Music in expression - A DSP based compositional methodology.

Chun Lee
75 Bromfelde Road
London, UK, SW4 6PP
chun@gotol0.org

Abstract

Composing music in Pure Data, conventionally in-
volves the use of a discrete messaging system for
ryhthmic sequencing and audio rate signals for
sound synthesis. While such a combination serves
its purpose well and has its merits, the aim of this
paper will attempt to outline an alternative ap-
proach - using audio signals only for creating both
time related events and sound synthesis - and dis-
cuss various interesting factors which arise.

Keywords

DSP, Sequencing.

1 Introduction

Pure Data, as a programming environment for
music composition, can be described to contain
the following two components for its functional-
ity: a time-based discrete messaging system and
a DSP engine. This design is commonly shared
by many other programming languages which deal
with real-time audio signal processing. In Pure
Data, operations associated with metro and list
objects, as well as messages, signifies the charac-
teristic of the former domain. The latter, on the
other hand, can be realised in simple process in-
volving signal manipulation with *~ or +~ objects.

How did these two distinct types of systems
come into coexistence? Is it due to historical com-
puting hardware and software developments? Is it
to maximize and combine the benefits from each
individual domain? Is it simply a traditional artis-
tic tendency that sees music divided into its ab-
stract time-based structure and its real-time in-
terpretation?

Although the investigation into questions
above are not within the scope of this paper, it did
provide the starting point and initial challange: to
compose only using the DSP engine, without the
discrete messaging system.

!Such as list processing and manipulation.

1.1 Motivation

By removing the messaging system entirely,
several interesting properties can be observed.
First, it encourages a more minimalistic approach
in composition. In other words, instead of hav-
ing separate functional domains, only one remains.
Moreover, DSP procedures that can be used to
generate musical structure, as well as to synthe-
sise sound are often based on the same set of ob-
jects, thus further simplifying the necessary build-
ing blocks in composition. Additionally, all oper-
ations, be they structural control or sound syn-
thesis, are directly interchangeable, allowing easy
integration between one and another.

Although certain capabilities ! in the “discrete”
domain may or may not be fully implemented in a
pure DSP manner, the simplification gained would
likewise be uncertain to recreate with the conven-
tional approach. Therefore, it is necessary to point
out that replacing the messaging system would
never be the aim of this investigation; this paper
aims only to propose an alternative compositional
method with a possible potential.

Second, since the remaining operational do-
main is the DSP engine, this implies a degree of
inherent generality. In other words, different DSP
engine may vary in the technical implementation,
the behavior they produce, should be reliable and
fulfil its generic tasks. A chosen wave oscillator
would produce the correct and corresponding au-
dio signal, regardless of the environment. For ex-
ample, the methodology presented in this paper
have also been experimented in other languages
such as SuperCollider, and has behaved the same
way as in Pure Data. The effects of generality
would therefore suggest any derivative procedures
to be just as portable, as well as robust.

Finally, the continuous quality in signal do-
main creates many intriguing conceptual analo-
gies extending beyond its original context. The
method in which patterns and structures are de-
rived from audio signal, as well as being able to
directly feed these signals back to sound synthesis

closely resembles the principle of control voltage
and modulation found in analog modular synthe-
sizers. Moreover, the utilisation of pulse wave is
comparable to the basic functioning of digital in-
tegrated circuits. Whether or not these similari-
ties are scientifically sound or purely metaphorical,
they certainly do provide an additional dimension
for experimentation at the artistic level.

1.3 Musical context

Before any practical example is presented, it
is important to clarify the term “musical compo-
sition”. Depending on the genres of music being
made, their corresponding method of composition
can differ. In other words, certain types of compo-
sitional procedures suits particular kinds of music
better.

In this paper, “musical composition” refers to
music that is predominantly sequenced or rule
based, with a deterministic tonal outcome. Specif-
ically, the genre of “video game music” can be best
used to give it a concrete context. Apart from the
limited scope of investigation, as well as personal
preference, such a choice of genre also carries some
practical advantages.

The chosen type of music typically has very
distinct, well defined characteristics, which helps
to clearly outline, as well as constrain, the param-
eters for compositional experiments. Furthermore,
since sequencing is conventionally taken care of
by time-based messaging, and is an essential el-
ement in many types of music making, being able
to perform such a task in the DSP-only approach
would demonstrate the versatility of the proposed
method.

