70

Plug your Cam - extending Gem the modular way

IOhannes m zmolnig
Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts
Graz, Austria
zmoelnig@iem.at

ABSTRACT

In this paper we present the new plugin infrastructure in
the upcoming release of Gem, that aims to cleanse the core
library of superfluous dependencies.

The motivation for externalizing these parts of Gem into a
plugin system, was mainly driven by two aspects: lowering
binary dependencies and providing a uniform interface to
various objectclasses across platforms.

So far, the main image input/output objectclasses (live
video acquisition ([pix_videol), film footage acquisition
([pix_record]l), video output ([pix_record]l) and still im-
age acquisition/output ([pix_image], [pix_buffer], ...))
have been switched to the new plugin infrastructure.

Keywords
Pure data, Gem, plugins, C++

MOTIVATION

Traditionally Gem (Graphics Environment for Multime-
dia) is built as a monolithic library of Pd objects, with linked
in (that is: fixed) support for various system specific fea-
tures, like image acquisition or output methods.

With Gem’s (slow but steady) growth over the years, this
has become more and more of a burden.

The motivation for externalizing these parts of Gem into
a plugin system, was mainly driven by two aspects: lower-
ing dependencies and providing a uniform interface across
platforms.

Lowering dependencies aims at easing installation of bi-
nary packages (und thus the maintenance of such packages).
For instance on linux, Gem (0.92) can be compiled with sup-
port for five different movie reading libraries, some of them
being (partially) patent encumbered, outdated or otherwise
hard to obtain. In order to support the widest range of film
footage, one is tempted to link against all possible libraries.
However, this also means that the end user has to install
these libraries first in order to make use of Gem, because
the Pd (or rather: the operating system) will refuse to load

1.

Copyright 2009. Copyright remains with the author(s).

Gem if one of those libraries is missing. Even if they are not
interested in video playback at alll (The alternative to mak-
ing the end user install a number of libraries, is to provide
them in the release, which bloats the package, eventually
introducing legal problems.)

From the user’s point of view, different backends provide
different possibilities to interact with e.g. an image acquisi-
tion device. What’s worse, different devices can have differ-
ent features, the user might want to control. (E.g. a webcam
could provide a means to control pan/tilt/zoom, whereas a
video capture card might allow to switch between different
inputs). In the past this divergence has led to incompatible
implementations of e.g. the [pix_video] object, leading to
patches that are not portable across operating systems.

2. DESIGN

As a solution for the above mentioned problems, the idea
was born to remove as many external dependencies from
the core Gem code base, and move them into an abstrac-
tion layer, that can be maintained separately. The design
pattern that can be used for such a task, is the use of plu-
gins, that encapsulate the specific code to interface with a
given infrastructure/library. Plugins would allow to add (or
remove) interoperability with frameworks from the core of
Gem, without having to recompile Gem. Instead it would
be enough, to simply add (or remove) a binary plugin file
to Gem’s search path, which would then be searched for
automatically and loaded as needed.

What’s better, if the user has a plugin installed on their
machine, that depends on a library they have not installed
(because they just copied the plugin file), then Gem will
continue to work! Only the plugin will fail to load, which
might be no show stopper.

2.1 plugin naming scheme

To ease the automatic loading of plugins, Gem it was de-
cided to create a special naming scheme for the plugins, and
simply load any file conforming to this naming scheme.

The naming scheme is as follows:

gem_<pluginclass><NAME>.<extension>

Teh gem_ prefix obviously indicates that the given file is a
plugin for Gem. The <ezxtension> is the system’s native ex-
tension for files that can be dynamically loaded at runtime.
On W32, this would be d11, whereas on linux and OSX (and
other UN*X like operating systems), the extension would be
so.

The <pluginclass> is meant as a (human readable) filter,
to allow to distinguish between different types of plugins, so

PURE DATA CONVENTION
WEIMAR ~ BERLIN ~ 2011



only those plugins will be loaded that are actually needed to
accomplish a certain task. This name usually corresponds
to the name of the objectclass that is primarily associated
with a given plugin.

For instance, plugins for live video capture (as used by the
[pix_video] objectclass), would use video as plugin class
name, whereas plugins to open movie files (e.g. [pix_film]),
would use film.

Finally, the NAME part of the scheme, can be freely cho-
sen by the plugin author, and is mainly a means to allow
multiple plugin files live in the same directory. For readabil-
ities sake, the NAME should reflect on the infrastructure
the plugin interoperates with, e.g. a plugin for interfacing
the video4linux2 API to capture live video, would aptly be
named gem_ video V4L2.so.

