
Plug your Cam - extending Gem the modular way

IOhannes m zmölnig
Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts

Graz, Austria
zmoelnig@iem.at

ABSTRACT
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1. MOTIVATION

Copyright 2009. Copyright remains with the author(s).

2. DESIGN

2.1 plugin naming scheme
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2.2 properties

3. MODULES

3.1 Still image Acquisition

3.2 Still image Output
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3.3 Film Footage Acquisition
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3.4 Live Video Capturing

•

•

•

•

•

•

•

4. FUTURE THOUGHTS
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