2 Operation examples
2.1 Design principles

In the following section, the DSP-only compo-
sitional method will be introduced with practical
examples. Details surrounding them will also be
highlighted and discussed.

Since sequencing is a vital component in the
composition of the chosen genre, the objectives of
experimentation are therefore primarily aimed to
address this issue. The design principles, in par-
ticular, can be defined below:

e To create discrete segments from a continu-
ous signal.

e To isolate or select certain segments within
the sequence they belong to.

e To place the chosen segments on desired
points in time.

Two simple mathematical functions are em-
ployed extensively to achieve the necessary out-
come; these are the floating-point remainder and
greatest integer. Both are utilised from the DSP
version of the expression object. They represent
expr” fmod($vl, 1) and expr” floor($vi,0)
repectively.

2.2 Step counter

It can be argued that step counting is one
of the most fundamental aspect in sequencing of
any type. Its task is to separate a given unit of
time into identifiable subdivisions. In a discrete
domain, this is typically implemented with a re-
curring event, triggering a accumulative variable,
which adds a constant value to it at each iteration.
While such an operation may seem intuitive, pro-
ducing the same effect with continuous audio rate
signal requires a slightly different approach.

In order to do so, a sawtooth wave is used as
a control signal, with its period representation the
duration in which consequent steps will be derived
from. This signal is first multiplied with the num-
ber of steps to be counted, then the value of the
greatest integer is taken from it. This results to
the counting of equal steps within one wavelength
of sawtooth wave.

The technique of using greatest integer repre-
sents a quick and simple way (see Figure 1) of ob-
taining an desired stepping signal. Typically, it
can be realised within one expression object in the
form of expr™ floor($vi*$v2, 0), where $vl is
the control signal and $v2 being the number of
steps in counting.

phasor- 1

|u'1-q~ E||

expr~ floor(Svl®Sw2, 0)

Figure 1: Step counting using floor function

Moreover, with additional arithmetic opera-
tions, its output can be transformed into other

variants of counting. However, due to its simplistic
nature, obvious limitations can be quickly identi-
fied.

In discrete counting, the triggering events can
easily be obtained and used for other process to
influence the output. For instance, these triggers
can first undergo certain probabilistic evaluations,
in order to determine the exact algorithmic be-
havior in the following iteration. Since the precise
moment at the beginning of each step cannot be
reliably isolated, the method in Figure 1 therefore
can not achieve this type of result.

To remedy this in the DSP sequencing, a dif-
ferent implementation needs to be devised. Still
relying on the phasor™ object as control signal,
one possible alternative design would be to use the
sample-and-hold (see Figure 2) function to extract
the falling edge of sawtooth wave, and utilise it for
any additional operation?.

E:pr- Ewlh s?iTl

B~ COUntc

<— pounting ocutput

Figure 2: Step counting using sample-and-hold
function

If such a method is to be adopted, its sur-
rounding issues should also be noted. First, the
wavelength of the control signal now signifies the
duration of each individual step, instead of the
entire counting cycle. Second, depending on the
implementation detail, a pair of DSP send” and
receive” objects may be used to act as the con-
duit to pass the “accumulative” counting signal
back into the samphold™ object. Although this
method has proven to work, it does so by exploit-
ing the feedback loop otherwise not permitted with

DSP objects. As a result, the delay introduced by
the send and receive objects may cause undesired
effect and needs to be taken into account. Lastly,
as it takes several objects to accomplish simple
sequencing, it often requires noticeably more, as
well as an elaborated setup to increase capability
and flexibility. In other words, the relationship be-
tween the effectiveness of the desired outcome and
the maintainable level of complexity in the patch
may work against each other.

When considering these implementations side
by side, their differences quickly become apparent.
While the “greatest integer” is fast to program,
with limited functionality, the “sample-and-hold”
alternative can be more cumbersome to realise, but
with possible flexibility to gain from. This contrast
between them, therefore, can be argued to demon-
strate the range of possibilities in DSP sequencing.
Depending on the goal of composition, one might
be more preferable than the other. In the context
of this paper, the former seemed more suitable,
as it allows a more rapid development and experi-
ment to emerge, which does not obstruct the focus
in composition.