2.2 properties

Different multimedia frameworks offer different ways to
interact with the media. What'’s worse, different media
streams might offer different ways to interact with them.

For instance, any framework offering the capabilities to
capture video from a live source, will (hopefully) offer a way
to grab a video frame. However, some frameworks might
offer this frame in different qualities, e.g. simple black/white
images of low quality (but at higher framerates) or high
quality colour images. There might be the possibility to
change the framerate of the capture device. Some industry
standard cameras (and some webcams as well) might offer
means to modify some properties of the camera’s optics (e.g.
exposure time), or even a way to manipulate features not
related to the grabbing process at all (e.g. Pan/Tilt/Zoom
of a motorized camera). Other devices will never be able to
offer these properties (e.g. what does “focal length” mean to
a frame grabber card?)

Older versions of Gem only offered a limited set of proper-
ties that could be manipulated and where available on most
of these devices. This included e.g. the frame size or the
video standard when grabbing video (the latter being tar-
geted mainly at analog frame grabber cards, and not settable
on most webcams).

If a given framework would expose more properties and
one of those was actually needed for a project, a developer
might eventually add a Pd-message to the Pd objectclass in
order to be able to manipulate it. Unfortunately this led to
a divergence of available methods for different implementa-
tions: e.g. [pix_videoDarwin] would have a method to set
the “saturation” of the grabbed frame, whereas [pix_video]
on linux would lack such a method.

This basically made patches non cross-platform.

In order to overcome this problem, a more dynamic but
standardized way to manipulate such properties was intro-
duced with the plugins: each plugin can be queried which
properties it supports at runtime. This allows for both back-
end specific and device specific properties (e.g. even using
the same backend one might get different properties, de-
pending on the device currently opened: a framegrabber
card might have different properties as a webcam). The
names are not standardized, but given that they are sym-
bolic names, it is hoped that they make sense to the user, so
they know which knob they need to turn in order to acchieve
whatever they want.

Property values can be of various types (strings, floats,
enumerations), and querying the properties will give cues

71

on which type is expected. This allows to build dynamic
dialogs for a given interface from within Pd.

Setting properties uses key-value messages, e.g. “set ex-
posure 0.5” would set the exposure level of a device to 0.5.
If the plugin does not know what to do with the given prop-
erty, it will simply ignore it.

In some situations it is important to be able to set multi-
ple properties at once. E.g. when a media stream needs to
be restarted whenever the user wants to change the dimen-
sion or the framerate or the whitebalance, and restarting the
media stream would take (say) 10 seconds, then it would be
nice to be able to set dimension, framerate and whitebalance
in one go rather than to have to restart the stream 3 times
in a row. This can be done by a set of compound messages,
that wait for a final “doit” message that actually triggers
the properties to take effect. e.g. the messages [setProps

FrameRate 60, setProps AutoWhiteBalance 1, applyProps(

would remember that “FrameRate” should be “60”, and “Au-
toWhiteBalance” should be turned on, but only then send
apply these properties to the actual device.

3. MODULES

So far, plugins have been implemented for image acquisi-
tion and output.

3.1 Still image Acquisition

The imageloader plugin class, can be used to load still im-
ages, like JPEG or TIFF images. Given the simplicity of
the task, the interface for this plugin is straightforward, and
consists basically of a single function: bool load(filename,
&Image, &Properties) This will try to load filename and
store the result in the Image structure. The Properties could
be used by the loader to report back additional information
about the image, like tags encoded into the image file. Cur-
rently no plugin will actually report any properties, but this
might be added later.

Currently these plugins are implemented for loading im-
ages:

imageSGI loads SGI raw images
imageJPEG loads JPEG images using libjpeg
imageTIFF loads TIFF images using libtiff

imageMAGICK loads any image supported by ImageMag-
ick

imageQT loads any image supported by QuickTime

When loading an image, the host is supposed to call each
plugin’s load() function until the first one succeeds (and re-
turns true).

3.2 Still image Output

Similar to the imageloader plugin class, there is the im-
agesaver plugin class for saving images. The API is a bit
more complicated, since several APIs might be able to save
a given image, but some might do better than others. There-
fore a simple scoring system is introduced, where plugins can
rate themselves, how well they will save the image: float
estimateSave (&Image, filename, mimetype, Properties)
If the plugin can store the Image using the given mime-
type, it will assign itself (say) “100” points. For every prop-
erty in the Properties list which it will respect when sav-
ing the image, it will gain another point. The plugin that

PURE DATA CONVENTION
WEIMAR ~ BERLIN ~ 2011



returns the most points, is then chosen to save the image:
bool save(&Image, filename, mimetype, Properties) If
it fails (and returns false), the plugin with the next highest
score is tried, and so on.

