initial
oneshot flatspace markex
bang
prepends first
OSCprepend list-abs argument to an OSC
message list
get the nth element of
packel flatspace zexy

a package

receives the parent $0

arentdollarzero parent$0 iemlib
P P $ symbol
. find peaks in an FFT
pique flatspace
spectrum
two-dimensional
polymap ekext polyphony-restricted
map
outputs statitics
polystat ekext .
about voice usage
before an incoming
message be released
pre_inlet flatspace iemlib to an outlet, a
message of 2 items
will be sent
repend a message
prepend cyclone prep g
with another message
prepend flatspace iemlib list prefixer
prepend cxc list prefixer -> NV
. _ repends a message
prepend_ascii iemlib prep 8
- + selector symbol
prepend_output an identifier
. shortcut for [list
prepent list-abs . .
prepend]-[list trim]
pulse width
pwm hcs modulation at
message rate
automatic naming for
rec-name jmmmp a record / playback

machine

receivel3 r13 send13 s13

ext13 flatspace

like r and s, with set
messages

264

receive2list

iemlib

convert received
message to a list
message and then the
incoming message

recent

ggee

output only most
Jrecent” messages

relay

flatspace zexy

relay messages
according to their first
element

remote

flatspace motex

send data to any
receive object

repack

flatspace zexy

(re)pack atoms to
packages of a given
size

repeat

flatspace zexy

repeat a message
several times

scrolllist

displays and scrolls a
text in a patch
window

segregate

segregate the input to
various outlets,
depending on the type

sendlocal sl receivelocal rl

ggee

send messages locally
per canvas

turn a stream of

serialize cxc flatspace ggee . .
pace g8 floats into a list
sguigot jmmmp spigot with GUI
. takes integers and

sieve ekext

maps them to floats

compare two numbers
simile ekext flatspace according to an error

window

slider sliderh

ggee

slider from ggee

sort

flatspace zexy

shell-sort a list of
floats

soundfile_info

flatspace iemlib

show the header data
of a wav file

speedlim maxlib_speedlim

cyclone iemlib

speed limit for
incoming messages

spell

cyclone

convert input to ascii
values

split maxlib_split

cyclone iemlib

look for a range of
numbers

split_my_msgs

hcs

split a strem of
messages

split_path

flatspace hcs

like splitfilename

split3

iemlib

part a numeric stream
into 3 ways

splitfilename

flatspace iemlib

split into path and
filename

distribute an integer

spray cyclone to a numbered outlet
dynamic control
sprinkler flatspace message
dissemination
. format a message of
sprintf cyclone

strings and numbers

265

settable route

sroute list-abs

saves settings in a
state flatspace ggee -

patch to a file

prepends its text to
strcat markex any symbol that is

sent to it

compare 2 lists as if
strcmp flatspace zexy

they were strings

stripfilename

flatspace iemlib

strip the first or last
characters of a
symbol

strip a path from a

strippath ext13 flatspace .
PP P filename
self-similar
subst flatspace motex substitution/diminution
of rows
substitue a symbol for
substitute cyclone another symbol in a
message
. output a message
switch cyclone P >598
from a specific inlet
extended trigger
sync flatspace motex object based on sync
from jMax
N time-tagged trigger
t3_bpe flatspace iemlib 68 68
- break point envelope
print all combinations
take-two list-abs of length 2 without
repetition
. output number of
temperature flatspace maxlib . .
input changes in N ms
combine numbers into
thresh cyclone a list that are received
close together
ticker flatspace ggee toggle from ggee
tilt flatspace maxlib measure "tilt" of input
bang that routes
toddle ggee g
messages through
report zero / nonzero
TogEdge cyclone P /

transitions

toggle_mess

flatspace iemlib

control a message-
box with multiple
content (abbr. tm)

transf_fader

flatspace iemlib

transforms a slider
range

universal

cyclone

send a message to all
instances of the same
class in this patch (and
subatches if desired)

unroute

flatspace maxlib

merges all inputs into
one output and
prepend an identifier

unsymbol

flatspace iemlib

convert a symbol to a
anything selector

unwonk

unpack which sends
unused symbols to
the last outlet

266

send a specified
Uzi cyclone number of bangs as
fast as possible

Xerox

multi purpose list

zI cyclone . .
processing object

NAME LIBRARY/PATH|FUNCTION

267

MATH

Vanilla Objects

& | << >>&& || %

logical operators

+ - */ pow arithmetic
relational
>>== <=<
operators

clip

force a number
into a range

max min

greater or lesser
of 2 numbers

mod div sin cos tan atan
atan2 exp log abs sqrt pow

higher math

mtof ftom dbtorms
rmstodb dbtopow

convert
acoustical units

powtodb

pseudorandom
random integer

generator

wrap a number
wrap

to range [0,1]

Extended Objects

set numbers

runden behind the
comma
scalar
multiplication of
vectors (=lists of
floats)

Ux inv flatspace ggee takes t.he inverse
of the input
delivers a
number that is

about flatspace mjlib "about" the
same as the
input number
store, add to,

accum cyclone and multiply a
number

acos asin atan cyclone arc functions
generates a
histogram of

anal cyclone .
number pairs
received

attract] base base3

gingerbreadman henon

hopalong ikeda latoocarfian

latoomutalpha

latoomutbeta flatspace attractors

latoomutgamma lorenz

martin popcorn

quadruptwo rossler

standardmap
autocalibrating

autocal la-kitchen scaler (for
sensors)

268

autoscale

hcs mapping

scales a stream
of numbers with
dynamic input
range

average gem-average

flatspace markex

average
together a series
of numbers

beta bilex cauchy expo
gauss linear poisson triang

weibull

flatspace maxlib

random numbers
distribution

breakpoint
breakpoint_smooth

mapping

curves the input
range with a
double-linear
interpolator with
2 control
parameters

bytemask debytemask

mapping

generate /
decode a
bitmask byte
from 8 inlets

capture

cyclone

store and edit
numbers

cart2pol

convert
cartesian
coordinates to
polar

cart2sph

convert
cartesian
coordinates to
spheric

cartopol poltocar

cyclone

cartesian to
polar conversion

catch_extremum
catch_extremum?2

la-kitchen

return the last
locals minimum
and maximum

values

center_point

mapping

convert 0-1data
into a center
point with two
0-1ranges

circular circular_seat
circular_sigmoid

mapping

curves the input
range with a
double-circular
seat with 1
control
parameter

Clip

cyclone

limit numbers to
a range

clip

correlation

mapping

correlation of 2
different
streams

cosh sinh tanh

cyclone flatspace

hyperbolic
functions

cubic_seat

mapping

curves the input
range with cubic
curves

curves the input

269

curve

”ldPPIHg

range
maps the input
curve_exp curve_log mapping range to an
- - exponential /
logaritmic curve
3rd order
curve_fade mapping polygone for
natural fade
maps the input
curve_graph mapping range to an
arbitrary curve
db2v v2db flatspace iemlib db to rms
conversion
dbtofad fadtodb iemlib convert midi-db
to fader scale
deg2hid hid2deg hid conversion [hid}-
range to degrees
convert degree
deg2rad to radiant
degrees->mapping mapping E?;;:Irnt; _
mapping->degrees degrees
calculate 1st or
delta flatspace maxlib 2nd order
difference
. . diferentiate the
diff_n mapping input
distance from a
distance distance2d mapbin point and a
distance_n PPINg stream (normal,
2d, Nd)
like "/" but
divide flatspace maxlib calclates result
when second
inlet is changed
calculates
divmod flatspace maxlib division and
modulo
output random
drunk cyclone numbers in a
moving range
.. .. the i t
elliptic elliptic_seat . curves the Inpu
R - mapping range with 2
elliptic_sigmoid .
ellipses
exponential_curve ::;stv:i:ﬁ |anput
exponential_seat mapping dotjgble-
exponential_sigmoid .
- exponential seat
expr vanilla expression
evaluation
converts
f2note flatspace iemlib frequency to

notes + cents

fadtorms rmstofad

iemlib

fader scale to
rms

ffpoly

creb flatspace

finite field
polynomial

270

fir iir

mapping

filters

fir_filter

la-kitchen

fir filter with
coefficient list

fir_hip_n fir_mean_n

la-kitchen

fir high / low-
pass filter with
order n

funbuff

cyclone

store x,y pairs
of numbers
together

fwarp

creb flatspace

tangent warp
frequency

gaussian

mapping

generate
gaussian curve

hid_average hid_smooth

hid

smooths a
stream of
numbers through
weighted
averaging

hid_centered

hid

convert 0-1to -1-
1

hid_cube hid_cuberoot
hid_exp hid_log hid_square

hid_squareroot

hid

maps the input
range to the
chosen curve

hid_graph

hid

draw an
arbitrary curve,
which is applied
to the input
range

hid_invert

hid

inverts the
stream of
numbers

hid_lowpass

hid

smooths a
stream of
numbers through
audio conversion
+ lowpass
filtering

hid_polar

hid

converts
cartesian to
polar
coordinates

hid_spiral

hid

converts
cartesian to
spiral in polar
coordinates

hid2rad rad2hid

hid

conversion [hid]-
range to radians

Histo

cyclone

generates a
histogram of the
received
numbers

history

flatspace maxlib

calculates the
average of the
items (floats)
that came in
within the last N
miliseconds

| P RN R

iir high / low-

271

III_HIP III_IUP

Ia-KiLCriern

pass filter

invert

flatspace markex

non-zero
numbers to 0, 0
to 1

limit

flatspace maxlib

limits input to lie
between
boundaries

list-accum

list-abs

add all floats in
a list

list-add

list-abs

add two lists
element by
element

list-centroid

list-abs

calculates the
centroid of a
mass of a float-
list

list-dotprod

list-abs

dot-product of
two float-lists

list-emath

list-abs

do math on
float-lists
element by
element

list-equalize

list-abs

scale a float-list
so that all float
elements sum up
to 1

list-geometric-mean

list-abs

calculate the
geometric mean
of a float-list

list-harmonic-mean

list-abs

calculate the
harmonic mean
of a float-list

list-inter

list-abs

elementwise
linear
interpolation
between two
float-lists

list-inter-many

list-abs

elementwise
linear
interpolation
between several
internally-stored
float-lists

list-invint

list-abs

inverse intervals
of a float-list

list-math

list-abs

simple
mathematical
operations on
lists

list-mean

list-abs

calculates the
arithmetical
mean of a float-
list

list-minmax

list-abs

find minimum
and maximum in
a float-list

list-mult

list-abs

multiply two

float-lists

272

list-normalize

list-abs

normalizes a
float-list

list-round

list-abs

round all
numbers in a
float-list to a
nearest multiple

list-sub

list-abs

subtract two
float-lists
element by
element

list-unitvec

list-abs

normalize a
float-list
geometrically

logistic_sigmoid

mapping

curves the input
range with a
double-
exponential seat

mandelbrot

ext13 flatspace

z=z*z+c

mavg

flatspace zexy

moving average
filter

max_n min_n

la-kitchen

return the
maximum /
minimum from
the last n values

maximum

cyclone

output the
greatest in a list
of numbers

mean

cyclone

find the running
average of a
stream of
numbers

mean

flatspace zexy

get the mean
value of a list of
floats

minimum

cyclone

output the
smallest in a list
of numbers

minmax

flatspace zexy

get minimum
and maximum of
a list of floats

minus

flatspace maxlib

like "-“ but
calculates result
when leftmost
or second inlet is
changed

mlife

flatspace maxlib

cellular automata
object

mtosr

bsaylor flatspace

converts MIDI
note value to
samplerate

multi

flatspace maxlib

like "*" but
calculates result
when leftmost
or second inlet is
changed

n2m

flatspace mijlib

note to midi

scales a stream

P R I

273

notescale

hid

Ol NuITnpers Lo
MIDI note
numbers

offer

cyclone

store x, y pairs
of values (x is int
only)

one_n

la-kitchen

returns 1if the
last n datas
were non-zeros

past

cyclone

report when the
input decreases

beyond a certain
number

Peak

cyclone

output only
numbers greater
than the
previous

pi

hcs

value of pi as
accurate as Pd
can manage

plus

flatspace maxlib

like "+" but
calculates result
when leftmost
or second inlet is
changed

pol2cart

convert polar
coordinates to
cartesian

pol2sph

convert polar
coordinates to
spheric

prime

flatspace zexy

prime number
detector

rad2deg

convert radiant
to degree

randomF randF

flatspace markex

floating point
random number

range

deprecated flatspace

like [scale]

ratio

creb flatspace

multiply by 27k
so result is
l<=r<2
(transposer)

rewrap

flatspace maxlib

wraps floats
back and forth
into a range

rmstofad

rms to fader
characteristic

round_zero

flatspace iemlib

round numbers
near zero to
zero

scale

scale input from
a certain input
range to lie
between output
boundaries

274

returns 1if the
difference
between the

R

seuil_n

la-kitchen

currernc bdllllJIC
and the sample
n before is up to
the threshold
value

shuffle

flatspace motex

no-repeat
random number
generator

sph2cart

convert spheric
coordinates to
cartesian

sph2pol

convert spheric
coordinates to
polar

steady

ekext flatspace

takes stream of
numbers,
outputs max,
min, through

sum

flatspace zexy

sum the
elements of a
list

Through

cyclone

output only
numbers smaller
than the
previous

triple-scale

list-abs

interpolate
linearly between
two points

tripleRand

flatspace markex

three random
numbers

v+ v

v* v/ math on a
list of numbers

wrap

wrap the float
input between to
boundaries

wrap maxlib_wrap

flatspace iemlib maxlib

wraparound

returns 1if the

zero_n.pd la-kitchen last n datas
were 0
scale von

zscale L
pdjimmies

NAME LIBRARY/PATH

FUNCTION

275

TIME

Vanilla Objects

cputime measure CPU time
delay bang after time delay
line ramp generator
send ,bang” periodically ala
metro s P 4
metronome
. delay a message - a
pipe <«
message ,delay line
. ask operating system for
realtime P 8 5Y
elapsed real time
timer measure logical time

Extended Objec

calculate meanvalue of

bpm . .
P times between clicks

clock show (simple) clock
timeconvert shows

help conversion of hertz,
milliseconds, bpm, ...

