
Plug your Cam - extending Gem the modular way

IOhannes m zmölnig
Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts

Graz, Austria
zmoelnig@iem.at

ABSTRACT

Keywords

1. MOTIVATION

Copyright 2009. Copyright remains with the author(s).

2. DESIGN

2.1 plugin naming scheme

 �

ËO)#�Ê�+���Â-,#-+ÁÂ-�
;#ÁN�)�Æ�É#)ÈÁ-�Æ�����



2.2 properties

3. MODULES

3.1 Still image Acquisition

3.2 Still image Output

 �

ËO)#�Ê�+���Â-,#-+ÁÂ-�
;#ÁN�)�Æ�É#)ÈÁ-�Æ�����



3.3 Film Footage Acquisition

•

•

•

•

3.4 Live Video Capturing

•

•

•

•

•

•

•

4. FUTURE THOUGHTS

 �

ËO)#�Ê�+���Â-,#-+ÁÂ-�
;#ÁN�)�Æ�É#)ÈÁ-�Æ�����


	anfang.pdf
	01_40.Krzysztof_Czaja-Self-replication_-_how_to_do_more_using_less
	1  Introduction
	2  Section
	2.1  Subsection
	2.2  Subsection
	2.3  Subsection

	3  Section
	3.1  Subsection
	3.2  Subsection
	3.3  Section

	4  Section
	5  Section

	02_11.Marco_Donnarumma-A_Pd_framework_for_the_Xth_Sense-enabling_computers_to_sense_human_kinetic_behaviour
	1	Computers that sense and act
	2	Tools of interaction
	2.1	The Xth Sense library
	3	The GUI
	3.1 	Software anatomy
	3.2	Usability concerns
	4	Interrelating kinetic behaviour with musical performance
	4.1	Performance and design principles

	4.2	MMG features extraction
	4.3	Dynamic data mapping
	4.3.1	Chordless, dynamic data mapping with [sssad] and [iem_s]
	4.4	Mapping kinetic energy to control data
	5	Conclusions

	03_03.Pedro_Lopes__Joaquim_Jorge-Dynamic_Time_Warping_for_Pure_Data
	04_39.Mathieu_Bouchard-Self-Modifying_Help_Patches
	05_23.Richard_Thomas-Electro-Acoustic_Tools_High-Level_Abstractions_for_Audio_Manipulation_and_Spatialisation
	1  Introduction
	1.1  Progress in Usability
	2  Novel Patching
	3  Dynamic Object Management
	3.1  Why use dynamic techniques?
	3.1.1  Hardcoding
	3.1.2  switch
	3.1.3  Dollar and Hash Variables
	3.2  Native Dynamic Patching
	3.2.1  Object Creation
	3.2.2  [namecanvas
	3.2.3  Connections
	3.3  dyn
	3.3.1  Arguments and Message Inputs
	3.3.2  Workarounds and Patching Strategies
	3.3.3  dyn Wrapper
	4  Multi-point Panning
	4.1  Routing
	4.2  Algorithm
	5  Acknowledgements

	06_25.Kent_Jolly-Using_Pure_Data_in_Spore_and_Darkspore_-_successes_and_failures
	1  Introduction
	2  The EApd audio object Interface
	2.1  The Group and GroupSize Objects
	2.2  The Play and Dplay Objects
	2.2.1  Play and Dplay - the basics
	2.2.2  Play and Dplay - the arguments
	2.2.3  Play and Dplay - the parameters
	2.3  The Mixer Object
	2.4  The Fparam and GFparam Objects
	2.5  The Function Object
	2.6  The Coll Object
	2.7  The Thisinstance Object
	3  Exporting patches
	4  Functionality overlaps with Spore audio system
	5  Conclusion
	6  Acknowledgements

	07_02.José_Rafael_Subía_Valdez-Custom_Spatialisation_PD_Patch_for_a_Large_Non-conventional_Area
	1 
	2 
	2.1  Space as a poetic component, how to use it?
	2.2  Equal power panning
	2.3  The Equal Power Panning modifications 
	3  Pure Data implementation
	3.1  Equal Power Panning Program
	3.1.1  Panning Function, Creating, Storing  Reading
	3.1.2  Amplitude Control
	3.2  Doppler effect
	3.3  Reverberation  Depth
	4  Graphical User Interface (GUI)
	4.1  Position and Movement
	4.2  Oblique Movements
	5  Conclusion
	6  Acknowledgements

	08_33.Chun_Lee-Music_in_expression_-_A_DSP_based_compositional_methodology
	1  Introduction
	1.1  Motivation
	1.3  Musical context
	2  Operation examples
	2.1  Design principles
	2.2  Step counter
	2.3  Structure derivation
	2.4  Phase Shift
	2.5  Consitional test
	2.6  Pulse wave
	2.7  Compositional examples
	3  Conclusion