Most plugins available for image saving, are also available
for image storing, with the exception of imageSGI.

3.3 Film Footage Acquisition

Reading movie files (series of prerecorded images as op-
posed to a single still image as above), requires the film
plugin class. Compared to the still image loader, the API is
broken into multiple steps for opening (and closing) the file,
as well as for retrieving frames.

e bool open(URI)
e void close(void)
e pixBlock* getFrame(void)

e int changelImage (frameNum)

The host is supposed to call the open() function of each
plugin until it finds one that is able to actually decode the
given URI (which might be a file or a webcast URL). The
thus opened stream, can then be retrieved using getFrame()
calls. With media that supports it, one can do random frame
access using the changelmage() method.

filmDarwin read movies using QuickTime (Apple only)

filmQT read movies using QuickTime (Apple and W32)

filmAVT read movies using the (deprecated) Video-For-Windows

API

filmDS read movies using DirectShow

filmGMERLIN decode movies with the meta-decoder “gmerlin-
avdecoder” (which internally uses FFMPEG, libAVIPLAY

and other libraries)
filmAVIPLAY read movies using libAVIPLAY
filmMPEG1 an outdated MPEG2 decoder

ilmMPEGS3 read movies using libMPEGS3 (for reading MPEG-

2 movies)

filmQTA4L decode movies using the Quicktime-For-Linux
library

3.4 Live Video Capturing

Video capturing is done in the video plugin class that ba-
sically consists of the following API:

e bool setDevice(devicename)
® bool open(Properties)

e void close(void)

bool start(void)

bool stop(void)
e pixBlock *getFrame(void)

e void setProperties(Properties)

72

When a new device is to be opened, all plugins’ setDevice()
method will be called (which doesn’t do anythin, but stores
the device to be opened). Then each plugin’s open() method
is called, which tries to open the previously given device with
the given properties. If it succeeds it returns true, if not,
the next plugin is tried. The first plugin to succeed is then
used by calling the start() method, which will turn grab-
bing on (grabbing can be turned on/off multiple times while
a device is opened in many APIs, hence this two step pro-
cess). Once start() succeeded, the host can call getFrame()
to retrieve the newest frame. For changing properties while
running, the setProperties() method is used, which gives a
list or properties to be changed atomically. The plugin is
expected to restart grabbing (if needed) itself.

videoDarwin using QuickTime

videoVFW using the (deprecated) Video-for-Windows API
videoDS using DirectShow

videoV4L using the (deprecated) videodlinux(1) API
videoV4L2 using the videodlinux2 API

videoDC1394 for grabbing IIDC cameras (industrial firewire
video protocol)

videoDVA4L for grabbing from consumer DV cams
videoSGI using SGI’s grabbing facilities
videoUNICAP using Unicap

videoAVT using Allied Vision Technoligies GigE. cameras
(proprietary)

videoHALCON using MVTec’s HALCON API (propri-
etary)

videoPYLON using Basler’s PYLON API (proprietary)

4. FUTURE THOUGHTS

The main problem with the plugins as is, is that they are
implemented in C++. Given that C++ does name wran-
gling of function names, this means, that one cannot use
a plugin compiled with one compiler inside a Gem that is
compiled with a different compiler. This problem is most
prominent on the W32 platform, where several compilers
(the Gnu g++ and Microsoft’s Visual C++) are in promi-
nent use.

A possibly workaround for this solution would be to pro-
vide a C API to write these plugins.

PURE DATA CONVENTION
WEIMAR ~ BERLIN ~ 2011



	anfang.pdf
	01_40.Krzysztof_Czaja-Self-replication_-_how_to_do_more_using_less
	1  Introduction
	2  Section
	2.1  Subsection
	2.2  Subsection
	2.3  Subsection

	3  Section
	3.1  Subsection
	3.2  Subsection
	3.3  Section

	4  Section
	5  Section

	02_11.Marco_Donnarumma-A_Pd_framework_for_the_Xth_Sense-enabling_computers_to_sense_human_kinetic_behaviour
	1	Computers that sense and act
	2	Tools of interaction
	2.1	The Xth Sense library
	3	The GUI
	3.1 	Software anatomy
	3.2	Usability concerns
	4	Interrelating kinetic behaviour with musical performance
	4.1	Performance and design principles