. chronometer with display in

clock jmmmp
secs

date flatspace zexy get system date

. controls a list of bang
exciter

events scheduled in time

output current date / time

ISOdate ISOtime |hcs .
in ISO format
. . scale numbers exponentially
linedrive cyclone .
to use with line~
4 allows complex timing
metroplus flatspace mijlib .
P P l bangs to be delivered
metrum jmmmp metro with GUI
basic rhythm pattern
. building blocks that allows
monorhythm flatspace milib g
polyrhthms to be generated
quickly and easily
weighted series of random
prob cyclone
numbers
pulse flatspace motex a better metro
) output sequence of
step flatspace maxlib P quer .
numbers (similar to "line")
stoppuhr jmmmp chronometer with 2 layers
t3_delay flatspace iemlib time tagged trigger delay
I time tagged trigger
t3_metro flatspace iemlib 88 g8
- metronom
t3_timer flatspace iemlib time tagged trigger timer
time flatspace zexy get system time
. ; send out bangs at given
timebang flatspace maxlib . J 8
times of day
tripleLine flatspace markex line object for 3 values
uhr jmmmp shows the time
rng without duplicate
urn cyclone flatspace

numbers

276

PR o PRI R

output seconds since epoch

uuimne

CXC lidispace

and microsecond faction

velocity

flatspace maxlib

get velocity of digits per
second

NAME

LIBRARY/PATH[FUNCTION

277

MIDI

Vanilla Objects

makenote

send note-on messages
and schedule note-off
for later

notein ctlin pgmin
bendin touchin
polytouchin midiin
sysexin

MIDI input

noteout ctlout
pgmout bendout
touchout
polytouchout
midiout

MIDI output

stripnote

take note-off messages
out of a MIDI stream

Extended Objects

beat

flatspace maxlib

beat tracker

reports current info on

Borax cyclone
i note on/off
. analyse incoming midi
borax flatspace maxlib Y J
notes
chord flatspace maxlib tries to detect chords
rovide note offs for
flush cyclone P
held notes
. estalt detection for
gestalt flatspace maxlib & . .
monophonic melodies
mei imm automatic conversion of
I P MIDI controller
send note offs for all
midiflush cyclone hanging notes in a raw
midi state
midiformat de/construct midi
. cyclone
midiparse messages
. fast visual control of MIDI
mk jmmmp .
Inputs
pitch flatspace maxlib get info about pitch
. detects the beat of
rhythm flatspace maxlib .
rhythmic patterns
score follower that tries
. to match incoming MIDI
score flatspace maxlib .
data to a score stored in
an array
. hold note offs and
sustain cyclone
output them on request
xbendin xbendin2 . -
bendout cyclone extra precision midi
itchbend objects (14 bit
xbendout2 P I ()
. interpret midi messages
xnotein xnoteout |cyclone

with release velocity

NAME

LIBRARY/PATH

FUNCTION

278

TABLES

Vanilla Objects

tabread read numbers from a table
read numbers from a table with
tabread4 L .
4-point interpolation
tabwrite write numbers to a table
. read and write soundfiles to
soundfiler

arrays

Extended Objects

copy data from one array to

arrayco flatspace maxlib
YCOPY P another
arraysize flatspace returns the size of an array
envgen flatspace ggee envelope generator
pianoroll graphical sequencer controller
dump the contents of a table
tabdump flatspace zexy .
as a list
. get minimum and maximum of
tabminmax [flatspace zexy
a table
tabset flatspace zexy set a table with a list of floats
tabreadmix~|creb flatspace overlap add tabread clone

NAME

LIBRARY/PATH[FUNCTION

279

MISC

Vanilla Objects

send ,bang” automatically

loadban,
J when patch loads
. serial device control for
serial
NT only
send Pd messages over a
netsend
network
. listen for incoming
netreceive
messages from network
qlist text-based sequencer
textfile read and write textfiles
openpanel ,open” dialog
savepanel ,save as” dialog
bag collection of numbers
MIDI-style polyphonic voice
poly yle polyp
allocator
kev kevu numeric key values from
Y Keyup keyboard
keyname symbolic key name
set search path and/or
declare

load libraries

Extended Object

(]

hid hcs HID protocoll reader
returns each path in the
classpath hcs
global classpath
. loads libraries from the
import hcs
path to local namespace
a patch for disrupting
parazit gnd other patches using
internal messages
simple client that connects
netclient flatspace maxlib to netserver or to pd's
native netreceive object
. . distribute data to several
netdist flatspace maxlib .
netreceive
. ?report of netsend
netrec flatspace maxlib port.
connections?
netserver flatspace maxlib netclient
sends value of an
getenv flatspace motex environment variable
argument on bang
A N initialize anything b
init i flatspace iemlib ytning by
loadbang
grid

iem_pbank_csv

flatspace iemlib

parameter-bank with csv-
syntax

mapper

msgfile

flatspace zexy

read and write messages
into text files

operating_system

flatspace zexy

get the current OS

pool

a hierarchical storage

i A

280

<] PRI

strips all leading directories

Sur II.)(.III

lidlspdie ggee

from a path

send a system message to

system flatspace motex
Y P the console
vector based amplitude
vbap ggee .
panning external
wintablet external for using Wacom
tablets on Windows
et and set environment
ENV cxc flatspace B
variables
interface to the linux proc
proc cxc flatspace ;
filesystem
text comment with some
comment cyclone formatting options, meant
to be Max/MSP compatible
. passes numbers only when
mousefilter cyclone .
mousebutton is up
report mouse x/y/deltax
MouseState cyclone P Iyl fy
and buttonpress
. outputs raw events from
linuxevent deprecated flatspace .
the linux event system
. takes events directly from
linuxmouse deprecated flatspace

a linux event device

filesize fsize

ext13 flatspace

gives size of a file

get samples, channels,

wavinfo ext13 flatspace bitspersample, amplerate
of a file

beatpipe flatspace event scheduler / quantizer

comport flatspace serial port interface

folder_list flatspace hcs I|§t|ng of files based on a
wildcard pattern

etdir flatspace zaee get the directory this

8 pace g8 patch is operating in

ifeel flatspace hcs Fontrol the pulse of an
iFeel mouse

image flatspace ggee incorporate images

openpatch opa |[flatspace open a patch file

popen flatspace shell commands

popup flatspace iemlib popup menu

<hell flatspace goee run commands in a UNIX

pace &8 shel

failsafe hes tur.ns off dsp and / or
quits pd

file_type hcs find the file type of a file

gid->group_name hes convert group name <->

group_name->gid GID
fetch password data

group hcs based on a UID or group
name
fetch password data

passwd hcs based on a UID or
username

stat hes gets information about
files

uid->username hes convert group name <->

username->uid

GID

U Y i I

281

VEISIon o1 wune LUIICHLI)’

version hcs running Pd
joystick hid ;Ze a joystick device with
keyboard hid :si:tehapl;eyboard device
. . simple keyboard-
keygate hid mapping controlled gate
. use a mouse device with

mouse hid Pq
datei-l datei-o [jmmmp s?nd the message ,open
datei-r |jmmmp send the message ,read ..

. . send the message ,write
datei-w jmmmp "

d-colors mm Tcl/Tk and data
P I P structure's color palettes
gui-edit |jmmmp GUl-editor abstraction
. counts received OSC

oscD jmmmp messages
oscS |jmmmp interface for [sendOSC]
tastin jmmmp gate for keyboard input
keybang keyboardkeys key bang GUI
keytoggle keyboardkeys key toggle GUI
keyupdown keyboardkeys aj;zaséedldecrease of any

NAME

LIBRARY/PATH|FUNCTION

282

AUDIO GLUE

Vanilla Objects

adc~ audio input
dac~ audio output
~ output bang after
bang each DSP cycle
block~ specify block size
and overlap
i switch DSP on and
switch~

off

catch~ throw~

summing signal bus
and non-local

connection
. audio ramp
line~
generator
. high-precision audio
vline~ 8P
ramp generator
trigger from audio
threshold~ r'Bs
signal
<napshot convert a signal to a
P number on demand
vsnapshot~ deluxe snapshot~
samplerate~ get the sample rate
readsf~ read a soundfile

receive~ send~

one-to-many
nonlocal signal
connections

writesf~

write audio signals
to a soundfile

sig~

convert numbers to
audio signal

Extended Objects

play back a signal-

blockmirror~ flatspace zexy vector in a time-
reversed way
swap the upper and
blockswap~ flatspace zexy lower half of a
signal-vector
cooled~ sound editor
frequency detector
dfreq~ flatspace zexy that counts zero-
crossings
like env~, but
envrms~ flatspace zexy outputting rms
instead of dB
_— fade-in fade-out
fade~ flatspace iemlib .
shaper (need line~)
. . N current blocksize of
iem_blocksize~ flatspace iemlib .
- a window
. I samplerate of a
iem_samplerate~ flatspace iemlib mplere
- window in Hertz
split signal float to
int_fract~ iemlib integer and fractal

part

283

Line~

cyclone

line~ with lists and
bang in the end

mp3play~

flatspace iemlib

mpeg layer lll player

pack~ unpack~

flatspace zexy

convert signals to
float-packages

oggamp~ flatspace pdogg streaming client
oggcast~ flatspace pdogg stream to IceCast2
or JRoar
oggread~ flatspace pdogg file player
oggwrite~ flatspace pdogg strean to file
ogglive~
16x16 patchbay
patcher~ inspired by Synthi
AKS
robability densit
pdf~ flatspace zexy :?unction y y
peakenv~ flatspace iemlib erg‘:;lc;izak_
switch between
polygate~ flatspace motex multiple signal
inputs
prvu~ flatspace iemlib ﬁ::tl:r rms- vu-
pvu~ flatspace iemlib peak- vu-meter
rvu~ flatspace iemlib rms- vu-meter
shift signal vector
rlshift~ elements left or
right
Scope~ cyclone

sfplay sfrecord

flatspace zexy

play back/record
(multichannel)
soundfiles <- NICHT
VERWENDEN

sfread~ sfwrite~

flatspace ggee

NICHT VERWENDEN

detects whether

sigzero~ flatspace zexy there is signal or
not
spigot~ signal router
arithmetic mean of
tavg~ flatspace zexy a signal between
two bangs
. — time tagged trigger
t3_sig~ flatspace iemlib . &8 88
- sig~
. _— time tagged trigger
t3_line~ flatspace iemlib . &8 88
- line~
similar to thresher~
bthresher~ but with more
control
an
amplitude/frequenc
thresher~ P / =9 Y
sensitive gating
object
. N signal to float
unsig~ iemlib g
converter
xgroove~
xrecord~

284

xplay~

noise detector,

zerocross~ counts zero
crossings of signal
count~ cyclone sample counter
read and write
record~ cyclone
sample values
compare two signals
simile~ ekext flatspace according to an
error window
find n-th zero
Zeroxpos~ ekext flatspace

crossing in frame

piperead~ pipewrite~

ext13 flatspace

like sfread and
write, but non-
blocking

throw13~ t13~ catchl13~
cl3~

flatspace [ext13]

like catch~ and
throw~, with set
messages

receivel3~ send13~

flatspace [ext13]

like r and s, with set
messages

streamin~ streamout~

flatspace ggee

streaming client

blocksize_in_ms hcs blocksize in ms
pulse width
pwm-~ hcs modulation at audio
rate
mono/stereo level
mat~ met~ maat~ .)
jmmmp meter with
meet~ .
amplitude control
. snapshot~ GUI
snaps~ jmmmp

implementation

NAME

LIBRARY/PATH

FUNCTION

285

AUDIO MATH

Vanilla Objects

operators on audio

+~ -~ F~ [~ h
signals
. maximum or
max~ min~ i .
minimum of 2 inputs
restrict a signal to
clip~ lie between two
limits
signal reciprocal
q8_rsqrt~ g P
square root
q8_sqrt~ signal square root
wrap~ remainder modulo 1
. forward and inverse
fft~ ifft~
complex FFT
forward and inverse
rfft~ rifft~
real FFT
estimate frequency
framp~ and amplitude of

FFT components

mtof~ ftom~ rmstodb~
dbtorms~ rmstopow~
powtorms~

conversions for
audio signals

pow~ log~ exp~ abs~

math

Extended Objects

>~ <~, ==~, &&~, ||~ logical operators
abs cyclone flatspace absolute value of a
markex zexy signal
absolute value +
absgn~ flatspace zexy .
signum
T signal addition with
addl~ iemlib >
line~
smooth amplitude
amp~ hcs
control
get the phase from
atan2~ cyclone flatspace ggee |a imaginary value of
the fft
arithmetic mean of 1
avg~ cyclone flatspace zexy |
signal-vector
. limit numbers to a
Clip~ cyclone
range
. T signal divison with
divl~ iemlib '8
line~
exp~ log~ signal math
. expression
expr~ fexpr~ vanilla .
evaluation
In~ flatspace motex log~
convert MIDI pitch
m2f~ flatspace iemlib to frequency
(obsolete)
N signal multiplication
mull~ iemlib gna’ P
with line~
. line~d multiplication
multiline~ flatspace zexy

of multiple signals

286

pol2rec~

flatspace motex

inverse of rec2pol~

convert rectangular

rec2pol~ flatspace motex .
coordinates to polar
T round signal float to
round~ iemlib g
nearest integer
sgn~ flatspace zexy signum of a signal
calculate phase
. — difference between
sin_phase~ flatspace iemlib .)
2 sine-waves, in
samples
_ signal subtraction
subl~ iemlib g .
with line~
convert numbers to
t3_sig~ signal with sample
accuracy
bfft~ creb flatspace reordered fft
N convert signal to
bitsplit~ creb . g
binary vector
normalize a (set of)
blocknorm~ creb dsp block(s) (i.e. for
spectral processing)
discrete wavelet
dwt~ creb flatspace
transform
. discrete inverse
idwt~ creb flatspace
wavelet transform
difference between
delta~ cxc cyclone flatspace

this and last sample

acos~ asin~atan~ cyclone arc functions

acosh~ cyclone

asinh~ cyclone

atanh~ cyclone

average~ cyclone

cosh~ sinh~ tanh~ cyclone hyperbolic functions

COSX~ Sinx~ tanx~ cyclone

log~ cyclone

cartopol~ poltocar~ cyclone cartesiar\ to polar
conversion

pow~ cyclone

framescore~ cglgula?es weighted

framespect~ ekext flatspace s!m|lar|ty value for 2
signal vectors

hssc~ ekext flatspace highest significant
spectral component

mandelbrot~ ext13 flatspace z=z*z+cC

. multiplies a signal

bwin~ flatspace bIockPwith a v%indow

bmax~ flib gives block max

irreg~ flib irregularity
creates a mel
spaced filterbank to

melf~ flib generate mel
frequency cepstral
coefficients
get amplitude or

mspec~ flib power spectrum

from fft

287

get spectral peaks

peak~ flib from magnitudes /
estimate frequency
. et phase spectrum
spec~ flib &
Psp from fft
sc~ flib spectral centroid
. tral flat
cem~ flib spectral flatness
measure
o flib spectral
smoothness
trist~ flib tristimulus x, y, z

NAME

LIBRARY/PATH

288

FUNCTION

AUDIO OSCILLATORS AND TABLES

Vanilla Objects

phasor~ sawtooth generator
cos~ cosine waveshaper
cosine wave
osc~ .
oscillator
. write a signal in an
tabwrite~ J
array
play a table as a
tabplay~ sample (non-
transposing)
tabread~ table lookup
4-point interpolatin
tabread4~ P P g
table lookup
4-point interpolatin
tabosc4~ P Verp 6
table oscillator
writes one block of
tabsend~ a signal continuously
to an array
read a block of
tabreceive~ signal from an array

continuously

Extended Objects

agogo~
bamboo~
blotar~
attack detector for
bonk~ vanilla/bonk~ small percussion
instruments
bowed~
bowedbar~
brass~
subctractive
buzz~ synthesis without
filters
cabasa~
An 8 rule cellular
cavoc~ automata that
generates spectra
cavoc2T~ A 27 rule cellglar
automata object
uses a sync signal to
chase~ determine who gets
out which outlet
clarinet~
blocks DC
dcblock~ components in audio
signals
dirac~ flatspace zexy prf)duces @
unit:sample:sequence
escalator~
pitch estimator and
fiddle~ vanilla sinusoidal peak

finder

289

flute~

formant~ formant synthesis
equalizer with
gq~ variable number of
filter banks
guiro~
2-point-interpolated
LFO_noise~ flatspace iemlib time-stretched white
noise
phase generator for
loop~ extra flatspace loop~ .
looping samples
shift signal vector
Irshift~ flatspace Irshift~ elements left or
right
mandolin~
marimba~
- convert text to
morse flatspace milib
morse code
ranular samplin,
munger~ 5 ping
Instrument
draws a random
number every n
noish~ noisi~ flatspace zexy samples and
interpolates
between
paf~ 0.06
. B ink noise (-3dB per
pink~ cyclone iemlib P (P
octave)
plucked~
a squarewave
rechteck~ q
generator
scrub~
. examples of
sinesum .
sinesum
sleigh~ sleigh bell
unit:step sequence
step~ flatspace zexy or a
rectangle:window
another phase
susloop~ bsaylor flatspace generator for
sample looping
implements
syncgrain~ synchronous
granular synthesis
vibraphone~
testsi choose noise, osc,
g phasor by clicking
dynamic wavetable:
dynwav~ creb flatspace use a signal block as
wavetable
. . circulant lossless
junction~ creb flatspace . . .
signal junction
smallband oscillator
sbosc~ creb (i.e. for formant

synthesis)

