
GEMNOTES: A REALTIME MUSIC NOTATION SYSTEM FOR PURE DATA

Dr Edward Kelly

11 Spenser Road

London SE24 0NS

morph_2016@yahoo.co.uk

ABSTRACT

This paper describes a system of realtime music notation
using TrueType fonts (TTFs), running in the Graphics
Environment for Multimedia (GEM) in the Pure Data
computer music environment (PD). The system makes
use of dynamic object creation in PD to create
subpatches linked to a stave object, so that custom made
abstractions for notes, rests, tempo marks, barlines and
time signatures are added to the patch on-the-fly to
create a visual score.

INTRODUCTION

The origins of this system derive from attempts in
previous decades by the author to contrive an effective
system for the creation of automated systems for musical
score presentation. The first of these was a continuous
sheet of acetate with a graphic vocal score 7 metres long
printed on it, to be scrolled by hand ocross the screen of
an overhead projector (Te Deum, 1997). Five further
scores were created in a form of proportional
polyrhythmic notation devised by the author (see Kelly,
2005) and a prototype system for displaying scrolling
scores was created in 2001 at the University of East
Anglia using Max. However, the use of bitmaps and the
refresh rate of the graphics resulted in a jerky display
that was hard to read. These scores originate as fixed
scores designed on paper, but the idea of a live notation
system based on fonts was considered to offer a degree
of flexibility with material that is often found in
electronic music that could be applied to instrumental
music, such as generative scores, aleatoric structure and
feedback between the performer (or ensemble) and
computer. The preliminary result of this enquiry is the
Gemnotes system, which takes as its input a simple score
language to render a score from visual objects in live
performance. A further consideration is that this system
may be used with the Pd-extended distribution without
modification, so that instrumental musicians do not need
to understand complex computing issues such as
compilation of source code in order to use a score patch.

OPEN FONT-BASED NOTATION OBJECTS

Although the search for a usable font began in 2003, the
publication of the Open Font License specification (SIL,
2005) created an open-source framework for TTFs, and

the MusiQwik font (Allgeyer, 2007) was adapted for use
with PD by the author soon afterwards. Certain ASCII
codes are forbidden in PD ({, }, \) and the font has been
adapted so that essential glyphs are moved from these
locations, and augmented with tails for hemidemi- and
demi-semiquavers. These are rendered using the [text3d]
object in GEM.

DYNAMIC NOTATION OBJECT CREATION

Figure 1: The dynamic object creation messages for the
creation of notes, and connection of notes together into

beamed groups. Objects 0,1 and 2 are the inlets and
outlets of the [$0-voice] subwindow (see below).

Objects for rendering notes and other notation elements
are instances of PD abstractions created within a
subpatch of the [makevoice] abstraction. This object
sends object-creation commands (figure 1) to a [$0-
voice] subwindow within a [$0-canvas] subwindow,
whereby notation abstractions may be linked to a stave
abstraction(s) outside [makevoice], so that their positions
may be organised relative to the stave. The reason for the
nested subwindows is so that connections to the outside
world may be destroyed and remade. [makevoice] also
connects groups of notes together into beamed groups,
and the beam angles and positions are worked out by
linking certain outlets and inlets of the [noteobject]
abstraction together (figure 2), whereby trigonometry is
automatically used to fix these values. The system is
clocked so that additional notes added to the group on-
the-fly change the beam orientations and positions,
although future versions will attempt to eliminate this
clocking to reduce CPU load.
Objects are automatically connected to the stave object
by [makevoice], and their positions are worked out
relative to the stave: the vertical position of a notehead is
worked out from a MIDI note number, and the type of
accidental by a creation argument for each [noteobject].
Each stave therefore has a system of [noteobject], [tsig]
(time signature), [rest] and [tempo] abstractions

� à

ËO)#�Ê�+���Â-,#-+ÁÂ-�
;#ÁN�)�Æ�É#)ÈÁ-�Æ�����

connected to it, which are the rendered score elements.

Figure 2: Abstractions are automatically connected
together (top-left) to create a beamed group (bottom-

right)

A Hard-Coded Musical Structure Object

[makevoice] contains the gemnotes_counter object - an
external written in C that handles the creation and
linking together of notation elements. With a system as
complex as this it became clear that a single object was
needed to handle the beamgroups, bars and the creation
index of each object. The creation of beamed groups of
notes on the fly, linking all objects to a stave abstraction,
and ensuring that elements are horizontally spaced
correctly are handled by this object. It is essentially a set
of nested counters, and is presently capable of handling
polyrhythmic note durations and user-defined groupings
of notes within a bar, the automatic placement of
barlines, tempo marks and time signatures.
Since this object handles the placing and index of each
notation object, the introduction of new notation objects
requires a certain amount of rewriting of the code,
although graphical objects can be added to the GEM
window outside of the [makevoice] structure. Imminent
additions include dynamic marks, and articulation.