	4.2	MMG features extraction
	4.3	Dynamic data mapping
	4.3.1	Chordless, dynamic data mapping with [sssad] and [iem_s]
	4.4	Mapping kinetic energy to control data
	5	Conclusions

	03_03.Pedro_Lopes__Joaquim_Jorge-Dynamic_Time_Warping_for_Pure_Data
	04_39.Mathieu_Bouchard-Self-Modifying_Help_Patches
	05_23.Richard_Thomas-Electro-Acoustic_Tools_High-Level_Abstractions_for_Audio_Manipulation_and_Spatialisation
	1  Introduction
	1.1  Progress in Usability
	2  Novel Patching
	3  Dynamic Object Management
	3.1  Why use dynamic techniques?
	3.1.1  Hardcoding
	3.1.2  switch
	3.1.3  Dollar and Hash Variables
	3.2  Native Dynamic Patching
	3.2.1  Object Creation
	3.2.2  [namecanvas
	3.2.3  Connections
	3.3  dyn
	3.3.1  Arguments and Message Inputs
	3.3.2  Workarounds and Patching Strategies
	3.3.3  dyn Wrapper
	4  Multi-point Panning
	4.1  Routing
	4.2  Algorithm
	5  Acknowledgements

	06_25.Kent_Jolly-Using_Pure_Data_in_Spore_and_Darkspore_-_successes_and_failures
	1  Introduction
	2  The EApd audio object Interface
	2.1  The Group and GroupSize Objects
	2.2  The Play and Dplay Objects
	2.2.1  Play and Dplay - the basics
	2.2.2  Play and Dplay - the arguments
	2.2.3  Play and Dplay - the parameters
	2.3  The Mixer Object
	2.4  The Fparam and GFparam Objects
	2.5  The Function Object
	2.6  The Coll Object
	2.7  The Thisinstance Object
	3  Exporting patches
	4  Functionality overlaps with Spore audio system
	5  Conclusion
	6  Acknowledgements

	07_02.José_Rafael_Subía_Valdez-Custom_Spatialisation_PD_Patch_for_a_Large_Non-conventional_Area
	1 
	2 
	2.1  Space as a poetic component, how to use it?
	2.2  Equal power panning
	2.3  The Equal Power Panning modifications 
	3  Pure Data implementation
	3.1  Equal Power Panning Program
	3.1.1  Panning Function, Creating, Storing  Reading
	3.1.2  Amplitude Control
	3.2  Doppler effect
	3.3  Reverberation  Depth
	4  Graphical User Interface (GUI)
	4.1  Position and Movement
	4.2  Oblique Movements
	5  Conclusion
	6  Acknowledgements

	08_33.Chun_Lee-Music_in_expression_-_A_DSP_based_compositional_methodology
	1  Introduction
	1.1  Motivation
	1.3  Musical context
	2  Operation examples
	2.1  Design principles
	2.2  Step counter
	2.3  Structure derivation
	2.4  Phase Shift
	2.5  Consitional test
	2.6  Pulse wave
	2.7  Compositional examples
	3  Conclusion

	09_30.Regis_Faria-AUDIENCE_for_Pd,_a_scene-oriented_library_for_spatial_audio
	1	Introduction
	2	System architecture
	2.1	Functional layers  
	3	System design and implementation
	3.1	Design premisses
	3.2	Development history
	3.3	Library organization 
	3.4	Features and library components
	3.4.1	Licenses
	3.4.2	Creating new objects
	3.5	How it works
	4	Usage
	4.1	Installation and licenses
	4.2	Building applications or how to use it
	4.3	 Application examples
	5	Next phases and conclusions

	10_35.Kyriakos_Tsoukalas-A_collaboration_workflow_from_sound-based_composition_to_performance_of_electroacoustic_music_using_«Pure_Data»_as_a_framework
	1 Introduction
	2 A workflow
	2.1 Composer's role
	2.1.1 Aesthetic criteria
	2.1.2 Music cognition
	2.1.3 Composition ideas
	2.1.4 Synthesis methods

	2.2 Engineer/programmer's role
	2.2.1 Hardware and software
	2.2.2 Synthesis engine

	2.3 Performer's role
	2.3.1 Control interface
	2.3.2 Sound

	2.4 Listener

	3 Performance of electroacoustic music
	3.1 Performance behavior

	4 PD graphical programming environment as asynchronous collaboration platform
	5 Conclusion
	6 Acknowledgements

	12_14.Miller_Puckette-Voice_as_joystick_and_oscillator
	1  Introduction
	2  Analysis
	3  Oscillators
	4  Delay network
	5  Conclusion
	6  References