290

a stabilized scroll

scroligrid1D~ creb grid chaotic
oscillator
index~ cyclone sgmple Playback .
without interpolation
lookup~ evdlone transfer funcion
P Y lookup table
read and write
peek~ cyclone
sample values
lay~ cvclone position based
Pay Y sample playback
bandlimited random
rand~ cyclone .
noise
variable size
wave~ cyclone
wavetable
ambi_rot iem_ambi ambisonic rotation
ambi_encode ambi_decode N .
= - . . ambisonic encoding /
ambi_decode3 iem_ambi decodin
ambi_decode_cube 6
bin_ambi_reduced_decode_fft2 iem bin ambi ambisonic binaural
bin_ambi_reduced_decode 2 - - encoding / decoding

NAME

LIBRARY/PATH

FUNCTION

291

AUDIO FILTERS

Vanilla Objects

env~ envelope follower

vefe voltage-controlled
bandpass filter

. uniformly distributed

noise= white noise

hip~ gne-pole high pass
filter

lop~ gne—pole low pass
filter

bp~ bandpass filter

biquad~ 2-pole-2-zero filter

samphold~ sample and hold unit

print~ print out raw values
of a signal

rpole~ real one-pole
(recursive) filter, raw

rzero~ real one-zero (non-
recursive) filter, raw
real one-zero (non-

rzero_rev~ recursive) ,reverse”
filter, raw

cpole~ complex one-pole
(recursive) filter, raw
complex one-zero

czero~ (non-recursive) filter,
raw
complex one-zero

czero_rev~ (non-recursive)

Jreverse” filter, raw

Extended Objects

bandpass equalizer
highpass highshelf
hishelf lowpass
lowshelf notch

flatspace ggee

coefficients for
biquad~

control IR filter 1.

plz iemlib order
aenv~ bsaylor flatspace asymptotic ADSR
envelope generator
allpass~ cyclone allpass filter
apl~ ap2~ iemlib allpass 1./ 2. order
_— bandpass 2.order
bpg2~ bp2~ iemlib with Q inlet
_— bandpass 2.order
bpw2~ temib with bandwidth inlet
I bandstop 2.order
bsq2~ temlib (notch) with Q inlet
bandstop 2.order
bsw2~ iemlib (notch) with
bandwidth inlet
a cross-referenced
burrow~

filtering object

292

PRI U DA DRI SR

d bPCLL[dal modauiauiorn

centerring~ object

codepend~ a classic .block .
convolution object

comb~ cyclone comb filter

complex m(?d~ frequency
shifter

compressor~ audio compressor

complex-mod~ vanilla frequency shifter

convol~ convobrosfilter
crossx~ a cross synthesis
object with gating
cverb~ implementation of
the Csound reverb
dentist~ a partial knockout
object
. . an interpolating
disarrain version of disarray~
disarray~ a spectral
redistribution object
drown~ a noise reduction (or
increase) object
enveloper~ the (0ld???) envelope
P generator of iemlib
another spectral
ether~ compositing object
multiple object for all
useful lIR-filters 1. and
filter~ flatspace iemlib 2. order like lowpass,
highpass, bandpass,
bandstop, allpass, etc
outputs the
; frequence response
filterbank against a set of band
pass filters
. a hard filtering of
filtersmel~ low(soft) frequencies
filtersme2~ filtering by drawing
with mouse in array
FIR~ flatspace iemlib convolve a signal with
an array
freeverb~ freeverb Schroeder/Moorer
reverb model
phase quadrature of
hilbert~ vanilla input for complex
modulation
hml_shelf~ flatspace iemlib hlgh-mld-low-sheIV|ng
= filter
hpl~ hp2~ iemlib highpass 1. / 2. order
hp2_butt~ hp3_butt~ .

- - highpass
hpd_butt~hps butt~ 234567 8910.0rder
hp6_butt~ hp7_butt~ |iemlib .
hp8_butt~ hp9 butt~ with butterworth
hE10_ butt - characteristic
hp2_cheb~ hp3_cheb~ .

- - highpass
hp4_cheb~ hp5_cheb~
hp6_cheb~ hp7_cheb~ liemiib 2.34.5.6.7.89.10.order

PP R T R A

293

hp8_cheb~ hp9_cheb~
hp10_cheb~

WILI LllCbel ev
characteristic

hp2_bess~ hp3_bess~

hp8_crit~ hp9_crit~
hp10_crit~

highpass
hpd bess—hp> bess—| 234567.89.10.0rder
hp6_bess~ hp7_bess~ |iemlib .
with bessel
hp8 bess~ hp9d_bess~ characteristic
hp10_bess~
hp2_crit~ hp3_crit~
hp4_crit~ hp5_crit~ highpass
hp6_crit~ hp7_crit~ iemlib 23.4.5.6.7.89.10.order

with critical damping

a sieve based cross

leaker~ fader
- a limiter/compressor
limiter~ flatspace zexy
module
|Ipl~ Ip2~ iemlib lowpass 1./ 2. order
Ip1 t~ flatspace iemlib lowpass Lorder with

time_constant inlet

Ip2_butt~ Ip3_butt~
Ip4_butt~ Ip5_butt~

lowpass
2.34.56.7.89.10.order

:PS—EEEE: :P;—EEEE: temlib with butterworth
IglO_ butt~ Pz characteristic
Ip2_cheb~ Ip3_cheb~ lowpass
lp4_cheb~Ip5_cheb~ | 234.567.8910.0rder
Ip6_cheb~ Ip7_cheb~ |iemlib with chebvshey
Ip8_cheb~ Ip9_cheb~ ye!
Ip10_cheb~ characteristic
Ip2_bess~ Ip3_bess~ lowpass
Ip4_bess~ Ip5_bess~ P

- - T 23456.7.89.10.order
Ip6_bess~ Ip7_bess~ |iemlib with bessel
Ip8_bess~ Ip9_bess~ o
Ip10_bess~ characteristic
Ip2_crit~ Ip3_crit~
Ip4_crit~ Ip5_crit~ lowpass
Ip6_crit~ Ip7 _crit~ iemlib 2.3.4.5.6.7.8.9.10.order

Ip8_crit~ Ip9_crit~

with critical damping

Ip10_crit~
maverage moving average filter
€ with IR
. a spectral formant
mindwarp~ . .
warping object
signal controlled
moog~ flatspace ggee "moog" resonant
lowpass
morphine~ a morphing object
. Schroeder/Moorer
multiverb~
reverb model
multyq~ a four band filter
equal power stereo
pan~ qual p
panning
same as above but
ansi flatspace motex takes a signal
pansig P modulator rather
than a float
T arametril bandpass
para_bp2~ flatspace iemlib P P

2. order

294

pin~

flatspace mijlib

randomly delivers the
input signal to either
the right or left
outlet with a given
probability

pitchnoise~

Harmonic/inharmonic
monophonic timbre
separator

presidency~

a spectral sampler
with pitch control

pvgrain~

a spectrum analyzer
for granular
resynthesis

pvharm~

a harmonizer

pvoc~

an additive synthesis
phase vocoder

pvtuner~

a spectrum quantizer
for tuning to
arbitrary scales

pvwarp~

a non-linear
frequency warper

reanimator~

an audio texture
mapper

resent~

similar to residency~
but with independent
bin control

residency~

a spectral sampler
useful for time scaling

scrape~

a noise reduction (or
increase) object with
frequency control

shapee~

a frequency shaping
object

swinger~

a phase swapping
object

taint~

a cross synthesis
object

vacancy~

a spectral
compositing object

XSyn~

a cross synthesis with
compression object

pvcompand~

a spectral
compressor/expander
object

quantize~

flatspace zexy

quantize a signal with
a variable step-
number

mov_avrg_kern~

flatspace iemlib

moving average filter
kernel

fft stuff, needed as

mypol2rec~ abstraction for some
other patches
myrec2pol~ fft stuff, as above
Y P (ggee)
para_pb2~ parametrical

bandpass ???

295

resonarice pdnupdss

rbpq2~ iemlib 2.order with Q inlet
resonance bandpass
rbpw2~ iemlib 2.order with
bandwidth inlet
T rough combfilter
reccombfilter feedback
series of allpass with
revi~ vanilla exponentially growing
delay lines
. simple 1-in, 4-out
rev2~ vanilla
reverberator
. hard-core, 2-in, 4-out
rev3~ vanilla
reverberator
schroeder~ schroeder reverb
byte-swap a 16bit
swap~ flatspace zexy signal
svf~ bsaylor cyclone state-variable filter
flatspace
vef_hp2~ vef_hpd~ | hghpass 2.4.6.8.order
- - iemlib with freq and Q signal
vcf_hp6~ vef_hp8~ .
- - inlets
vef Ip2~ vef_Ipd~ o Io.wpass 2.4.6.8.orfjer
- = iemlib with freq and Q signal
vcf_Ip6~ vcf_Ip8~ .
- - inlets
bandpass
vcf_bp2~ vcf_bpd~ iemlib 2.4.6.8.order with
vcf_bpb~ vef_bp8~ © freq and Q signal
inlets
resonance bandpass
vcf_rbp2~ vcf_rbp4~ | . 2.4.6.8.order with
- - iemlib

vcf_rbp6~ vcf_rbp8~

freq and Q signal
inlets

block diagonal state

bdiag~ creb flatspace space system
(spectral processor)
chebyshev polynomial
cheby~ creb flatspace y poly
waveshaper
dist~ creb flatspace dist~ waveshaper
exp. attack deca
eadsr~ creb flatspace P8 Y
sustain release
ead~ creb flatspace exp. attack decay
ear~ creb flatspace exp. attack release
lattice~ creb flatspace lattice~ filter
random permute a
permut~ creb flatspace .
signal block
multiply 2 quaternion
gqmult~ creb flatspace tPly < 9
signals
normalize a
qnorm~ creb flatspace quaternion signal (or
any 4 channel sig)
; a reso filter (4pole,
resofilt~ creb (4p
3pole)
coupled frequenc
xfm~ creb flatspace plec Treq Y
modulation
cxc cyclone flatspace |interpolating reson
reson~ Y P P s

markex

filter

296

pan_gogins~

deprecated flatspace

modification of pan~

voiding_detector~

ekext

estimates wether a
frame of speech is
voiced or unvoiced

big fun with spoken

scramble~ ext13 flatspace words or beats
o allpass 1./ 2. order
aplc~ ap2c~ iemlib for filter cascades
o highpass 1./ 2. order
hplc~ hp2c~ iemlib for filter cascades
1./ 2. ord
e Ip2e- b lowpass 1./ 2. order

for filter cascades

NAME

LIBRARY/PATH

FUNCTION

297

AUDIO DELAY

Vanilla Objects

writes a signal in a delay

delwrite~ .

line

read a signal from a dela
delread~ . J Y

line

reads a signal from a

delay line at a variable
vd~ Y

delay time (4-point-
interpolation)

Extended Objects

high-resolution delay for

blockdelay~ smaller delay times

delay~ cyclone delay incoming signal for
a number of samples

z~ flatspace zexy samplewise delay

fdn~ creb flatspace feedback delay network

NAME |LIBRARY/PATH[FUNCTION

298

SUBWINDOWS

Vanilla Objects

pd define a subwindow

inlet outlet control inlet / outlet

inlet~ outlet~ audio inlet / outlet

table array of numbers

Extended Objects

dyn~ dynamic object mangement

Py python script objects
NAME LIBRARY/PATH[FUNCTION

299

DATA TEMPLATES AND

ACESSING DATA

Vanilla Objects

drawcurve filledcurve

draw a curve

drawpolygon filledpolygon

draw a polygon

plot

draw array
elements of
scalars

drawnumber

draw numeric
fields for data
structures

struct

declare the fields
in a data
structure

pointer

remember the
location of a
scalar in a list

get

get values from
a scalar

set

set values in a
scalar

element

get pointer to an
element of an
array

getsize

get the number
of elements of
an array

setsize

resize an array

append

add item to a
list

sublist

get a list from a
field of a scalar

NAME

LIBRARY/PATH

FUNCTION

300

GEM

Extended Objects

accumrotate manipulation accumulated rotation
alpha manipulation enable alpha blending
ambient ambientRGB [manipulation ambient coloring
camera

circle geometric renders a circle

color colorRGB

manipulation

colouring

renders a square with

colorSquare geometric
several colors
cone geometric renders a cone
cube geometric renders a cone
cuboid geometric renders a cuboid box
curve geometric renders a bezier-curve
. renders a 3d bezier-
curve3d geometric
curve
cylinder geometric renders a cylinder
turn on / off depth
depth P

test

diffuse diffuseRGB

manipulation

diffuse colouring

disk

geometric

renders a disk

emission emissionRGB

manipulation

emission colouring

load and apply an ARB

fragment_program [shader fragment shader
connect gem objects
gemhead to the window
manager
gemkeyboard keyboard events in
gemkeyname the gem window
get current
gemlist_info information transformation of a
gemlist
emmouse mouse events in the
8 gem window
emwin access to the window
& manager
load a GLSL fragment
glsl_fragment shader chader
Il brogram chader link GLSL-modules into
gis.prog a shader program
glsl_vertex shader load a GLSL vertex
- shader
convert between RGB
hsv2rgb rgb2h
SVETgb rgbensy and HSV colorspace
imageVertp geometric map luminance to

height

light world_light

non-geometric

adds a point-light to
the scene

pix_blobtracker

pix analysis

blob detector and
tracker

rgb2yuv yuv2rgb

convert between RGB
and YUV colorspace

301

IIIICdI_PdLII
spline_path

reads out a table

model

geometric

renders an
Alias/Wavefront-Model

multimodel

geometric

load multiple an
Alias/Wavefront-Model
and renders one of
them

newWave

geometric

renders a waving
square (mass-spring-
system)

ortho

manipulation

orthographic
rendering

part_color

particle system

defines color of
particles

part_damp

particle system

change velocity of
particles

part_draw

particle system

draw a particle
system

part_follow

particle system

particle follow each
other

part_gravity

particle system

sets the gravity-
vector of the particle
system

part_head

particle system

starts a particle
system

part_info

particle system

gives all available
information of all the
particles in the system

part_killold

particle system

kill all particles which
are older than the kil
time

part_killslow

particle system

kill all particles which
are slower than the Kkill
speed

part_orbitpoint

particle system

make the particles
orbit about the
postion x,y,z

part_render

particle system

draw a particle
system

sets up a sink for the

part_sink particle system particles within the
system
. . change size of the
part_size particle system