There is one other method to produce sequen-
tial DSP signal involving the use of pulse wave. A
example of this will be covered in the later part of
this paper.

2.3 Structure derivation

The rhythmic system of any genre under the in-
fluence of western classical music theory is funda-
mentally based on subdivision. For example, a bar
of 4/4 measure consists of four quarter notes, each
of which can be further divided into two eighth
notes or four sixteenth notes. This segmentation
can continue to any arbitrary level according to
the compositional need. As the divisions are based
on whole number integer, the rhythmic system is
highly hierarchical and largely symmetrical. Fur-
thermore, the point of reference in subdivision can
arguably also be arbitrary. That is to say, it can
start at the level of one bar measure, or start at
the composition as a whole. In the latter case,
the top-down hierarchy of division can be seen as:
composition, sections, phrases, bars and beats. In
such a case, it is interesting to notice the possi-
ble crossover between subjective abstract “musical
structure” and objective concrete “rhythmic dura-
tion”.

To an extent, step counters can already pro-

2An example of this can be seen in Figure 6, where signal of random value is obtained

vide the means to materialise the multiple metric
levels required in composing rhythmic patterns. In
essence, sixteenth notes are counts of four against
one quarter note, or counts of sixteen in one 4/4
bar so on and so forth. Depending on the desired
effect, the “resolution” of counting may be scaled
accordingly. However, in order to produce the nec-
essary control signals that correspond to all the
possible levels of quantisation, being able to first
generate sawtooth wave at an arbitrary scale be-
comes imperative.

The floating-point remainder operation previ-
ously mentioned is employed to achieve this. The
reference signal representing the top-level unit to
be further divided is first multiplied with the sum
of subdivisions required, then the value of remain-
der module of 1 is taken from it. This results
in a sawtooth wave that is higher in frequency
than the original signal. While the expression ob-
ject can be adopted for this in the form of expr~
fmod ($vi*$v2, 1), where $vl is top-level signal
and $v2 represents the division scale(see Figure 3),
conventional DSP *~ and wrap™ object can also be
used.

phasor- 1

|Eiq~ E|

expr~ fmod(Svl%gwd, 1)

Figure 3: Control signal scaling using fmod func-
tion

By now, the parallel between step counting and
control signal derivation in the DSP only method
should become apparent. First, both operations
are based on the manipulation of exactly the same
signal. Second, They all require the same scalar
value, which defines the “resolution” of the end re-
sult. The only difference between the two, there-
fore, is the use of floating-point remainder and
greatest integer function.

This comparison may seem trivial at first, but
they may, however, have more subtle and intrigu-
ing implications. Because the same signal is used

to produce step counting and any derivative con-
trol signal, no matter how complex the sequenc-
ing operations become, it can always be traced
back to one single phasor™ object. As a result,
any modulation introduced to this top-level con-
trol signal can bring rapid, sometimes difficult to
predict changes to all its subsequent process. By
exploring, or exploiting, this property, it may re-
sult in a compositional structure which is highly
dynamic, flexible in global changes, as well as gen-
erating unusual effects. Moreover, besides being
used to perform tasks such as nested step count-
ing, the sub-divisional sawtooth signal can easily
be adapted to control other aspects of composition
or synthesis. For example, envelope can be derived
from sawtooth signal with its period duration cor-
responding to the sequencing steps of the same
level. To this end, musical structure and sound
synthesis becomes highly integrated.

While sub-dividing a sawtooth signal is sim-
ple in the given example, to reverse its result can
be problematic. In other words, to construct the
control signal at higher level from its divisible con-
stituents is much less an easy task. If the composi-
tional process begins with a single motif or phrase
pattern, the ability to switch between current and
a higher quantisation level is crucial. To solve this,
once a particular sequencing pattern is composed
and duplication is necessary for further composi-
tional development, the rate of its original control
signal can simply be decreased to reflect the new
working duration or metric level. In the instance
of replicating a pattern of eight notes twice, the
frequency of the original control signal needs to be
halved first, then depending on the context, the
scalier value for each notes in the pattern can be
doubled, or constructing a intermediate two steps
counting and signal division.