	09_30.Regis_Faria-AUDIENCE_for_Pd,_a_scene-oriented_library_for_spatial_audio
	1	Introduction
	2	System architecture
	2.1	Functional layers  
	3	System design and implementation
	3.1	Design premisses
	3.2	Development history
	3.3	Library organization 
	3.4	Features and library components
	3.4.1	Licenses
	3.4.2	Creating new objects
	3.5	How it works
	4	Usage
	4.1	Installation and licenses
	4.2	Building applications or how to use it
	4.3	 Application examples
	5	Next phases and conclusions

	10_35.Kyriakos_Tsoukalas-A_collaboration_workflow_from_sound-based_composition_to_performance_of_electroacoustic_music_using_«Pure_Data»_as_a_framework
	1 Introduction
	2 A workflow
	2.1 Composer's role
	2.1.1 Aesthetic criteria
	2.1.2 Music cognition
	2.1.3 Composition ideas
	2.1.4 Synthesis methods

	2.2 Engineer/programmer's role
	2.2.1 Hardware and software
	2.2.2 Synthesis engine

	2.3 Performer's role
	2.3.1 Control interface
	2.3.2 Sound

	2.4 Listener

	3 Performance of electroacoustic music
	3.1 Performance behavior

	4 PD graphical programming environment as asynchronous collaboration platform
	5 Conclusion
	6 Acknowledgements

	12_14.Miller_Puckette-Voice_as_joystick_and_oscillator
	1  Introduction
	2  Analysis
	3  Oscillators
	4  Delay network
	5  Conclusion
	6  References

	13_32.IOhannes_zmölnig-Plug_your_cam_-_extending_Gem_the_modular_way
	14_26.Peter_Brinkmann-Embedding_Pure_Data_with_libpd_Design_and_Workflow
	1 Introduction
	2 Overview
	3 Workflow
	4 Design decisions
	5 Language bindings
	6 Pd for Android
	7 Pd for iOS
	8 Pd for Processing
	9 Pd for OpenFrameworks
	10 Pd everywhere
	11 Outlook
	12 Acknowledgments
	Appendix: Sample code

	15_07.Alexandre_Porres-Dissonance_Model_Toolbox_in_Pure_Data
	16_19.Koray_Tahiroğlu-An_Exploration_on_Mobile_Interfaces_with_Adaptive_Mapping_Strategies_in_Pure_Data
	1  Introduction
	2  Section
	3  Section
	3.1  Subsection
	4  Section
	4.1  Subsection
	5  Conclusion
	6  Acknowledgements

	17_17.Adriano_Monteiro-A_Framework_for_Real-time_Instrumental_Sound_Segmentation_and_Labeling
	18_31.Frank_Barknecht-rj_-_abstractions_for_getting_things_done
	Introduction
	rj: Goals and restrictions
	Overview of the rj library
	Library Contents: Analysis
	Library Contents: Synths
	Library Contents: Effects
	Library Contents: GUIs
	Library Contents: Mappings
	Library Contents: Controllers
	Library Contents: Utilities

	Parameter Control and State Saving
	Sample Management
	Powerful Synthesizers
	Future work
	Acknowledgements

	19_20.Urban_Schlemmer-Reverb_Design
	1  Introduction
	2  Aesthetic Concepts
	2.1  Intelligibility
	2.2  Texture and Coloration
	3  Design Concepts
	3.1  Multistream Design
	3.2  Slope
	3.3  Modulation
	3.4  Nested vs. Parallel Structures
	3.5  Multichannel I/O
	4  The Reverberation Development Kit
	4.1  Key Features
	4.2  Example Design
	5  Conclusion
	6  Acknowledgements
	7  Appendix A
	8  Appendix B

	20_12.Aleš_Černý-VisualTracker_-_modular_pd_environment_for_sequencing_events_on_the_timeline
	 1  Introduction
	 2  VisualTracker environment (VTe)
	 2.1  Program location
	 2.2  User Interface
	 2.2.1  Control windows
	 2.2.2  Module_library window
	 2.2.3  Composition_timeline window
	 2.2.4  Loaded_Modules window

	 2.3  Sequencer
	 2.3.1  Sequence division
	 2.3.2  Tempo
	 2.3.3  Selection
	 2.3.4  Sequencer looping
	 2.3.5   Sequencer Controls   

	 2.4  Timeline
	 2.4.1  Module canvas position and manipulation
	 2.4.2  Composition time (horizontal grid division)
	 2.4.3  Tracks (vertical grid division)

	 2.5  Composition storage
	 2.5.1  Saving main VisualTracker abstraction
	 2.5.2  Storage system
	 2.5.3  Global values storage
	 2.5.3.1  [storge] abstraction arguments

	 2.5.4  Module values storage
	 2.5.4.1  [mstorge] abstraction arguments

	 2.5.5  External storage file
	 2.5.6  Auto save
	 2.5.7  Reload composition


	 3  Modules
	 3.1  Visualtracker connector
	 3.1.1  Module canvas
	 3.1.2  Single execution points
	 3.1.3  Multiplication
	 3.1.4  Module duration
	 3.1.4.1  no fit
	 3.1.4.2  fit to bars
	 3.1.4.3  fit to bpm