particles

part_source

particle system

add a particle source

part_targetcolor

particle system

change the color of
the particles

part_targetsize

particle system

change the size of the
particles

part_velcone

particle system

sets a cone to be the
velocity-domain of
new particles

part_velocity

particle system

sets velocity of new
particles

part_velsphere

302

particle system

sets a sphere to be
the velocity-domain of

new particles

part_vertex

particle system

add a particle at the
specified outset

converts a pix to

pix_2grey p greyscale
converts a pix to
pix_a_2grey pix greyscale based on
alpha
pix_add pix image add 2 images
. . . apply a super8-like
pix_2ging p aging effect
ix aloh . set the alpha values
pix_alpha p of an RGBA-pix
. . separate an object
pix_background px from a background
pix_backlight pix blacklighting effect
pix_biquad

pix_movement pix_tlIR

pix timebased effect

timebased IR filter

pix_bitmask pix mask out pixels
et the ,center of
ix_blob ix get the center
PO P gravity” of an image
i blur i deprecated, use
P P pix_motionblur
i buffer i storage place for a
P P number of images
pix_buffer_read i read / write images to
pix_buffer_write P a pix_buffer
pix_buf pix buffer a pix
. . mix 2 images based
pix_chroma_key pix mix mag
- - on their color
ix dearblock i clear an image without
PP P destroying the picture
calculate the alpha-
pix_coloralpha pix channels from the
RGB data
pix_colormatrix pix transform the pixel
- values by a matrix
ix color " set the color-channels
PP P of an image
ix colorreduce i reduce the number of
P P color in the image
ix compare " mix 2 images based
PR P P on their luminance
pix_composite pix mix alpha-blend 2 images
i contrast i change contrast and
PR P saturation of an image
convert the
pix_convert pix colorspace of an
image
. . apply a convolution
ix_convolve iX
P P kernel
. . . set the texture
pix_coordinate pix . .
- coordinates for a pix
pix_crop pix get a subimage of an

image

| T

303

dpply COIO0I Lurves Lo

ix_curve ix .
P P an image

. . et pixel data from an
pix_data pix ‘igmagpe
pix_deinterlace pix deinterlace an image

delay a series of

pix_delay pix timebased effect images
L o get the difference
pix_diff poemix between 2 pixes
pix_dot pix make dotty images
pix_draw pix draw pixels on the
- screen
pix_dump P it of an moge
. . reduce the number of
pix_duotone P colors by thresholding
pix_fiducialtrack pix analysis gggecéatlo[rtzrngdﬂtracker
pix_film pix source load in a movie file
e . flips the image alon,
pix_flip pix anpaxis € g
pix_freeframe pix ;L;)r;eactFreeFrame
pix_gain pix multiply pixel values
convert the
pix_grey pix colorspace of an
image into grey
pix_halftone pix fx lr)naatlz:r:zlftone
pix_histo pix exc‘erpt histograms of
- an image
pix_hsv2rgb . convert between RGB
pix_rgb2hsv px and HSV
pix_imagelnPlace pix source :‘IZ:S multiple image
pix_image pix source loads an image file
o . create pixes from an
pix_indycam P SGl video camera
pix_info pix
pix_invert pix invert an image
pix_kaleidoscope pix kaleidoscope effect
pix_levels pix level adjustment
offset pixels
pix_lumaoffset pix depending on the
luminance
pix_mask pix mix mask out a pix
. . get the mean color of
pix_mean_color P the current image
pix_metaimage pix display a pix by itself
pix_mix pix mix 2 images based

on mixing factors

pix_motionblur

pix timebased effect

apply motionbluring
on a series of images

pix_movement2

pix timebased effect

timebased IR filter for
motion detection

pix_movie

304

pix source

load in a movie file

blob detector for

ix_multiblob ix analysis .
Pb P Y multiple blobs
. . . loads multiple image
pix_multimage pix source .
files
pix_multiply pix mix multiply 2 images
pix_normalize pix normalize an images
. . add an offset to the
pix_offset pix
color
pix_pix2sig~ i convert images <->
pix_sig2pix~ P signals
pix_posterize pix posterialization effect
pix_puzzle pix shuffle an image
random dot
pix_rds pix stereogram for
luminance
. . write a sequence of
pix_record pix output . e
pixes to a movie file
. . draw a rectangle into
pix_rectangle pix .
a pix
. . . display a pix through
pix_refraction pix playap s
- glass bricks
pix_resize pix resize an image
convert the
pix_rgba pix colorspace of an
image to RGBA
. . (sdJroll through an
pix_roll pix .
image
. o Realtime vs. X
pix_rtx pix timebased effect .

- tranformation
pix_scanline pix scan lines of an image
. . set the pixel data of

pix_set pIx .
an image
. read / write pixels
pix_share_read . / P
.- - pix from a shared
pix_share_write .
memory region
. . take a screenshot and
pix_snap2tex pix .
texture it
i sna i snap a pix of the
pix_shap P frame buffer
pix_subtract pix mix subtract 2 images
ix_takealpha iX mix transfer the alpha
PO P P channel
pix_texture pix apply texture mapping

pix_threshold_bernsen

apply dynamic
thresholds to pixes
for binarization

apply a threshold to

pix_threshold pix pixes
live video capture with
pix_videoDS pix source VideoShow (windows
only)
N . open a camera and
pix_video pix source .
get input
make a snapshot of
pix_write pix the frame buffer and

write it to a file

305

convert the

pix_yuv pix colorspace of an
image to YUV

pix_zoom pix zoom the pixels

polygon geometric renders a polygon

polygon_smooth

manipulation

turn on / off polygon
smoothing

pqtorusknots geometric renders a 3d knot
. . . renders a triangle with

primTri geometric)

gradient colors
rectangle geometric renders a rectangle
render_trigger control triggers on rendering
. . renders and distorts a
ripple rubber geometric

square
rotate rotateXYZ manipulation rotation
scale scaleXYZ manipulation scale

scopeXYZ~

geometric DSP

3d oscilloscope

separator

manipulation

shearXY shearXZ
shearYX shearYZ
shearZX shearZY

manipulation

shear

shininess

manipulation

shininess of the
material

slideSquares

geometric

renders sliding
squares

specular specularRGB

manipulation

specular coloring

sphere geometric renders a sphere
. . adds a spot light to

spot_light non-geometric

the scene
square geometric renders a square
teapot geometric renders a teapot
text2d text3d
textextruded geometric renders a line of text
textoutline
torus geometric renders a torus
translate manipulation translation
translateXYZ P

. . renders an equilateral

triangle geometric .

triangle

. renders a complex

tube geometric

tube

set the ARB vertex
vertex_program shader

shader

NAME

LIBRARY/PATH|FUNCTION

306

PDP

Extended Objects

pdp_affine

automatic gain
pdp_agc control

horizontal blur
pdp_blur_hor offect
pdp_blur blur effect
pdp_blur_ver vertical blur effect

pdp_cheby3o

pdp_contrast

contrast
enhancement

pdp_conv_alledge

all edge sensitive
convolution filter

pdp_conv_emboss

emboss effect

pdp_conv_smooth

averaging
convolution filter

pdp_conv_sobel edge

sobel edge detector

pdp_conv_sobel_hor

vertical sobel edge
detector

pdp_conv_sobel_ver

horizontal sobel
edge detector

difference between

pdp_diff current and
previous frame

pdp_dither dither effect

. independent gain
pdp_gain3 for 3 channels
pdp_gradient gradient
pdp_grey
pdp_invert

pdp_m_inverse

matrix inverse

pdp_motion_blur

motion blur effect

pdp_motion_fade

motion triggered
fade-out effect

pdp_motion_phase

motion phase shift
effect

pdp_offset

add an offset to an
image

pdp

pdp_phase_hor

horizontal phase
shift effect

pdp_phase

phase shift effect

pdp_phase_ver

vertical phase shift
effect

pdp_png_to

load + convert a
png file

pdp_pps

measure number of
packets per second

pdp_qt_control

pdp_qtloop2~

pdp_gtloop~

PR R PR

307

pdp_saturation

adjust colour

saturation

saves a png
pdp_save_png_sequence sequence
pdp_sub
pdp_tag tag a pdp message

pdp_xv_keycursor

keyboard/mouse
controller

NAME

LIBRARY/PATH

FUNCTION

308

PHYSICAL MODELLING

Extended Objects

iAmbient2D
iAmbient3D

flatspace

ambient interaction -
interaction between a
collection of masses and
a commun environment

iCircle2D iCircle3D

flatspace

circle interaction -
interaction between a
collection of masses and
a circle

iCylinder3D

flatspace

cylinder interaction -
interaction between a
collection of masses and
a cylinder

iLine2D

flatspace

line interaction —
interaction between a
collection of masses and
a line

iPlane3D

flatspace

plane interaction -
interaction between a
collection of masses and
a plane

iSeg2D

flatspace

segment interaction —
interaction between a
collection of masses and
a segment

iSphere3D

flatspace

sphere interaction -
interaction between a
collection of masses and
a sphere

link link2D link3D

flatspace

link between 2 masses

mass mass2D
mass3D

flatspace

get liaison forces and
output position

tCircle2D tCircle3D
tCube3D

tCylinder3D flatspace test masse position

tLine2D tSeg2D

tSquate2D

tLink2D tLink3D [flatspace get position of masses,
output forces

tPlane3D flatspace test interaction between
mass and plane

tSphere3D flatspace test if a sphere is inside a

mass

NAME

LIBRARY/PATHFUNCTION

309

OBSOLETE

Vanilla Objects

scope~ use tabwrite~ now
attach this canvas
namecanvas
to a name
template use struct now
draw a scalar on
scalar

parent

Extended Objects

convert message
lists with a

ost_netreceive flatspace iemlib
post P prepended float
index
respond to events
emorb Gem
i of a SpaceOrb
gemtablet Gem respond to events

of a graph-tablet

310

79 - USING LADSPA PLUGINS

There are three puredata objects that can host a LADSPA plugin:
[plugin~] was developed by Jarno Seppéanen
http://pure-data.sourceforge.net/old/documentation.php# plugin~

[ladspa~] was developed by Moumar and its help file also has some
stability issues

http://bitbucket.org/moumar/ladspa/wiki/Home
[dssi~] was developed by Jamie Bullock and can be found here:

http://puredata.info/Members/jb

SETTING UP PD TO USE [PLUGIN~]

[plugin~] requires the path to your LADSPA directory to be set as the
LADSPA_PATH in the environment.

Here's a quick explanation on how to set your PATH variable:
open a terminal app

then type in the following at the prompt:

export LADSPA_PATH=/usr/lib/ladspa:/usr/local/lib/ladspa:~/.ladspa
check to see that you've set your path correctly by typing

echo $LADSPA_PATH

Of course the above only works for the time you are logged into your
computer. In other words, if you log out or reboot you will have to
type this in again.

If you want these changes to be permanent then do the following:
(THIS WORKS FOR LINUX [and maybe OS X] SYSTEMS ONLY)

open a terminal and type in

nano ~/.bashrc
This will open your .bashrc file in a text editor in your terminal.

**PLEASE MAKE A BACK-UP COPY OF THIS FILE BEFORE
EDITING!!#*x

Scroll to the bottom and type in

PATH=$LADSPA_PATH:/usr/1lib/ladspa:~/.ladspa:/usr/local/lib/ladspa

Do not use spaces and don't forget the colons in between paths. And
remember to save your changes. You can put a comment using a '#"' at
the beginning of a line. Adding a comment will help you to remember
what something is or does when you look at it later on.

If you already have the ladspa-sdk installed on your system you can
use the command "listplugins" in a terminal to get a list of all the
LADSPA plugins on your system.

3

http://pure-data.sourceforge.net/old/documentation.php#plugin~
http://bitbucket.org/moumar/ladspa/wiki/Home
http://puredata.info/Members/jb/

No worries, if you don't have the ladspa-sdk, you can install it easily
by entering the following in a terminal:

sudo apt-get install ladspa-sdk

In fact, it might be useful for you to save a text file of all your plugins
for reference.

If you'd like to do this then type the following into a terminal:

listplugins > ~/my_dir_name_here/plugs.txt

USING THE [PLUGIN~] OBJECT IN A PATCH

if you have the ladsap-sdk installed [p-L u g l n~]

oh your system then proceed to the next step

open a terminal and how to use plugin~
type in 'amalyseplugin roise. so' to host a LADSFA plugin

vou will see two nmames for the plugin Loadbang

Flugin Name: "White Molise Source"

Flugin Label: "noize_white" a
you'll want to use the Flugin Label AT .
for the plugin's creation argument :I;- thl_f_;ogtr'ols

% ; 3 e amplitude
type "noise_white" without the control #1 £1 of the noise
quotation marks into the external sigral
like the example in the patch = =

info Listplugins

how put @ message box in your X

patch with 'info' inside as well as gain

a [pdsprint] object lugin~ noise white =g_52 =-- press the shift key
while adjusting the data
in the number box to
control the gain

of the signal for
i ., finer control

=-- turn on the metro
in order to wiew the
noise sighal in the array below

connect the externals as shown
in the patch

click on [infol and lock at the console -
it should say pdsprint
‘print: port in control Amplitude @ 1°

depending en the number of ports your
plugin has you can count the control
ports listed and use the corresponding number

since there 1s only one control port

for this plugin we can consider the &mplitude port
to be ctrl port 1 A

. tabwrite~ noise pd dsp $1
create a message box and type in =
'control #1 $1' making sure to use
the '#' symbol before the

port rwumber and a %' for the wariable hoise

next place a slider in your patch,
right click for the properties panel

and set the 'output-range right' to 1
and connect it to the message box containing
[contral #1 $1]

I've placed a array and a tabwrite-~
in the patch so you can see

the level of the noise change as
you move the amp slider

Fig 1. - Cheat Sheet for using [plugin~]

In order to use the [plugin~] object in a patch you will have to know
how to' talk' to it, i.e. what messages it takes to control it.

First we'll try using a plugin that comes with the ladspa-sdk we've just
downloaded

here is some info about the plugins that come with the ladspa-sdk:
http://www.ladspa.org/ladspa_sdk/example_plugins.html

Let's start with something simple like a noise generator to get the hang
of things.

312

http://www.ladspa.org/ladspa_sdk/example_plugins.html

First we need to find the 'Plugin Label' in order to instantiate the plugin

the simplest way to do this is to use a command that installed along
with the ladspa-sdk

Looking in '/usr/lib/ladspa’ directory we see the filename for the noise
plugin is 'noise.so’

so let's open a terminal and type in the following:

analyseplugin noise.so
we should see a report in the terminal:

Plugin Name: "White Noise Source"

Plugin Label: "noise_white"

Plugin Unique ID: 1050

Maker: "Richard Furse (LADSPA example plugins)"

Copyright: "None"

Must Run Real-Time: No

Has activate() Function: No

Has deativate() Function: No

Has run_adding() Function: Yes

Environment: Normal or Hard Real-Time

Ports: "Amplitude" input, control, O to .., default 1, logarithmic
"Output" output, audio

The Plugin Label for the noise.so plugin is "noise_white"

So place a [plugin~] object in your patch and enter the label we found
in the previous step into it.

After instantiating the plugin we should see a report about the plug in
the Pd console:

verbose(1):plugin~: found plugin "noise_white" in library
"/usr/lib/ladspa/noise.so"

verbose(1):;plugin~: constructed plugin "White Noise Source"
successfully

verbose(1):;plugin~: plugin ports: audio 0/1 ctrl 1/0

verbose(1):;plugin~: plugin active

plugin~: "White Noise Source"

We see that we have yet another name for the plugin of "White Noise
Source" but we will ignore that for now.

On the third line we see we have one control port which uses the left
inlet.