2.4 Phase Shift

In so far, sequencing has been restricted to
only allow patterns that consists of single dura-
tional units. If the step counter is set to represent
sixteenth of a bar measure, any resulting pattern
must contain only notes or rests of this duration.
As a result, sequencing patterns that have a differ-
ent quantisation value than the step counter it re-
lies on would not be possible. Musically speaking,
attempting to place an eighth note on the rhyth-
mic grid of sixteenth note is prohibited.

To combat this, the technique of phase shift-
ing could be employed. By offsetting the phase of

sawtooth wave, it becomes feasible to move sub-
sequent sequencing steps to any arbitrary position
within the wave cycle of the control signal. Once
again, the floating-point remainder is involved to
modify the phase of a given signal. It takes the
form of expr~ fmod($vi+$v2, 1), where $vl is
the control signal and $v2 signifies the amount of
phase to change(see Figure 4).

phasor- 1

|Eiq~ D-EE|

1)

expr~ fmod($vl+5vd,

Figure 4: Phase shifting with fmod function

It is worth noting that since the control sig-
nal governs the sequencing of patterns, the mu-
sical context of shifting its phase can produce a
syncopated, or upbeat effect. Therefore, the term
“phase” used here may be better considered mu-
sically, rather than its common synthesis context.
Similarly, the wave length of the controlling saw-
tooth signal can be thought to represent a musical
phrase or loop.

To demonstrate this, assuming a counter is set
up with a range of eight steps, and the modulo
of 2 is taken from its result to switch the ampli-
tude of a given oscillator on and off. While keep-
ing this steady rhythmic pulse to continue, repli-
cating the same process but with an added shift
in the counter’s control signal by one sixteenth of
its wave length will create the simple syncopation
mentioned above(see Figure 5).

phasor-~ 0.25|sig~ 8

r- floor [sﬂ\iﬂ. o)

N

Figure 5: Phase shifting syncopation

As much as utilising the phase position is use-
ful to vary the quantisation level in sequencing,
some care must be taken to avoid any undesired
effect. One of the main concerns is that, if both
the original and shifted version of the sawtooth
wave are used by further compositional or synthe-
sis procedure, these signals may have issues in syn-
chronization. As the wave period is offset, if new
operation is triggered by the falling edge of an un-
shifted sawtooth cycle, it may abruptly end the
process derived from shifted control signal. Con-
sequently, attention needs to be invested to ensure
the change in operation occurs safely for all control
signals, regardless of their phase position.

2.5 Conditional test

Having the ability to produce sequential counts
of varying quantisation value, as well as their cor-
responding sawtooth signal, the remaining task
is to shape these elements into musical patterns.
Two types of simple functions are predominantly
involved to accomplish this: modulo operator and
conditional comparison.

The main goal of using conditional comparison
is to select or target specific elements within the
counting series. Moreover, although more labour
intensive, it may also be employed to transform
one set of values to another, which can not be eas-
ily derived arithmetically. In the former case, a
typical scenario would consist of targeting the last

repeating phrase for different pattern treatment
to achieve the “break”. The latter, can be used
to map a count of eight into relative MIDI values
for “white notes” of one octave, thus being able to
compose diatonically.

This operation can take the form of expr~”
if ($vi==$v2, $v3, $v4) in expression object,
where $v1 is the signal to be tested, $v2 represents
the value to target, $v3 and $v4 are the actions
to be taken when the comparison returns true or
false. If $vl is a loop counter in steps of four, by
having $v2 with a value of 3, it would be possible
to mix two separate patterns received on $v3 and
$v4, thus having a loop fed into $v3 acting as the
break(see Figure 6).

Sample—and-hold counting

=~ Sount

Erpru if (§vl==3,
cenditiocnal cutput

gw2d, Svl)

Figure 6: Using If statement to mix two counting
signals

Value mapping, on the other hand,
depends on nested if statement in form
of expr™ if($vi==0, $v2, if($vi==1, $v3,
if ($vi==2, $v4, $v5))). In the above expres-
sion, a count of four is mapped to values held by
$v2, $v3, $v4 and $v5 respectively. The painstak-
ing nature in devising such type of statement is
obvious. Because of this, for a larger set of map-
ping, it would be more efficient to use a table,
rather than using tabread” to retrieve the neces-
sary value. However, the effect nested statement
should not be overlooked, especially since each of
the predicates, consequent and alternative, can

be taken from modulated signals which are typi-
cally more dynamic than a simple repetitive pat-
With experimentation, nested statement
can often result to surprising compositional ef-
fects, whilst maintaining a reasonable degree of
clarity in implementation.

tern.