	13_32.IOhannes_zmölnig-Plug_your_cam_-_extending_Gem_the_modular_way
	14_26.Peter_Brinkmann-Embedding_Pure_Data_with_libpd_Design_and_Workflow
	1 Introduction
	2 Overview
	3 Workflow
	4 Design decisions
	5 Language bindings
	6 Pd for Android
	7 Pd for iOS
	8 Pd for Processing
	9 Pd for OpenFrameworks
	10 Pd everywhere
	11 Outlook
	12 Acknowledgments
	Appendix: Sample code

	15_07.Alexandre_Porres-Dissonance_Model_Toolbox_in_Pure_Data
	16_19.Koray_Tahiroğlu-An_Exploration_on_Mobile_Interfaces_with_Adaptive_Mapping_Strategies_in_Pure_Data
	1  Introduction
	2  Section
	3  Section
	3.1  Subsection
	4  Section
	4.1  Subsection
	5  Conclusion
	6  Acknowledgements

	17_17.Adriano_Monteiro-A_Framework_for_Real-time_Instrumental_Sound_Segmentation_and_Labeling
	18_31.Frank_Barknecht-rj_-_abstractions_for_getting_things_done
	Introduction
	rj: Goals and restrictions
	Overview of the rj library
	Library Contents: Analysis
	Library Contents: Synths
	Library Contents: Effects
	Library Contents: GUIs
	Library Contents: Mappings
	Library Contents: Controllers
	Library Contents: Utilities

	Parameter Control and State Saving
	Sample Management
	Powerful Synthesizers
	Future work
	Acknowledgements

	19_20.Urban_Schlemmer-Reverb_Design
	1  Introduction
	2  Aesthetic Concepts
	2.1  Intelligibility
	2.2  Texture and Coloration
	3  Design Concepts
	3.1  Multistream Design
	3.2  Slope
	3.3  Modulation
	3.4  Nested vs. Parallel Structures
	3.5  Multichannel I/O
	4  The Reverberation Development Kit
	4.1  Key Features
	4.2  Example Design
	5  Conclusion
	6  Acknowledgements
	7  Appendix A
	8  Appendix B

	20_12.Aleš_Černý-VisualTracker_-_modular_pd_environment_for_sequencing_events_on_the_timeline
	 1  Introduction
	 2  VisualTracker environment (VTe)
	 2.1  Program location
	 2.2  User Interface
	 2.2.1  Control windows
	 2.2.2  Module_library window
	 2.2.3  Composition_timeline window
	 2.2.4  Loaded_Modules window

	 2.3  Sequencer
	 2.3.1  Sequence division
	 2.3.2  Tempo
	 2.3.3  Selection
	 2.3.4  Sequencer looping
	 2.3.5   Sequencer Controls   

	 2.4  Timeline
	 2.4.1  Module canvas position and manipulation
	 2.4.2  Composition time (horizontal grid division)
	 2.4.3  Tracks (vertical grid division)

	 2.5  Composition storage
	 2.5.1  Saving main VisualTracker abstraction
	 2.5.2  Storage system
	 2.5.3  Global values storage
	 2.5.3.1  [storge] abstraction arguments

	 2.5.4  Module values storage
	 2.5.4.1  [mstorge] abstraction arguments

	 2.5.5  External storage file
	 2.5.6  Auto save
	 2.5.7  Reload composition


	 3  Modules
	 3.1  Visualtracker connector
	 3.1.1  Module canvas
	 3.1.2  Single execution points
	 3.1.3  Multiplication
	 3.1.4  Module duration
	 3.1.4.1  no fit
	 3.1.4.2  fit to bars
	 3.1.4.3  fit to bpm

	 3.1.5  Creation bang

	 3.2  Sends/receives
	 3.2.1  Module receives
	 3.2.2  Module sends
	 3.2.1  Global receives

	 3.3  Initial module values
	 3.4  Module template
	 3.5  Basic Modules
	 3.5.1  [vt_bang]
	 3.5.2  [vt_toggle]
	 3.5.3  [vt_line]