But we still need more info in order to use the plugin.
Place a message box in your patch and type in
[infol

connect it to the left inlet of [plugin~ noise_white] and the outlet of
the [plugin~]

to a [print] -or- [pd/print] object
after sending the [info] message

we should see in the Pd console:

313

print: port in control Amplitude 0 1
print: port out audio Output O 1

The control port we want to use is called Amplitude and has a range
from 0 -1

In order to use this parameter we need to count the number of
control ports

and use that number in a message box

Since we only have one control port (Amplitude) the number we'll use
is '#1

Enter the following into a message box:
[control #1$1]
and connect that to the [plugin~ noise_white] object left inlet

next we need to add a number box or a slider and set its range to O -
1

connect that to the inlet of the message box

Then connect the output of the plugin to a [dac~] and turn on the
patch

as you slowly move the slider from O - 1you should hear the white
noise being generated.

SUMMARY

While the above seems somewhat complicated it's simpler than it looks
and can be broken down into the following steps:

1 - find the "Plugin Label" on the command line

2 - send an [info] message to [plugin~ <Plugin Label>] for a list of
control ports

3 - count control ports

4 - send data to the port number of the parameter you want to
control

it becomes much easier after you've performed these four simple
steps a couple of times.

More info on LADSPAs in general:

http://linuxdevcenter.com/pub/a/linux/2001/02/02/ladspa.html

314

http://linuxdevcenter.com/pub/a/linux/2001/02/02/ladspa.html

APPENDICES

80. GLOSSARY
81. PD LINKS
82. LICENSE

315

8 O - GLOSSARY

(Names of other glossary entries are in bold when they first appear in
an entry, while the names of Pd objects appear in [square brackets])

GLOSSARY TERMS
ABSTRACTION

A reusable block of code saved as a separate Pd patch and used as if
it were an

object. Any abstraction to be used must either be saved in the same
working directory as the Pd patch it is used in, or the directory it is
saved in must be included in the path section of the Pd settings.
Abstractions can be opened by clicking on them, and the GUI
elements inside can be displayed even when closed by setting their
properties to Graph on Parent. Inlets and outlets can be used to
send and receive information to and from an abstraction, as well as
send and receive pairs.

ADC

Analog to Digital Converter - the line into Pd from the sound card. The
Pd object for this is [adc~].

ADSR

(Attack,
Decay, Sustain and Release) the common points of change (or
breakpoints) in the envelope of a note.

ALIASING

whenever a sound is replayed or synthesized whose

frequency is over the Nyquist number (half the current sampling
rate), a second frequency will be heard "reflecting" off the Nyquist
number downwards at the same increment in Herz. Example: if the
sampling rate is 44,100 Hz, the Nyquist number would be 22,050. If one
attempted to play a sound at 23,050 Hz, an additional tone at 21,050
Hz (the difference between the two frequencies subtracted from the
Nyquist number) would be heard.

ALSA

Advanced Linux Sound Architecture - the default set of audio drivers
for the Linux operating system.

AM SYNTHESIS

See Amplitude Modulation Synthesis.

AMPLITUDE MODULATION SYNTHESIS

316

A type of sound synthesis where the gain of one signal is controlled,
or modulated, by the gain of another signal. The signal whose gain is
being modulated is called the "carrier", and the signal responsible for
the modulation is called the "modulator". In classical Amplitude
Modulation, or

AM Synthesis, both the modulator and the carrier are oscillators,
however the carrier can also be another kind of signal, such as an
instrument or vocal input. Amplitude Modulation using a very low
frequency modulator is known as Tremolo, and the use of one audio
signal to Amplitude Modulate another audio signal is known as Ring
Modulation.

ANYTHING

A keyword in certain objects which matches an atom or series,
sometimes written as "a" or "any".

ARGUMENT

A piece of information sent to an object which sets a parameter of
that object. Arguments can be sent as messages, or taken from
creation arguments. Arguments are also used to replace variables
(often represented by dollar signs) in messages and objects. By using
the [pack] object, multiple arguments can be sent in a message.

ARRAY

A way of graphically saving and manipulating numbers. It works in an
X/Y format, meaning you can ask the array for information by sending
it a value representing a location on the X (horizontal) axis, and it will
return the value of that position value on the Y (vertical) axis. Arrays
are often used to load soundfiles in Pd, and are displayed on screen in
graphs.

ASIO

Audio Stream Input/Output - an audio driver for low latency audio
input and output developed by the Steinberg audio software company
and available for many soundcards using the Windows operating
system.

ATTACK

The beginning of a

note, which is usually triggered by pressing a key on a keyboard or by
a sequencer. A slow attack means the sound takes longer to reach
full volume than a faster attack. See also envelope.

ATOM

A keyword meaning the most basic element of data.

AUDIO DRIVER

Provides a system of input and output between the soundcard and
applications using the soundcard. The more efficient the audio driver,

317

the lower the

latency of an audio system will be. Examples include MME and ASIO
for Windows, CoreAudio for Mac OS X and OSS, ALSA and JACK for
Linux.

BANDLIMITED

When the waveform used by an oscillator has been constructed with
a limited number of harmonics in order to reduce
aliasing, then it is said to be bandlimited.

BANG

is special message in Pd, which many

objects interpret as "do something now!", meaning do the operation
the object is supposed to do with the information it already has
received in its inlets. Bang can be sent via a GUI element, the [bang]
object or a message box. [bang] can also be abbreviated to just [bl.

BIT DEPTH

Refers to the number of bits used to write a sample. Each sample of
16-bit audio, which is the CD standard, is made from 16 bits which can
either be 0 or 1. This gives 2

16 (Or 2Xx2x2x2x2x2x2x2x2x2X2X2x2x2x2x2 = 65,536) number of
possible values that sample can have. A higher bit depth means a
greater dynamic range. In contrast to 16 bit audio for CDs, studio
recordings are first made at 24 (or even 32) bit to preserve the most
detail before transfer to CD, and DVDs are made at 24 bit, while video
games from the 1980s remain famous for their distinctively rough "8
bit sound". Bit depth is also referred to as word length.

BUFFER

a chunk of memory inside the computer used to store sound. The
soundcard uses a buffer to store audio from the audio applications
for playback. If the latency of the system is too low for the
soundcard and

audio drivers, then the buffer will be too small and the soundcard will
use all the audio data in the buffer before getting more from the
audio application, resulting in an interruption know as a "dropout", or
glitch.

CANVAS

An area of pixels in the patch which is used to add color or graphical
layout to the patch. Since Pd remembers when things were put in the
patch, a canvas is placed in the patch before any other objects which
must be seen on top of it. Alternately, objects to be seen on top of
the canvas can be Cut and then Pasted over it.

CARRIER

In Amplitude Modulation or
Frequency Modulation synthesis, the carrier is the oscillator which is
affected by the Modulator.

CLIPPING

318

Clipping occurs when a signal is too loud for the soundcard to
reproduce it. This happens when the samples used to represent the
sound go out of the range between -1and 1due to amplifying them.
Any samples out of this range will be

truncated to fit within that range, resulting in distortion, a loss of
audio detail and in frequencies which were not present in the original
sound. The clipping point of a system is referred to as 0 dB in the
gain scale, and the gain of any sound is measured in how far below
the clipping point it is (-10 dB, -24 dB, etc).

COLD AND HOT

In Pd, the left-most inlet of an

object is called "hot", which means that any input to that inlet causes
the object to do its function and create output at the outlet. Any
other inlet to the right of the left-most inlet is considered "cold", which
means that input to these outlets is stored in the object until it
receives input on the hot inlet, at which time all the information stored
in the object is acted on.

COMMENT

A line of text in a patch which explains some part of the patch, or is a
reminder to the programmer or anyone else who opens the patch
later on. Comments have no actual affect on the function of the patch.

CREATION ARGUMENT

Additional information given when an object is created. Example:
making an object called [osc~ 440] would create a cosine

oscillator (the name of the object) with a starting frequency of 440
Hz (the creation argument). See also Argument.

CUTOFF FREQUENCY

The frequency at which a
filter begins to affect a sound.

DAC

Digital to Analog Converter - the line out to the sound card from Pd.
The Pd object for this is called [dac~].

DC OFFSET

DC offset is caused when a waveform doesn't cross the zero line, or
has unequal amounts of signal in the positive and negative domains.
This means that, in our model speaker, the membrane of the speaker
does not return to its resting point during each cycle. This can affect
the dynamic range of the sound. While DC offset can be useful for
some kinds of synthesis, it is generally considered undesirable in an
audio signal.

DECAY

The amount of time a sound takes to go from peak volume down to
it's sustain level (in the case of an
envelope), or to no sound at all (in the case of a delay).

319

DECIBEL

Decibel is a scale used to measure the gain or

loudness of a sound. Decibel is usually abbreviated to dB and usually
denotes how far under 0 dB (the clipping point of a system) a sound
is (-10 dB, -24 dB, etc). The Decibel scale is logarithmic.

DELAY

The amount of time between one event and another. As an audio
effect, a delay takes an incoming sound signal and delays it for a
certain length of time. When mixed with the original sound, an "echo" is
heard. By using feedback to return the delayed signal back into the
delay (usually after lowering its

gain), multiple echos with a decay result. The Pd objects to create a
delay are named [delwrite~] and [delread~], and the pair must be given
the same creation argument in order to communicate (i.e. [delwrite~
rastaman] and [delread~ rastaman]). As a setting in Pd, delay changes
the latency of the program to allow for faster response time at the
expense of more gliltches or vice versa.

DISTORTION

Distortion occurs when an audio signal is changed in some way on the
level of the samples which produces

frequencies not present in the original. Distortion can be deliberate or
unwanted, and can be produced by driving the signal to a clipping
point, or by using mathematical transformations to alter the shape (or
"waveform") of the signal (usually referred to as "waveshaping").

DOLLAR SIGN

A symbol in Pd which is used to represent a

variable in either a message or a creation argument. Multiple dollar
signs can be used, as in "$1$2 $3". In such a case, $1 will take the first
argument in an incoming message, $2 the second, $3 the third, etc
etc. And in the message "set $1', any number sent to this message
would replace $1, resulting in "set 1", "set 2", "set 3" etc depending on
what number the message received. In the case of a creation argument
used in an abstraction, one could create an abstraction named
[myniceabs], and call it in a patch as [myniceabs 34], [myniceabs 66]
and [myniceabs 88]. In this case, the initial frequency of an [osc~ $1]
object in [myniceabs] would be set to 34 Hzin the first abstraction, 66
Hz in the second and 88 Hz in the third, since the creation argument of
the [osc~] object sets its starting frequency. $0, however, is a special
case, and is set to a unique random number for each abstraction it is
used in (but it retains the same value everywhere inside that
abstraction).

DYNAMIC RANGE

Used to refer to the difference between the loudest sound that can
possibly recorded and the quietest, as well as the amount of detail
which can be heard in between. Sounds which are too quiet to be
recorded are said to be below the noise floor of the recording
system (microphone, recorder, sound card, audio software, etc).
Sounds which are too loud will be

clipped. In digital audio, the bit depth used to record the sound
determines the dynamic range, while in analog electronics, the self-

320

noise of the equipment also determines the dynamic range.

EDIT MODE

The mode in Pd where

objects, messages, comments, GUI elements and other parts of
the Pd can be placed on the screen and moved around. Edit mode can
be switched in and out of by using the Edit menu or the Control (or
Apple) and "E" keys. The opposite of Edit mode is Play mode.

ENVELOPE

A term used to describe changes to a sound over time. Traditionally,
this is used to synthesize different instrumental sounds with

Attack, Decay, Sustain and Release (or ADSR) which are triggered
at the beginning of a note. A violin, for example, has a slow attack as
the strings begin to vibrate, while a piano has a fast (or "percussive")
attack which seperates it's distinctive sound (or "timbre") from that of
other instruments.

EXTERNAL

An

object in Pd which was not written into the core Pd program by the
author, Miller S. Puckette. Externals are created and maintained by the
Pure Data development community, and account for many of the
additional fucntions of Pd, including the ability to manipulate video and
3D as well as stream MP3s and many other things. Externals are usually
loaded as an external library at the start of a Pd session by including
them in the startup flags, although some can be loaded as single
objects at anytime as long as the location where that external is saved
on your system is listed in the path setting of Pd.

EXTERNAL LIBRARY

A collection of
externals written for Pd. Taken as a library, externals can be loaded
at the start of a Pd session by including them in the startup flags.

FILTER

An audio effect which lowers the gain of

frequencies above and/or below a certain point, called the cutoff
frequency. The range it allows through is called the pass band, and
the frequencies which are reduced are called the stop band. A High
Pass filter [hip~] only allows frequencies above the cutoff frequency
through. A Low Pass filter [hip~] allows only frequencies lower than the
cutoff frequency through. A Band Pass filter [bp~] only allows
frequencies close to the cutoff frequency through. The amount by
which the filter lowers the gain of frequencies in the stop band is
measured in Decibels per Octave, and is affected by the resonance
(or "Q") of the filter, which determines the amount of feedback the
filter uses and which frequency is most emphasized by the filter.

FEEDBACK

Feedback occurs in any system where the output is played back into
the input. 100% feedback means all of the output is returned to the

321

input. A classic example is holding a microphone in front of a speaker.
Less than 100% feedback means that the signal is decreased in some
way with each pass through the system. In delays, the amount of
feedback determines how many repetitions of the "echo" one hears
until the sound

decays to zero. In a filter, feedback determines the resonance of
the filter, and how much emphasis in given to the filter's cutoff
frequency.

FLOAT ORFLOATING POINT

A number with a decimal point, which can be positive or negative and
represent a range between -8388608 and 8388608. A special notation
is used for extremely large or small floating point numbers, since Pd
only uses up to 6 characters to represent a floating point number.
Therefore, "le+006" is a floating point number which represents
"1000000" (or 1 with 6 decimal places after it), while "1e-006"
represents "0.0000001" (or 1 with 6 decimal places in front of it).

FM SYNTHESIS

See Frequency Modulation Synthesis

FOLDOVER

Foldover occurs when a frequency higher than the
Nyquist number is played or synthesized. See Aliasing.

FREQUENCY

Refers to number of times in one second a vibration (in many cases a
sonic vibration) occurs. Frequency is measured in Herz, and often
indicates the

pitch of a sound which is heard. Frequency is a linear scale, however,
while pitch is logarithmic. This means that a sound which is heard as
one octave above another one is twice the frequency in Hz, while two
octaves above would be four times the frequency and three octaves
above would be eight times.

FREQUENCY MODULATION SYNTHESIS

A type of sound synthesis where the frequency of one oscillator is
controlled, or modulated, by the

gain of another oscillator. The signal whose gain is being modulated is
called the "carrier", and the signal responsible for the modulation is
called the "modulator". In classical Amplitude Modulation, or AM
Synthesis, both the modulator and the carrier are oscillators, however
the carrier can also be another kind of signal, such as an instrument or
vocal input. Very slow Amplitude Modulation is known as Tremolo.

GAIN

Expresses the strength of an audio signal, and is expressed in
Decibels. The scale of gain is

logarithmic, since it expresses the physical ratio of power between
one sound and another. Gain is commonly measured in digital audio
systems as the amount of Decibels below 0 dB, which is the clipping
point (-10 dB, -24 dB, etc). See also loudness.

322

GLITCH

A sonic error occurring when the computer does not have enough time
to process the audio coming in or out of an audio application before
sending it to the sound card. This is a result of having too low a
latency, so that the

buffers of the sound card are not filled up as fast as the soundcard is
playing them, resulting in an temporary but audible loss of sound.
Glitches can occur when other processes interrupt the processor with
various tasks (such as refreshing the display on the screen, reading or
writing a hard drive, etc etc).