The modulo operator can also be used to de-
rive musical patterns from a counting signal. With
the previous example demonstrating syncopation,
a stepping signal manipulated by modulo of 2,
controls the amplitude gate of an oscillator thus
producing simple rhythmic pulses. While a single
modulo operator can only achieve very limited ef-
fects, the result of putting it in series one after is
anything but the same. Thus, if a given count-
ing has the range of 8 steps, by initially putting it
through a modulo of 5, then again with modulo of
3 would generate a rhythmic pattern which has the
accents displaced in the mixed groups of 3 and 2.
Furthermore, if the value of divisor is modulated,
the effect may become highly dynamic.

In expression object, modulo operation takes
the form of expr™ $v1%$v2, where $vl1 is the con-
trol counting, and $v2 is the divisor value. Addi-
tionally, as described above, if the intention is to
“gate” a particular audio signal, a simple if state-
ment which turns step 0 into 1 and all the remain-
ing steps into 0 would be necessary.

2.6 Pulse wave

Ultimately, sequencing can be described as the
ability to produce series of musical events, which
may be perceived independently, as well as hav-
ing common aspects responding to changes in time
as a whole. In a passage of short melody, both
discrete notes and their changes in pitch may be
heard. In a rhythmic pattern, each single beat can
be individually identified, as well as the changes
in their duration in comparison to one another. In
short, “notes” and “beats” are the discrete events,
whereas “pitch” and “duration” are the common
time varying relative properties they possess.

To a large extent, the combination of the pre-
viously mentioned techniques aims to enable such
ability. By having a step counter, a measure-
ment of time is first broken down to distinguish-
able parts. Through the process of conditional
statement, modulo operator or even modulation,
musical context can be assigned to these sub com-
ponents. These assignments can be made in the
frequency, amplitude or again, in the time domain.

There is, however, another approach em-

ployed to produce the effect of sequencing. Bor-
rowed from pulse-width modulation(PWM), dis-
crete events can also be obtained, with time vary-
ing characteristics. In doing so, it relieves the need
to be predominantly dependent on the step count-
ing , as well as bringing forth other challenging and
interesting aspects in the DSP only compositional
method.

Keeping the same convention of using a saw-
tooth oscillator as control signal, a pulse wave
must therefore first be generated. To this end, a
conditional statement can be employed once more
to accomplish this(see Figure 7). By passing a
sawtooth signal through the expression of expr~
if ($vi>$v2, 1, 0), a pulse wave of variable duty
cycle can be delivered. In the above statement,
$v1 represents the control signal, and $v2 repre-
sents the percentage of duty cycle. Since $v1 has
a range between 0 and 1, 0.5 in $v2 would yield
equal proportion in both the on and off state of
pulse wave. Moreover, depending on the context
of the resulting wave, the alternative in the if state-
ment may hold the value of -1 or 0 for audio and
control signal respectively.

phasocr- 1

Erpr- if(§vi=sv2, 1, 0}

Pulse wawve output

Figure 7: Pulse wave of 50 percent duty cycle

To demonstrate a simple case of “sequencing”
using pulse-width modulation, the following con-
figuration can be devised(see Figure 8). A con-
trol signal is connected to both a if statement, ex-
actly same the one mentioned above, as well as fed
through a floating-point remainder operation to
scale up its initial frequency. The sub-divisional
sawtooth signal is then used in place of the $v2
variable of the if expression. This results to the
percentage of the duty cycle being modulated over
time. To hear the effect of this, one can simply
connect the PWM output to a signal multiplica-
tion object to switch the amplitude of an audio
oscillator on and off. In addition, PWM signal

can also be used as the trigger of sample-and-hold
function, in turn to produce sequence of values
that changes according to the inherent order re-
siding in the modulation.