	 4  Future development
	 5  Documentation
	 5.1  VisualTracker program
	 5.2  Module development

	 6  Releases
	 6.1  Program pack
	 6.2  Module pack

	 7  Licence
	 8  Conclusion
	 9  VisualTracker is regularly developed and tested for more than a year with the idea of cooperation and open source evolution with hope to attract pd fans and enthusiastic and tempt them to use VisualTracker as a platform for their experiments, extend the library of modules and come up with new ideas. The basic functions featured are already seen in proprietary software such as Ableton Live or ACID, but only in open source and 100% readable environment of Pd they can be really explored and used the way they were never used before.
	 10  Acknowledgements
	 11  References

	22_08.Rudi_Giot-Image_Processing_Algorithm_Optimization_with_CUDA_for_Pure_Data
	1	Introduction
	2	CUDA
	2.1	Architecture
	2.2	Programming
	3	CUDA integration inside Pure Data
	3.1	GEM Library
	3.2	CUDA integration inside GEM
	4	Results and performances
	5	Conclusion
	6	Acknowledgements

	23_24.Richard_Graham-A_Live_Performance_System_in_Pure_Data_Pitch_Contour_as_Figurative_Gesture
	A Live Performance System in Pure Data: Pitch Contour as Figurative Gesture
	1 Introduction
	2 Beyond Instrumental Convention
	2.1 Beyond MIDI Technology
	2.1.1 Hardware – The “Septar” Board
	2.1.2 Hierarchies in Auditory Scene Analysis
	4 Discussion
	6 Acknowledgements

	24_13.Charles_Henry-Graphics_processing_unit_audio_signals_processing_in_Pure_Data,_and_PDCUDA,_an_implementation_with_the_CUDA_runtime_API
	1	Introduction 
	1.1	GPU Computing
	1.2	Pure Data 
	2	Design of GPU Extensions
	2.1	Design Goals
	2.2	Usage Cases
	3	Implementation
	3.1	Extending the DSP State
	3.2	Separation Between Memory Spaces
	The symbol “cuda_dsp” is introduced in order to keep CUDA based routines separate from their host counterparts.  When canvas_dodsp runs for a given cucanvas, it finds all instances of objects from its gl_list with the symbol “cuda_dsp” and adds their ugens to the dspcontext.
	An existing class may then be extended to work with PdCUDA by adding an additional method, instead of adding an entirely new class for the same purpose.  In this scheme, there is no risk of mixture between memory spaces.
	3.3	User Interface
	User control over the application of CUDA routines needs to be handled at the canvas level.  This works within expected user interfaces presented by Pd and provides the user capability to control the coarseness of organizing CUDA based patches.  The symbol “cucanvas” is introduced for creating root level canvases.  The canvas (glist) data structure is extended by adding a gl_hascuda element.  The user interface also adds a subcanvas creation symbol “cu”.  
	It is possible to create subcanvases of any type within canvases of another type.  This is important for creating abstractions that are handled in the same way that Pd abstractions are commonly used.
	3.4	Modifications to Pd Code
	3.5	The PdCUDA API
	4	Conclusion
	Refrences

	25_29.Katja_Vetter-Pure_Data_implementation_of_an_ESS-based_impulse_response_acoustic_measurement_tool
	26_22.Peter_Venus-Extended_View_Toolkit
	1 Introduction
	2 Input processing
	2.1 Image stitching
	2.1.1 Problems
	2.1.2 Parallax error
	2.1.2 Lens distortion
	2.2 Stitching images using the toolkit
	3 Output processing
	3.1 Problems
	3.2 Video projection with GEM
	3.2.1 Straight projection
	3.2.2 Angular projection
	3.2.3 Multiple screens
	3.2.5 Soft-edging & overlap
	3.2.6 Multiple Projectors
	3.2.7 Curved screens
	3.2.8 Realtime Systems
	3.3 Immersive Media Environments
	4 Conclusion
	6 Acknowledgements

	27_04.João_Pais-Click_Tracker_PerformanceORcomposition_tool_for_metrically_complex_scores
	28_38.Edward_Kelly-Gemnotes/_A_Realtime_music_notation_system_for_pure_data
	29_34.William_Brent-DILIB_Control_Data_Parsing_for_Digital_Musical_Instrument_Design
	1  Motivation
	1.1  Introduction

	2  General Design
	3  DILib Components
	3.1  Laptop
	3.1.1  Continuity

	3.2  TouchOSC
	3.3  Wii Remote
	3.4  IR Blob Tracking
	3.5  reacTIVision & TuioHub
	3.6  OSCeleton

	4   Conclusion

	ende