GRAPH

A graph is a graphical container that can hold several arrays. An array
needs a graph to be displayed, so whenever you create an array from
the menu, you will be asked whether you want to put it into a newly
created graph or into an existing graph.

GRAPH ON PARENT

A property of

subpatches and abstractions where the GUI elements of the
subpatch or abstraction are visible in the main patch even when that
subpatch or abstraction is not open. This allows for better graphic
design and usability for complicated patches.

GUI ELEMENT

Graphical User Interface - visible parts of the Pd patch which are used
to control it via the mouse or to display information, such as

sliders, radio buttons, bangs, toggles, number boxes, VU meters,
canvases, graphs, arrays, symbols, etc.

HARMONICS
HID

see
Human Interface Device

HOT AND COLD

In Pd, the left-most inlet of an

object is called "hot", which means that any input to that inlet causes
the object to do its function and create output at the outlet. Any
other inlet to the right of the left-most inlet is considered "cold", which
means that input to these outlets is stored in the object until it
receives input on the hot inlet, at which time all the information stored
in the object is acted on.

HRADIO

A horizontal radio button. See also
GUI element.

HSLIDER

323

A horizontal slider. See also
GUI element.

HERTZ OR HZ

A term used to describe the number of times something occurs in one
second. In digital audio, it is used to describe the sampling rate, and
in acoustics it is used to describe the

frequency of a sound. Thousands of Herz are described as KHz.

HUMAN INTERFACE DEVICE

A Human Interface Device (aka HID) is any device that is meant to allow
humans to interact with a computer. Usually, HIDs are mice, keyboards,
joysticks, tablets, gamepads, etc. There a number of unusual HIDs, like
the Griffin PowerMate on the low end, or the SensAble PHANT OM
6DOF on the high end.

INDEX NUMBER

Index numbers are used to look up values stored in

Arrays. If we ask an array what is stored at index number "0", it will
return the first value stored there. And if the array has 100 values
stored in it, asking it for index number "99" will give the last value
stored.

INLET

The small rectangular boxes at the top of objects,

GUI elements, messages, subpatches and abstractions. They
receive input from the outlets of the objects, messages, GUI elements,
subpatches or abstractions above them. Inlets can be hot or cold.

INTEGER

In Pd, this is a whole number, without a decimal point, which can be
positive or negative. See also
floating point.

JACK

JACK Audio Connection Kit - a low latency audio system designed to
run on Linux and Mac OSX in combination with various

audio drivers such as ALSA and Portaudio. On Linux, the QJackctl
application can be used to make audio and MIDI connections between
the soundcard, MIDI devices such as keyboards and Pd. On Mac OSX,
JACK is referred to as JackOSX, and the JackPilot application functions
like QJackCtl, but only for audio connections.

LATENCY

The amount of time needed to process all the samples coming from
sound applications on your computer and send it to the soundcard for
playback, or to gather

samples from the sound card for recording or processing. A shorter
latency means you will hear the results quicker, giving the impression
of a more responsive system which musicians tend to appreciate when
playing. However, with a shorter latency you run a greater risk of
glitches in the audio. This is because the computer might not have

324

enough time to process the sound before sending it to the soundcard.
A longer latency means less glitches, but at the cost of a slower
response time. Latency is measured in milliseconds.

LINEAR

A scale of numbers which progresses in an additive fashion, such as by
adding one (1, 2, 3, 4..), two (2, 4, 6, 8..) or ten (10, 20, 30, 40..). Another
type of scale used in Pd is logarithmic. Multiplying an audio signal, for
example, by either a linear or a logarithmic scale will produce very
different results. The scale of

frequency is linear, while the scales of pitch and gain are logarithmic.

LIST

A special type of message that is a collection of data. Specifically, a
"list" is a series of 3 or more atoms whose first atom is the selector
"list", or, a series of 2 or more atoms whose first atom is numeric,
which causes the "list" selector to be implied, i.e. [list one two(, [1 2(, [1
two(.

LOGARITHMIC

A scale of numbers which progresses according to a certain ratio, such
as exponentially (2, 4, 8,16, 256..). Another type of scale used in Pd is
linear. Multiplying an audio signal, for example, by either a linear or a
logarithmic scale will produce very different results. Both scales of
pitch and gain are logarithmic, while the scale of frequency is linear.

LOUDNESS

Unlike gain, which expresses the physical power of a sound, loudness is
the perceived strength of a sound. Higher

frequencies are perceived as louder than mid-range or lower
frequencies with the same amount of gain, and the amount of
perceived difference varies from person to person.

MESSAGE

A piece of information sent to the objects of a

patch, often using the message GUI element. Messages tell objects
which functions to perform and how, and can be simply numeric,
include text which describes which function to change or even contain
other information such as the location of soundfiles on the computer.

MIDI

A system of describing musical information in electronic music using
numbers between 0 and 127. T here are various types of MIDI messages
which can be sent in and out of Pd such as

note ([notein], [noteout]), pitchbend ([pitchin], [pitchout]), continuous
controller ([ctlin], [ctlout]) and program change ([pgmin], [pgmout]). MIDI
messages can be sent to and from external MIDI devices, such as
keyboards, slider boxes or hardware sequencers, or they can be
exchanged with other MIDI applications inside the computer.

MME

325

The default set of
audio drivers for the Windows operating system. MME drivers do not
have as low latency as ASIO drivers.

MODULATOR

In Amplitude Modulation or
Frequency Modulation synthesis, the modulator is the oscillator
which affects the Carrier.

MONOPHONIC

A monophonic electronic music instrument has one voice, meaning that
only one
note can be played at a time. See also polyphonic.

NOISE FLOOR

The part of the dynamic range which represents the quietest sound
which can be recorded or played back. Sounds below this level
(expressed in

Decibels) will not be heard over the background noise of the system.
In digital audio, the bit depth used to record the sound determines
the noise floor, while in analog electronics, the self-noise of the
equipment also determines the noise floor. Typical computer
soundcards can have an analog noise floor between approximately -48
dB and -98 dB.

NORMALIZE

To normalize an audio signal means to adjust its gain to peak at the
maximum the sound card allows before

clipping (i.e. -1and 1). This is done to maximize the dynamic range of
the signal when it is played back.

NOTE

In electronic and computer music, a note is represented on the MIDI
scale by two numbers between 0 and 127 (the amount of keys
available on the MIDI keyboard). A note is triggered either by pressing
a key on the keyboard or by a sequencer. A MIDI note has two values:
it's

pitch (the musical note it plays, expressed as a frequency which has
been assigned to that note) and it's velocity (how hard the key is
pressed, which determines how loud the note is heard). Notes also
have an envelope, which determines the change in volume that note
has over time.

NUMBER

A GUI element used to display and store numbers. The number2 GUI
element can also save numbers when that function is set in its
properties.

NYQUIST FREQUENCY

A number which is half the sampling rate of the application which is
being used, and represents the highest possible

326

frequency which can be played back without aliasing. The Nyquist
number is expressed in Herz. Example: if the sampling rate is 44,100
Hz, the Nyquist number would be 22,050. If one attempted to play a
sound at 23,050 Hz, an aliased additional sound at 21,050 Hz (the
difference between the two frequencies subtracted from the Nyquist
number) would be heard.

OBJECT

The most basic building block of a Pd patch. Objects have a names,
which could be considered the "vocabulary" of the Pd language, and
the name of the object determines its function. Objects can take
creation arguments to modify their functions at the time they are
created. They receive information via inlets and send output via
outlets. Objects with a tilde (~) in their name are audio generating or
processing objects, otherwise they are objects to manipulate data (for
example, an object named [+] would add two numbers together, and
an object named [+~] would add two audio signals together). To see
the documentation help file of any object, right click with the mouse, or
use the Control (or Apple) key with a mouseclick.

OCTAVE

The interval between one musical note and another with 12 semitones
(or 12 notes in the

MIDI scale) between them, which is seen in acoustics as half or double
the frequency. While frequency is a linear scale, however, while pitch
is logarithmic. This means that a sound which is heard as one octave
above another one is twice the frequency in Hz, while two octaves
above would be four times the frequency, three octaves above would
be eight times higher, and one octave below would be half the
frequency.

OSCILLATOR

An audio generator which produces a continuous, repeating waveform.
A cosine oscillator [osc~] produces a pure sinus wave with no
harmonics, while a sawtooth or ramp oscillator [phasor~] produces a
richer sound with many harmonics. Other shapes for a waveform
include square, pulse or triangle. Each waveform is defined by a
mathematical function, and each shape has its own harmonic spectrum.

OpenGL
(Open Graphics Library) is a widely used, industry standard library of
2D and 3D graphics functions.

0SS

An outdated system of audio drivers for the Linux operating system,
replaced by
ALSA.

OUTLET

The small rectangular boxes at the bottom of objects,

GUI elements, messages, subpatches and abstractions. They send
output to the inlets of the objects, subpatches, abstractions,
messages and GUI elements below them.

327

OVERSAMPLING

The process of increasing the sampling rate of digital audio, most
often in order to remove
aliasing noise with a filter.

PASS BAND

The range of frequencies allowed through by a
filter.

PATCH

The document in which you build structures within Pd. One patch can
contain many

objects, comments, GUI elements, messages, subpatches and
abstractions. If another patch is saved in the same working
directory or in another directory listed in the path setting, then it can
be used in the main or parent patch as an abstraction. Patches are
saved as simple text files with the names and locations of all the
contents listed inside. Patches are always saved with the .pd
extension.

PATH

Is a setting of Pd which determines two things. The first is the
directories on your computer which Pd searches to load externals,
and the second is the directories where Pd searches to find
abstractions used in patches. Path can be set with startup flags, or
by entering the directories in the startup settings using the main
window of Pd.

PITCH

A part of a note in the

MIDI specification which determines what pitch is heard when the note
is played. It is represented by a number between 0 and 127, with each
number representing a key on the MIDI keyboard. T he relation of pitch
to frequency is logarithmic. This means that a sound which is heard
as one octave (+ 12 MIDI notes) above another one is twice the
frequency in Hz, while two octaves (+ 24 MIDI notes) above would be
four times the frequency, three octaves (+ 36 MIDI notes) above would
be eight times, and one octave below (- 12 MIDI notes) would be half
the frequency.

PLAY MODE

The mode in Pd where the GUI elements and other parts of the Pd
can be manipulated with the mouse. T his is often when the

patch is being played. Play mode can be switched in and out of by
using the Edit menu or the Control (or Apple) and "E" keys. The
opposite of Play mode is Edit mode.

POINTER

A reference to a position in a scalar used to manipulate and read data
from it.

328

POLYPHONIC

A polyphonic electronic music instrument is capable of playing multiple
notes at a time, allowing for chords and other musical techniques. T he
number of notes it can play is determined by the number of voices it
has. See also monophonic.

PORTAUDIO

A Free and Open Source set of audio drivers for Linux and Mac OS X.

PROPERTY

All the GUI elements in Pd have a menu where their properties can be
changed. This is accessed by using the right-click mouse button, or the
Control (or Apple) key and a mouseclick. Under properties, the

graphical appearance and function of the GUI element can be changed.

RADIO

A GUI element set of buttons which, when clicked, send the number
of the box which was clicked to the

outlet, or display numbers received by its inlet. Radio boxes can be
vertical or horizontal, and the number of boxes seen can be changed in
the properties.

REAL-TIME

A system where changes can be made in the program even as it is
running, and the user can see or hear the results immediately. The
opposite would be a non-real-time system, where data must be
compiled or rendered by the computer in order to hear or see results.

RELEASE

The amount of time it takes for the
gain of a note to reach zero after the key on the keyboard has been
released. See also envelope.

RESONANCE

The frequency in a filter or other system of

feedback which is most emphasized, resulting in that frequency being
the loudest.

Ring Modulation

The use of one audio signal to Amplitude Modulate another audio
signal.

SAMPLE

In digital audio, a sample is the smallest possible element of a recorded
sound. In CD audio, for example, it takes 44,100 samples to make one
second of recorded sound, and so we can say that the sampling rate
is 44,100

Herz. Samples also have a bit depth which determines the dynamic
range that is possible to record and playback. Common bit depths are
8 (for old video games), 16 (for CD audio), 24 (for studio recording and
DVDs) or 32 (for sounds inside the computer). In electronic music, a

329

sample is also a prerecorded piece of sound which is played back by a
sampler.

SAMPLER

An electronic music instrument which plays back a recorded sound (or
sample) whenever it is sent a

note. The pitch of the note determines how fast or slow the sample
is played back, which emulates the pitch changes in other instruments.
Samples can be looped (played over and over) and one-shot (played
once).

SAMPLING RATE

The rate at which the computer records and plays back sound, which
is measured in Herz representing the number of

samples per second. CD audio is recorded and played at 44,100 Hz (or
441 KHz), while DVD audio runs at 96,000 Hz (or 96 KHz) and cheap
consumer gadgets like voice recorders, video games, mobile phones,
toys and some MP3 players often use a rate of 22,050 Hz (22.05 KHz)
or even less. The sampling rate determines the highest frequency
which can be recorded or played, which is expressed by the Nyquist
number, or half the sampling rate. Sounds higher in frequency than
the Nyquist rate will be aliased. Playing back sounds at a different
sampling rate then they were recorded at will result in hearing that
sound at the "wrong speed".

SCALAR

A graphical instance of a struct in Pd's graphical data structures.

SEQUENCER

A MIDI device or application used to store
notes which are sent to a synthesizer or sampler. Sequencers often
play notes back at a rate specified in Beats per Minute.

SELECTOR

A symbolic atom that serves as an instruction to the receiving
object as how to handle the message.

SELF-NOISE

The amount of analog noise a piece of electronic equipment produces
without any further input, often due to parts of its circuitry or
electromagnetic interference. Self-noise is measured in Decibels. The
self noise of the equipment determines the

noise floor. Professional or semiprofessional sound equipment often
produces less self-noise than cheaper, consumer-grade equipment.
Typical computer soundcards have self-noise which results in a noise
floor between approximately -48 dB and -98 dB.

SEND AND RECEIVE

A method of communicating between objects in a

patch without the connecting cables. The objects [send] and [receive]
are used, with a shared creation argument which sets the "channel"
they transmit on, for example [send volume] and [receive volume]. The

330

names of the objects can be abbreviated to [s] and [r], and a pair for
audio signals also exists ([send~] and [receive~], or [s~] and [r~]).

SHELL

The text-only interface to your computer, where commands are typed

in order to start programs and get information. On Linux and Mac OSX,

this is often called the "terminal". On Windows, it is referred to as the
Command Prompt or as the DOS Prompt (now obsolete).

SLIDER

A

GUI element which sends a number to its outlet when it is moved
with the mouse, or display numbers received by its inlet. Sliders can
be horizontal or vertical, and when they are created have a typical
MIDI range of 0 to 127. This range can be changed under the
properties.

STARTUP FLAG

When starting Pd from the shell, the startup flags are used to pass
information to Pd about how it should run, what

audio drivers it should use, how many channels, what patch to open
at startup, which external libraries to load and what paths to use to
find externals and abstractions.

STOP BAND

The
frequencies which are reduced by a filter.

STRUCT

An object to create templates for data structures.

SUBPATCH

A graphical enclosure in a patch used to conceal parts of the patch
which are not always used. Subpatches can be opened by clicking on
them, and the

GUI elements inside can be displayed even when closed by setting
their properties to Graph on Parent. Inlets and outlets can be used
to send and receive information to and from a subpatch, as well as
send and receive pairs.