phasor~ 1

expr~ fmod(5v1*§v2, 1}—|
e e
expr~ if (§vl>5v2, 1, IZI}_|

<— PHM

exgr~ floocr(Svl®a, D}%E%Ell
pitch pattern with nested modulo
exgjr~ (§v1*50)+50|

eeer]

[exdr~ if(sviz0.5, 1, -1)]

Figure 8: Amplitude gate using PWM

Compare to sequencing which relies solely on
step counting, in pulse-width modulation it is gen-
erally harder to gain precise control over the ex-
act musical pattern desired. With this in mind,
PWM based method can be more spontaneous and
responsive to variations in the properties of con-
trol signal. Such playful characteristics are par-
ticularly well suited for a certain type of composi-
tional approach. Furthermore, pulse-width mod-
ulation also has great application in sound syn-
thesis. Thus, the potential of using the same tech-
nique to both govern the musical structure, as well
as sound generation, further generalises the type
of compositional approach that can be achieved in
the DSP domain only.

2.7 Compositional examples

Until now, the fundamental building blocks of
the proposed methodology have been individually
introduced and discussed. To provide a more com-
prehensive understanding, a series of compositions
have been made exclusively with the above men-
tioned techniques. They not only serve as demon-

strations, but also as opportunities to further ex-
plore its possible capability and limitations.

These compositions have been released in April
2011 by Gosub10?, an Internet based music label
derived from the GOTO10* collective. In the form
of an extended play, under the title of “expr™, it
is hosted by the Internet Archive®, under Free Art
license. Moreover, it is also the first musical re-
lease by the “0xA” collaboration, originally a group
of artists making audio/visual performances using
Pure Data. The source patches with which these
compositions are generated from are also included
in the releaseS.

3 Conclusion

The feasibility of composing within the digital
signal domain should hopefully now be evident. To
arrive at the diversity in compositional tasks from
a selected few common operations, can potentially
be beneficial in terms of simplifying, as well as
consolidating the necessary programming vocabu-
lary and idioms. Most importantly, bringing the
arrangements of musical structure and sound syn-
thesis procedures together, with interchangeable
operations, contributes to the unique attribute in
this alternative framework. Even though certain
aspects of its implementation may initially seem
counter intuitive, once familiarized, they can lead
to a rapid and flexible way of development.

However, several issues remain unaddressed
due to the scope of this investigation. First, the ac-
curacy of synchronizing multiple signals with the
same control source at the sample level has not
been objectively tested. While the precision in the
musical outcome has been empirically sufficient, it

®http://gosubl0.org
*http://gotol10.org
Shttp://www.archive.org/details/GOSUB10-004

should not be taken as proof to guarantee the sam-
ple level accuracy. Second, the influence and re-
sistance in changes of DSP engine’s sampling rate,
as well as other related parameters, are not en-
tirely clear. Lastly, the performance comparison
between the DSP-only and conventional method
should also be examined.

Leaving these issues aside, other possible
compositional applications utilising the proposed
methodology still deserve further experimenta-
tion. Although the musical examples found in the
“expr”” release only make use of simple synthesis
techniques as means of sound production, there is
no reason to assume that the same process can not
be applied to the structuring and manipulation of
sampled sounds. Moreover, depending on the aes-
thetic tolerance, it can even be employed in the
context of live coding. To this end, the author
had produced several performances to specifically
explore this possibility, and a variety of feedback
was received.

In addition, the outlined methods were devel-
oped independently and to a large degree in an
isolated circumstance. In other words, the knowl-
edge demonstrated here was gained from practi-
cal experience, rather than through rigorous re-
search. Hence, subsequent work should seek for
an existing formal body of studies, to better con-
textualise given experiments, but also deepen the
understanding of the subject.

This paper has hopefully brought forth an in-
teresting alternative approach to composing music
in Pure Data. Future works should be expected to
address the drawbacks and problematic areas, but
also further explore and extend its potential pos-
sibility.

®The source patches can also be obtained from https://gitorious.org/0xa/expr_ep

	1 Introduction
	1.1 Motivation
	1.3 Musical context
	2 Operation examples
	2.1 Design principles
	2.2 Step counter
	2.3 Structure derivation
	2.4 Phase Shift
	2.5 Consitional test
	2.6 Pulse wave
	2.7 Compositional examples
	3 Conclusion