	 3.1.5  Creation bang

	 3.2  Sends/receives
	 3.2.1  Module receives
	 3.2.2  Module sends
	 3.2.1  Global receives

	 3.3  Initial module values
	 3.4  Module template
	 3.5  Basic Modules
	 3.5.1  [vt_bang]
	 3.5.2  [vt_toggle]
	 3.5.3  [vt_line]


	 4  Future development
	 5  Documentation
	 5.1  VisualTracker program
	 5.2  Module development

	 6  Releases
	 6.1  Program pack
	 6.2  Module pack

	 7  Licence
	 8  Conclusion
	 9  VisualTracker is regularly developed and tested for more than a year with the idea of cooperation and open source evolution with hope to attract pd fans and enthusiastic and tempt them to use VisualTracker as a platform for their experiments, extend the library of modules and come up with new ideas. The basic functions featured are already seen in proprietary software such as Ableton Live or ACID, but only in open source and 100% readable environment of Pd they can be really explored and used the way they were never used before.
	 10  Acknowledgements
	 11  References

	22_08.Rudi_Giot-Image_Processing_Algorithm_Optimization_with_CUDA_for_Pure_Data
	1	Introduction
	2	CUDA
	2.1	Architecture
	2.2	Programming
	3	CUDA integration inside Pure Data
	3.1	GEM Library
	3.2	CUDA integration inside GEM
	4	Results and performances
	5	Conclusion
	6	Acknowledgements

	23_24.Richard_Graham-A_Live_Performance_System_in_Pure_Data_Pitch_Contour_as_Figurative_Gesture
	A Live Performance System in Pure Data: Pitch Contour as Figurative Gesture
	1 Introduction
	2 Beyond Instrumental Convention
	2.1 Beyond MIDI Technology
	2.1.1 Hardware – The “Septar” Board
	2.1.2 Hierarchies in Auditory Scene Analysis
	4 Discussion
	6 Acknowledgements

	24_13.Charles_Henry-Graphics_processing_unit_audio_signals_processing_in_Pure_Data,_and_PDCUDA,_an_implementation_with_the_CUDA_runtime_API
	1	Introduction 
	1.1	GPU Computing
	1.2	Pure Data 
	2	Design of GPU Extensions
	2.1	Design Goals
	2.2	Usage Cases
	3	Implementation
	3.1	Extending the DSP State
	3.2	Separation Between Memory Spaces
	The symbol “cuda_dsp” is introduced in order to keep CUDA based routines separate from their host counterparts.  When canvas_dodsp runs for a given cucanvas, it finds all instances of objects from its gl_list with the symbol “cuda_dsp” and adds their ugens to the dspcontext.
	An existing class may then be extended to work with PdCUDA by adding an additional method, instead of adding an entirely new class for the same purpose.  In this scheme, there is no risk of mixture between memory spaces.
	3.3	User Interface
	User control over the application of CUDA routines needs to be handled at the canvas level.  This works within expected user interfaces presented by Pd and provides the user capability to control the coarseness of organizing CUDA based patches.  The symbol “cucanvas” is introduced for creating root level canvases.  The canvas (glist) data structure is extended by adding a gl_hascuda element.  The user interface also adds a subcanvas creation symbol “cu”.  
	It is possible to create subcanvases of any type within canvases of another type.  This is important for creating abstractions that are handled in the same way that Pd abstractions are commonly used.
	3.4	Modifications to Pd Code
	3.5	The PdCUDA API
	4	Conclusion
	Refrences

	25_29.Katja_Vetter-Pure_Data_implementation_of_an_ESS-based_impulse_response_acoustic_measurement_tool
	26_22.Peter_Venus-Extended_View_Toolkit
	1 Introduction
	2 Input processing
	2.1 Image stitching
	2.1.1 Problems
	2.1.2 Parallax error
	2.1.2 Lens distortion
	2.2 Stitching images using the toolkit
	3 Output processing
	3.1 Problems
	3.2 Video projection with GEM
	3.2.1 Straight projection
	3.2.2 Angular projection
	3.2.3 Multiple screens
	3.2.5 Soft-edging & overlap
	3.2.6 Multiple Projectors
	3.2.7 Curved screens
	3.2.8 Realtime Systems
	3.3 Immersive Media Environments
	4 Conclusion
	6 Acknowledgements

	27_04.João_Pais-Click_Tracker_PerformanceORcomposition_tool_for_metrically_complex_scores
	28_38.Edward_Kelly-Gemnotes/_A_Realtime_music_notation_system_for_pure_data
	29_34.William_Brent-DILIB_Control_Data_Parsing_for_Digital_Musical_Instrument_Design
	1  Motivation
	1.1  Introduction

	2  General Design
	3  DILib Components
	3.1  Laptop
	3.1.1  Continuity

	3.2  TouchOSC
	3.3  Wii Remote
	3.4  IR Blob Tracking
	3.5  reacTIVision & TuioHub
	3.6  OSCeleton

	4   Conclusion

	ende