SUSTAIN

The level of gain a
note holds after the attack and decay. The note holds this gain level
until the key is released. See also envelope.

SYMBOL

A string of characters, that is not interpreted as a number used in
mathematic calculations. Single, "printable" words without (unescaped)
whitespace are common symbols, but it's possible to construct
unprintable symbols, symbols with escaped whitespace or symbols

331

that look like a number, but consist of only numeric characters with
objects like [makefilename] or some externals. Such symbols currently
will not be saved properly in a .pd-file and they cannot be created by
manually editing a message box. Internally a symbol is defined as an
atom of type "t_symbol" in Pd.

SYMBOL MESSAGE

A message that has the symbol "symbol" as
selector followed by another symbol atom as its data part.

TRUNCATE

When a number goes out of a certain set of allowed boundaries, it will
be truncated. This means that any numbers out of that range will be
replaced by the closest number still within that range (either the
highest or lowest). In a digital audio signal, this is called clipping.

VARIABLE

A type of "placeholder", often within a message and written as a
dollar sign, which is meant to be replaced with other information. For
example, in the message "$1$2 $3", there are three variables to be
replaced with actual information.

VECTOR BASED GRAPHICS

The graphical system used by Pd to display patches where every
element on the screen is defined by a set of numbers describing their
appearance rather than an image, and every change to these elements
means that the computer must recalculate that part of the screen.

VELOCITY

A part of a note in the

MIDI specification which says how hard the key of the keyboard was
pressed, and in turn determines the gain of that note when it is
played. It is represented by a number between 0 and 127.

VOICES

A polyphonic electronic music instrument can play as many
simultaneous

notes as it has voices. A monophonic instrument, on the other had,
can only play one note at a time and is said to have one voice.

VRADIO

A vertical radio button. See also
GUI element.

VSLIDER

A vertical slider. See also
GUI element.

VU

332

A GUI element in Pd which is used to display the
gain of an audio signal in Decibels.

WORD LENGTH

See bit depth.

WORKING DIRECTORY

In Pd this is the directory which the patch you are working in has been
saved to. Any abstractions used in that patch must either be saved
to that directory, or the directory in which those abstractions have
been saved must be added to the

path setting in the startup preferences.

333

81 - PD LINKS

PURE DATA SOFTWARE

PureData.info: http://www.puredata.info/

Pd Downloads: http://www.puredata.info/downloads
Pure Data CVS: http://www.puredata.info/dev/cvs
Pd Extended Installers: http://at.or.at/hans/pd/installers.html

Miller S. Puckette's Pd page: http://www-
crca.ucsd.edu/~msp/software.html

EXTERNALS

Pd Downloads: http://www.puredata.info/downloads
Pure Data CVS: http://www.puredata.info/dev/cvs

GEM: http://gem.iem.at/

PiDiP: http://ydegoyon.free.fr/pidip.html

Unauthorized Pd: http://ydegoyon.free.fr/software.html

PMPd: http://drpichon.free.fr

LINUX DISTRIBUTIONS WITH PD

Dyne:bolic: http://www.dynebolic.org/
Pure Dyne: http://puredyne.gotol0.org/
Ubuntu Studio: http://ubuntustudio.org/

PlanetCCRMA: http://ccrma.stanford.edu/planetccrma/software

Pd Gentoo Overlay: http://pd-overlay.sourceforge.net/
TUTORIALS & EXAMPLES

Pd community patches: http://www.puredata.org/community/patches

Pure Data Documentation Project:
http://www.davesabine.com/eMedia/PureData/tabid/145/Default.aspx

Theory and Techniques of Electronic Music by Miller Puckette:
http://www.crca.ucsd.edu/~msp/techniques.htm

Music making tutorials:

http://www.obiwannabe.co.uk/html/music/musictuts.ntml

334

http://www.puredata.info/
http://www.puredata.info/downloads
http://www.puredata.info/dev/cvs
http://at.or.at/hans/pd/installers.html
http://www-crca.ucsd.edu/~msp/software.html
http://www.puredata.info/downloads
http://www.puredata.info/dev/cvs
http://gem.iem.at/
http://zwizwa.fartit.com/zwikizwaki.php?page=PureDataPacket
http://ydegoyon.free.fr/pidip.html
http://ydegoyon.free.fr/software.html
http://drpichon.free.fr/pmpd/
http://www.dynebolic.org/
http://puredyne.goto10.org/
http://ubuntustudio.org/
http://ccrma.stanford.edu/planetccrma/software/
http://pd-overlay.sourceforge.net/
http://www.puredata.org/community/patches
http://www.davesabine.com/eMedia/PureData/tabid/145/Default.aspx
http://www.crca.ucsd.edu/~msp/techniques.htm
http://www.obiwannabe.co.uk/html/music/musictuts.html

Practical synthetic sound design in Pd:
http://www.obiwannabe.co.uk/html/sound-design/sound-design-all.html

Pd Repertory Project: http://crca.ucsd.edu/~msp/pdrp/latest/doc

GETTING HELP

Pure Data Mailing List (Search): http://lists.puredata.info/pipermail/pd-

list/

Pure Data Mailing List (Subscribe): http://lists.puredata.info/listinfo/pd-
list

Pure Data Forum: http://puredata.hurleur.com/

335

http://www.obiwannabe.co.uk/html/sound-design/sound-design-all.html
http://crca.ucsd.edu/~msp/pdrp/latest/doc/
http://lists.puredata.info/pipermail/pd-list/
http://lists.puredata.info/listinfo/pd-list
http://puredata.hurleur.com/

8 2 - LICENSE

All chapters copyright of the authors (see below). Unless otherwise
stated all chapters in this manual licensed with GNU General Public
License version 2

This documentation is free documentation; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This documentation is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this documentation; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA.

AUTHORS

ABSTRACTIONS

© Luka Princic 2008
Modifications:
adam hyde 2009
Derek Holzer 2010

ADDITIVE SYNTHESIS

© Derek Holzer 2008
Modifications:

adam hyde 2009

Daniel Shiffman 2009
William Abernathy 2009

ADVANCED CONFIGURATION
© adam hyde 2009
Modifications:

Caio Barros 2009
Hans-Christoph Steiner 2010

AMPLIFIER

© Derek Holzer 2008
Modifications:

adam hyde 2009

AMPLITUDE MODULATION

© Derek Holzer 2008, 2009
Modifications:

adam hyde 2009

Daniel Shiffman 2009
Jonathan Wilkes 2010

ANTIALIASING

© Derek Holzer 2009, 2010
Modifications:

adam hyde 2009
Alexandre Porres 2009

336

Thomas Goose 2009

ARRAYS, GRAPHS, TABLES
© Luka Princic 2008
Modifications:

Derek Holzer 2009, 2010

AUDIO DELAY

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

AUDIO FILTERS

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

AUDIO GLUE

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

AUDIO MATH

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

AUDIO STREAMING

© adam hyde 2005, 2006, 2007, 2008, 2009
Modifications:

Ben Baker-Smith 2010

corey fogel 2007

Derek Holzer 2008

Felipe Ribeiro 2007

Heiko Recktenwald 2006

CONFIGURING

© Derek Holzer 2006, 2008
Modifications:

adam hyde 2007, 2008, 2009
Georg .. 2008

Martin Schied 2009

CONTROLLING THE SYNTH
© Derek Holzer 2008, 2009
Modifications:

adam hyde 2009

Paul Sobczak 2010

CREDITS

© adam hyde 2006, 2007, 2008, 2009
Modifications:

Derek Holzer 2006, 2008, 2009

DC OFFSET

© Derek Holzer 2009, 2010
Modifications:

adam hyde 2009
Alexandre Porres 2009

337

Thomas Goose 2009

DATAFLOW

© Derek Holzer 2008, 2010
Modifications:

adam hyde 2009

Jonathan Wilkes 2010

DATA TEMPLATES
© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

DOLLAR SIGNS

© Luka Princic 2008
Modifications:

Derek Holzer 2010
Hans-Christoph Steiner 2010
neil hickey 2010

ENVELOPE GENERATOR
© Derek Holzer 2008
Modifications:

adam hyde 2009

FILTERS

© Derek Holzer 2008
Modifications:

adam hyde 2009

4 STAGE SEQUENCER

© Derek Holzer 2008, 2009
Modifications:

adam hyde 2009

FREQUENCY

© Derek Holzer 2008
Modifications:

adam hyde 2009

Daniel Shiffman 2009
Laura Garcia-Barrio 2009

FREQUENCY MODULATION

© Derek Holzer 2008, 2009
Modifications:

adam hyde 2009

BASICS

© marius schebella 2009
Modifications:

adam hyde 2009

Derek Holzer 2010

Evan Raskob 2009
Hans-Christoph Steiner 2009
servando barreiro 2010

MOVING IMAGES

© marius schebella 2009
Modifications:

adam hyde 2009
servando barreiro 2010

338

INTRODUCTION

© marius schebella 2009
Modifications:

adam hyde 2009

Derek Holzer 2010

Evan Raskob 2009
Hans-Christoph Steiner 2009
olsen wolf 2009

servando barreiro 2010

GEM

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

EFFECTS

© marius schebella 2009
Modifications:

adam hyde 2009, 2010
Jeremy Schaller 2009
servando barreiro 2010
vincent RIOUX 2009

RECORDING

© marius schebella 2009
Modifications:

adam hyde 2009, 2010
vincent RIOUX 2009

SCREENS

© marius schebella 2009
Modifications:

adam hyde 2009

Antonio Roberts 2009
servando barreiro 2009, 2010

VIDEO MIXER

© marius schebella 2009
Modifications:

adam hyde 2009

servando barreiro 2009, 2010

VIDEO TRACKING

© marius schebella 2009
Modifications:

adam hyde 2009, 2010
Derek Holzer 2010
Hans-Christoph Steiner 2009
max neupert 2009

GAME CONTROLLERS

© adam hyde 2009
Modifications:

David A. Arraya 2010

Derek Holzer 2010
Hans-Christoph Steiner 2009
Koray Tahiroglu 2009
servando barreiro 2009

GENERATING WAVEFORMS
© Derek Holzer 2009, 2010

339

Modifications:
Roman Haefeli 2009

GRAPH ON PARENT
© Luka Princic 2008
Modifications:
adam hyde 2009
Derek Holzer 2010

INSTALLING ARDUINO (REDHAT)
© Derek Holzer 2010
Modifications:

Lukas Kaser 2010

INSTALLING ARDUINO (0OSX)
© Derek Holzer 2010
Modifications:

Lukas Kaser 2010

penko sound 2010

DEBIAN

© adam hyde 2008
Modifications:
Derek Holzer 2008

0osX

© Derek Holzer 2006, 2008
Modifications:

adam hyde 2008

Daniel Prieto 2007
Hans-Christoph Steiner 2009
Maarten Brinkerink 2007
Steve Bull 2010

INSTALLING PDUINO

© Hans-Christoph Steiner 2009
Modifications:

Derek Holzer 2010

UBUNTU

© adam hyde 2008
Modifications:
Derek Holzer 2008

WINDOWS

© adam hyde 2006, 2008
Modifications:

Derek Holzer 2008
Hans-Christoph Steiner 2009

INTRODUCTION

© adam hyde 2006, 2008, 2009
Modifications:

Derek Holzer 2006, 2007, 2008, 2010
Evelina Domnitch 2007
Hans-Christoph Steiner 2010

Patrick Davison 2009

GLUE

© Derek Holzer 2006, 2008
Modifications:

adam hyde 2009

Joao Pais 2009

340

Lachlan Wimsett 2010

LISTS

© Hans-Christoph Steiner 2009
Modifications:

adam hyde 2009

Derek Holzer 2010

Frank Barknecht 2010

MATH

© Derek Holzer 2008, 2010
Modifications:

adam hyde 2008, 2009
Hans-Christoph Steiner 2010
Joao Pais 2009

MATH

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

MESSAGES

© Derek Holzer 2008, 2010
Modifications:

adam hyde 2008, 2009
Frank Barknecht 2010
Hans-Christoph Steiner 2009
Joao Pais 2009

Jonathan Wilkes 2010

MIDI

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

MISC

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009
lucas kendo 2009

0osc

© Patrick Davison 2009
Modifications:

adam hyde 2009
alvaro ortiz 2010

Derek Holzer 2010
vincent RIOUX 2009

INTRODUCTION
© Joao Pais 2009
Modifications:
adam hyde 2009

OBSOLETE

© Joao Pais 2009
Modifications:

Derek Holzer 2009
Hans-Christoph Steiner 2009

341

OGGCAST

© adam hyde 2006, 2009
Modifications:

alejo duque 2009

Derek Holzer 2008

ORDER OF OPERATIONS
© Luka Princic 2008
Modifications:

adam hyde 2008, 2009
Derek Holzer 2010

Phil Tesner 2010

OSCILLATORS

© Derek Holzer 2008, 2010
Modifications:

adam hyde 2009

Daniel Shiffman 2009
Laura Garcia-Barrio 2009
Tad Bisaha 2009

OSCILLATRORS AND TABLES
© Joao Pais 2009
Modifications:

adam hyde 2009

Derek Holzer 2009

PDP

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

STARTING PDUINO

© Koray Tahiroglu 2009
Modifications:

Derek Holzer 2009, 2010
Lukas Kaser 2010

penko sound 2010

PDUINO
© Derek Holzer 2010

LIGHT SENSOR
© Derek Holzer 2010

PHYSICAL MODELLING
© Joao Pais 2009
Modifications:

adam hyde 2009
Derek Holzer 2009

GLOSSARY

© Derek Holzer 2006, 2008, 2009
Modifications:

adam hyde 2008, 2009

Evan Raskob 2009

Frank Barknecht 2010
Hans-Christoph Steiner 2009
Laura Garcia-Barrio 2009

michela pelusio 2007

342

LINKS

© Derek Holzer 2006, 2007, 2008
Modifications:

adam hyde 2009

SEND AND RECEIVE

© adam hyde 2009
Modifications:
Hans-Christoph Steiner 2009
Scott Fitzgerald 2009

SEQUENCER
© anique vered 2010

SIMPLE SYNTH

© Derek Holzer 2008, 2009, 2010
Modifications:

adam hyde 2009

Jonathan Wilkes 2010

Laura Garcia-Barrio 2009

SQUARE WAVES

© Derek Holzer 2008, 2009
Modifications:

adam hyde 2009

STARTING

© Derek Holzer 2006, 2008
Modifications:

adam hyde 2008, 2009
Caio Barros 2009

corey fogel 2007

Daniel Prieto 2007

STEP SEQUENCER

© Derek Holzer 2008, 2009
Modifications:

adam hyde 2009

SUBPATCHES

© Luka Princic 2008
Modifications:
adam hyde 2009
Derek Holzer 2010

SUB WINDOW

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

TABLES

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

THE INTERFACE

© Derek Holzer 2006, 2007, 2008
Modifications:

adam hyde 2008, 2009

anique vered 2010

Caio Barros 2009

343

Daniel Prieto 2007
Julio Terra 2010
Steve Bull 2010

TIME

© Joao Pais 2009
Modifications:
adam hyde 2009
Derek Holzer 2009

TROUBLE SHOOTING

© Derek Holzer 2006, 2008
Modifications:

adam hyde 2008, 2009
anique vered 2010

Caio Barros 2009

Mark Hadman 2010

simone marin 2008

USING MIDI

© servando barreiro 2009
Modifications:

adam hyde 2009

WHAT IS DIGITAL AUDIO?

© Derek Holzer 2006, 2008, 2009
Modifications:

adam hyde 2008, 2009

Julio Terra 2010

Pall Thayer 2010

GRAPHICAL PROGRAMMING

© Derek Holzer 2006, 2008, 2009, 2010
Modifications:

adam hyde 2008, 2009

First Last 2009

Hans-Christoph Steiner 2010

Jonathan Wilkes 2010

Maarten Brinkerink 2007

WIRELESS CONNECTIONS
© Luka Princic 2008
Modifications:

adam hyde 2009

Derek Holzer 2010

HOSTING PLUGINS

© Kim Cascone 2009, 2012
Modifications:

adam hyde 2012

[l rioss

S i ANUALS

Free manuals for free software

344

http://www.flossmanuals.net/

GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users. T his
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is
covered by the GNU Lesser General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in
new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have.
You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original,
so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

345

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the
Program" means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with
the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program or
any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands
interactively when run, you must cause it, when started running
for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view
a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement,
your work based on the Program is not required to print an
announcement.)

346

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-
readable source code, which must be distributed under the terms
of Sections 1and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1and 2 above on a
medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the
offer to distribute corresponding source code. (T his alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work
for making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to
copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy
the source along with the object code.

347

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. T herefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all
its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this
License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not
permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

348

9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS
NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PART IES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANT IES OF MERCHANT ABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECT IVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENT AL OR CONSEQUENT IAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

349

	PURE DATA
	1. PURE DATA
	2. REAL TIME GRAPHICAL PROGRAMMING
	GRAPHICAL PROGRAMMING
	REAL TIME

	3. WHAT IS DIGITAL AUDIO?
	FREQUENCY AND GAIN
	SAMPLING RATE AND BIT DEPTH
	SPEED AND PITCH CONTROL
	VOLUME CONTROL, MIXING AND CLIPPING
	THE NYQUIST NUMBER AND FOLDOVER/ALIASING
	DC OFFSET
	BLOCK SIZE
	IT'S ALL JUST NUMBERS

	4. INSTALLING ON OS X
	STATUS: X11 LIBRARY NOT LOADED
	INSTALLING X11 ON MAC OS X 10.3 PANTHER AND 10.4 TIGER

	5. INSTALLING ON WINDOWS
	6. INSTALLING ON UBUNTU
	INSTALLING LIBFLAC7 AND LIBJASPER
	INSTALLING PURE DATA

	7. INSTALLING ON DEBIAN
	8. CONFIGURING PURE DATA
	BASIC CONFIGURATION
	AUDIO DRIVERS
	MIDI DRIVERS (LINUX ONLY)
	AUDIO SETTINGS
	MIDI SETTINGS
	TEST AUDIO AND MIDI

	9. ADVANCED CONFIGURATION
	STARTUP FLAGS
	PATH
	PLATFORM-SPECIFIC CONFIGURATION TOOLS

	10. STARTING PURE DATA
	STARTING VIA AN ICON
	STARTING VIA COMMAND LINE
	STARTING FROM A SCRIPT
	ADVANCED SCRIPTING FOR STARTING PD

	11. THE INTERFACE
	STARTING A NEW PATCH
	INTERFACE DIFFERENCES IN PURE DATA
	PLACING, CONNECTING AND MOVING OBJECTS IN THE PATCH
	EDIT MODE AND PLAY MODE
	MESSAGES, SYMBOLS AND COMMENTS
	GUI OBJECTS
	ARRAYS AND GRAPHS
	A NOTE ON USING GUI OBJECTS

	12. TROUBLESHOOTING
	13. BUILDING A SIMPLE SYNTHESIZER
	DOWNLOADS

	14. OSCILLATORS
	SINE WAVE OSCILLATOR
	SAWTOOTH WAVE OSCILLATOR
	SQUARE WAVE OSCILLATOR
	OTHER WAVEFORMS

	15. FREQUENCY
	AUDIO VS MESSAGE CABLES
	MIDI AND FREQUENCY

	16. ADDITIVE SYNTHESIS
	17. AMPLITUDE MODULATION
	SIMPLE AM SYNTHESIS
	TREMOLO
	RING MODULATION

	18. FREQUENCY MODULATION
	19. SQUARE WAVES AND LOGIC
	PULSE WIDTH MODULATION
	MATH & LOGIC OPERATIONS

	20. GENERATING WAVEFORMS
	OUTLINE
	INTRODUCTION
	USING SINESUM
	SAWTOOTH WAVE
	PLAYBACK OF THE GRAPHED WAVEFORMS
	TRIANGLE WAVE
	SQUARE WAVE

	21. NORMALIZING & DC OFFSET
	22. ANTIALIASING
	OUTLINE
	INTRODUCTION: WHAT IS ALIASING?
	THE PROBLEM: AN ALIASING OSCILLATOR
	OVERSAMPLING AND FILTERING
	BANDLIMITED WAVEFORMS

	23. FILTERS
	LOW PASS FILTER
	HIGH PASS FILTER
	BAND PASS FILTER
	VOLTAGE CONTROLLED FILTER

	24. THE ENVELOPE GENERATOR
	SIMPLE ENVELOPE GENERATOR USING [LINE]
	COMPLEX ENVELOPE GENERATOR USING [VLINE~]
	ENVELOPES STORED IN ARRAYS

	25. THE AMPLIFIER
	USING A SLIDER
	USING [LINE~], [VLINE~] AND [TABREAD4~]

	26. CONTROLLING THE SYNTHESIZER
	INPUT FROM THE COMPUTER KEYBOARD
	INPUT FROM A MIDI KEYBOARD

	27. BUILDING A 16-STEP SEQUENCER
	A COUNTER
	HOT AND COLD
	STORING AND RETRIEVING MIDI NOTE VALUES
	THE FINISHED 16-STEP SEQUENCER PATCH

	28. A FOUR STAGE FILTERED ADDITIVE SYNTHESIZER
	THE INPUT STAGE
	THE OSCILLATOR STAGE
	THE FILTER STAGE
	THE AMP STAGE
	SUBPATCHES

	29. DATAFLOW TUTORIALS
	30. BUILDING A SIMPLE SEQUENCER: A STEP BY STEP GUIDE
	31. MESSAGES
	ANATOMY OF A MESSAGE
	STANDARD MESSAGE TYPES
	MESSAGE BOXES
	PACKING ELEMENTS AND VARIABLES INTO A LIST
	DECONSTRUCTING MESSAGES: UNPACK AND ROUTE

	32. MATH
	SIMPLE ARITHMETIC
	HIGHER MATH
	TRIGONOMETRY
	FRACTION WORK
	NUMBERS AND RANGES
	RANDOM NUMBERS
	RELATIONAL OPERATORS
	CONVERSION BETWEEN ACOUSTICAL UNITS
	BIT TWIDDLING
	EXPR
	AUDIO MATH

	33. LISTS
	LISTS VS. LIST-MESSAGES
	CONVERTING TO AND FROM LISTS

	34. ORDER OF OPERATIONS
	HOT AND COLD INLETS
	ORDER OF CONNECTING
	DEPTH FIRST MESSAGE PASSING

	35. WIRELESS CONNECTIONS
	WHAT KIND OF DATA CAN BE SENT?
	THROW AND CATCH

	36. SUBPATCHES
	SUBPATCH INLETS AND OUTLETS
	CLOSING AND REUSING SUBPATCHES

	37. ABSTRACTIONS
	SAVING ABSTRACTIONS
	CALLING AND EDITING ABSTRACTIONS

	38. DOLLAR SIGN ARGUMENTS
	IN OBJECT BOXES
	IN MESSAGE BOXES

	39. GRAPH ON PARENT
	40. ARRAYS, GRAPHS AND TABLES
	CREATING AN ARRAY
	USING ARRAYS TO DISPLAY AUDIO
	WRITING DATA TO AN ARRAY
	READING DATA FROM ARRAYS
	USING ARRAYS TO PLAY BACK SAMPLES

	41. GEM
	42. WHAT GEM IS FOR
	GEM & OPENGL
	THE VERY BASICS OF RENDERING
	[GEMWIN]
	GEMHEAD
	LET'S GET STARTED
	PIX_OBJECTS AND AND 3D SHAPES

	43. IMAGES, MOVIES AND LIVE VIDEO
	[PIX_IMAGE]
	[PIX_FILM]
	[PIX_MOVIE]
	[PIX_VIDEO]
	RELATED OBJECTS

	GEM MINI-VIDEO MIXER..
	1.5. ALPHA, SIZE..
	1.6. COLOR.
	2- ADDING WEBCAM / LIVE VIDEO INPUT:
	3-CHROMA KEY

	45. PIX EFFECTS
	[PIX_LUMAOFFSET]
	[PIX_DUOTONE]
	[PIX_GAIN]
	[PIX_THRESHOLD]

	46. RECORDING
	47. GEM WINDOW PROPERTIES:
	1- FULLSCREEN
	2-EXTENDED DESKTOP,

	48. VIDEO TRACKING
	[pix_movement]
	[pix_background]

	49. GAME CONTROLLERS
	START WITH THE KEYBOARD
	MOUSE CURSOR
	USB HID
	MAKE YOUR OWN HID
	HID TO PD

	50. PDUINO:
	51. INSTALLING ARDUINO ON FEDORA 12 (X86_32)
	52. SOMEBODY SHOULD SET THE TITLE FOR THIS CHAPTER!
	53. INSTALLING EXTERNALS
	DOWNLOADING AND INSTALLING
	INSTALLING ANY EXTERNAL

	54. SOMEBODY SHOULD SET THE TITLE FOR THIS CHAPTER!
	55. PDUINO LIGHT SENSOR
	56. [NETSEND] AND [NETRECEIVE]
	[NETSEND]
	[NETRECEIVE]
	CONNECTING WITH OTHER APPLICATIONS

	57. OPEN SOUND CONTROL (OSC)
	SETTING UP AN OSC CONNECTION
	THE OSC ADDRESS PATTERN
	OSC ARGUMENTS
	TYPES
	BUNDLES
	DESIGNING YOUR NAMESPACE

	58. MIDI
	SETUP
	CHANNELS AND PORTS
	3-MIDI HARDWARE:
	4- MAKING NOTES IN PD, SENDING / RECIVING NOTES.
	5- MIDI CONTROLLERS
	6- SENDING MIDI TO OTHER SOFTWARES, SENDING CC (CONTROL CHANGE).
	7- ANOTHER MIDI OBJECTS:

	59. STREAMING AUDIO
	1. CREATE THE MP3CAST OBJECT
	2. CONNECT AN OSC~ OBJECT
	3. SETTINGS
	4. START THE STREAM
	5. STREAMING FROM THE MIC
	6. DISCONNECT

	60. OGGCAST~
	PARAMETERS
	STREAMING FROM YOUR SOUND CARD
	STREAMING FROM PURE DATA AUDIO

	61. OBJECT LIST
	Dataflow
	Audio
	Patch Management
	External libraries
	VANILLA AND EXTENDED OBJECTS
	ORGANISATION
	NAME
	LIBRARY/PATH
	FUNCTION

	GLUE
	NAME
	LIBRARY/PATH
	FUNCTION

	MATH
	NAME
	LIBRARY/PATH
	FUNCTION

	TIME
	NAME
	LIBRARY/PATH
	FUNCTION

	MIDI
	NAME
	LIBRARY/PATH
	FUNCTION

	TABLES
	NAME
	LIBRARY/PATH
	FUNCTION

	MISC
	NAME
	LIBRARY/PATH
	FUNCTION

	AUDIO GLUE
	NAME
	LIBRARY/PATH
	FUNCTION

	AUDIO MATH
	NAME
	LIBRARY/PATH
	FUNCTION

	AUDIO OSCILLATORS AND TABLES
	NAME
	LIBRARY/PATH
	FUNCTION

	AUDIO FILTERS
	NAME
	LIBRARY/PATH
	FUNCTION

	AUDIO DELAY
	NAME
	LIBRARY/PATH
	FUNCTION

	SUBWINDOWS
	NAME
	LIBRARY/PATH
	FUNCTION

	DATA TEMPLATES AND ACESSING DATA
	NAME
	LIBRARY/PATH
	FUNCTION

	GEM
	NAME
	LIBRARY/PATH
	FUNCTION

	PDP
	NAME
	LIBRARY/PATH
	FUNCTION

	PHYSICAL MODELLING
	NAME
	LIBRARY/PATH
	FUNCTION

	OBSOLETE
	79. USING LADSPA PLUGINS
	SETTING UP PD TO USE [PLUGIN~]
	USING THE [PLUGIN~] OBJECT IN A PATCH
	SUMMARY

	80. GLOSSARY
	GLOSSARY TERMS
	ABSTRACTION
	ADC
	ADSR
	ALIASING
	ALSA
	AM SYNTHESIS
	AMPLITUDE MODULATION SYNTHESIS
	ANYTHING
	ARGUMENT
	ARRAY
	ASIO
	ATTACK
	ATOM
	AUDIO DRIVER
	BANDLIMITED
	BANG
	BIT DEPTH
	BUFFER
	CANVAS
	CARRIER
	CLIPPING
	COLD AND HOT
	COMMENT
	CREATION ARGUMENT
	CUTOFF FREQUENCY
	DAC
	DC OFFSET
	DECAY
	DECIBEL
	DELAY
	DISTORTION
	DOLLAR SIGN
	DYNAMIC RANGE
	EDIT MODE
	ENVELOPE
	EXTERNAL
	EXTERNAL LIBRARY
	FILTER
	FEEDBACK
	FLOAT ORFLOATING POINT
	FM SYNTHESIS
	FOLDOVER
	FREQUENCY
	FREQUENCY MODULATION SYNTHESIS
	GAIN
	GLITCH
	GRAPH
	GRAPH ON PARENT
	GUI ELEMENT
	HARMONICS
	HID
	HOT AND COLD
	HRADIO
	HSLIDER
	HERTZ OR HZ
	HUMAN INTERFACE DEVICE
	INDEX NUMBER
	INLET
	INTEGER
	JACK
	LATENCY
	LINEAR
	LIST
	LOGARITHMIC
	LOUDNESS
	MESSAGE
	MIDI
	MME
	MODULATOR
	MONOPHONIC
	NOISE FLOOR
	NORMALIZE
	NOTE
	NUMBER
	NYQUIST FREQUENCY
	OBJECT
	OCTAVE
	OSCILLATOR
	OSS
	OUTLET
	OVERSAMPLING
	PASS BAND
	PATCH
	PATH
	PITCH
	PLAY MODE
	POINTER
	POLYPHONIC
	PORTAUDIO
	PROPERTY
	RADIO
	REAL-TIME
	RELEASE
	RESONANCE
	SAMPLE
	SAMPLER
	SAMPLING RATE
	SCALAR
	SEQUENCER
	SELECTOR
	SELF-NOISE
	SEND AND RECEIVE
	SHELL
	SLIDER
	STARTUP FLAG
	STOP BAND
	STRUCT
	SUBPATCH
	SUSTAIN
	SYMBOL
	SYMBOL MESSAGE
	TRUNCATE
	VARIABLE
	VECTOR BASED GRAPHICS
	VELOCITY
	VOICES
	VRADIO
	VSLIDER
	VU
	WORD LENGTH
	WORKING DIRECTORY

	81. PD LINKS
	PURE DATA SOFTWARE
	EXTERNALS
	LINUX DISTRIBUTIONS WITH PD
	TUTORIALS & EXAMPLES
	GETTING HELP

	82. LICENSE
	AUTHORS
	GENERAL PUBLIC LICENSE