SCORE LANGUAGE AND TRANSLATION

Minimal Text Score Notation

The Gemnotes system translates a text-based score
language (figure 3) into rendered notation elements on a
stave. One of the design goals of the Gemnotes system
was to keep the text-based score language as simple as
possible. There are a number of commlands that set the
bar (and time signature if different from the last) note
and tempo elements. Dynamics are the next feature to be
implemented graphically, but the score language already
contains MIDI velocities that may be interpreted as
dynamics and articulation elements. The second reason
for creating a minimal score language is that it make the
process of real-time linking with pitch detectors etc, or
translation of MIDI files much easier. To this end, a
further set of objects has been created – polyquant that
quantizes inter-onset times and durations with optional
polyrhythmic complexity, and gemnotes_barcount

which generates gemnotes scores from MIDI input. Note
commands are formatted as a list: [“note” position
duration pitch flat/sharp(0/1) velocity(. Work is
underway to link together these two processes, so that
music notation can be rendered directly from live input.

Figure 3: A section of a Gemnotes score. The bar
commands also set the group lengths and note values for

beam groups. A “+” means “next note” whereas a “.”
means it is a chord with the previous note.

Figure 4: A complete line of notation.

CONCLUSION: NOTES ABOUT A SCORE

This system provides a basis for live score rendering
using PD and Gem. A benefit of the system in question
is that the material presented to the performer as a score
can be re-interpreted in the electronic processing of the
performer's audio, and may be reorganised
indeterminately during performance. Scores may be
created with a number of outcomes, or material may be
arranged in a non-sequential manner using multiple
staves for process music, or for stimulating
improvisation, and the same pitches and rhythms used to
set effect or playback parameters for a concurrent audio
patch. Future aims are to integrate more notation
elements, and to make the system less CPU-intensive.
Also, live re-interpretation of material should be possible
by directly rendering the output from a [fiddle~]-based
pitch tracker for monophonic instruments.

REFERENCES

Kelly, E. Time in Music, Strategies for Engagement,

PhD Thesis, 2005, University of East Anglia,
Norwich, UK.

SIL International. Open Font License (OFL),

http://www.sil.org/ 2005
Allgeyer, R. MusiQwik,

http://cg.scs.carleton.ca/~luc/allgeyer/allgeyer.html,
2007

� �

ËO)#�Ê�+���Â-,#-+ÁÂ-�
;#ÁN�)�Æ�É#)ÈÁ-�Æ�����

http://www.sil.org/
http://cg.scs.carleton.ca/~luc/allgeyer/allgeyer.html

	anfang.pdf
	01_40.Krzysztof_Czaja-Self-replication_-_how_to_do_more_using_less
	1 Introduction
	2 Section
	2.1 Subsection
	2.2 Subsection
	2.3 Subsection

	3 Section
	3.1 Subsection
	3.2 Subsection
	3.3 Section

	4 Section
	5 Section

	02_11.Marco_Donnarumma-A_Pd_framework_for_the_Xth_Sense-enabling_computers_to_sense_human_kinetic_behaviour
	1	Computers that sense and act
	2	Tools of interaction
	2.1	The Xth Sense library
	3	The GUI
	3.1 	Software anatomy
	3.2	Usability concerns
	4	Interrelating kinetic behaviour with musical performance
	4.1	Performance and design principles

	4.2	MMG features extraction
	4.3	Dynamic data mapping
	4.3.1	Chordless, dynamic data mapping with [sssad] and [iem_s]
	4.4	Mapping kinetic energy to control data
	5	Conclusions

	03_03.Pedro_Lopes__Joaquim_Jorge-Dynamic_Time_Warping_for_Pure_Data
	04_39.Mathieu_Bouchard-Self-Modifying_Help_Patches
	05_23.Richard_Thomas-Electro-Acoustic_Tools_High-Level_Abstractions_for_Audio_Manipulation_and_Spatialisation
	1 Introduction
	1.1 Progress in Usability
	2 Novel Patching
	3 Dynamic Object Management
	3.1 Why use dynamic techniques?
	3.1.1 Hardcoding
	3.1.2 switch
	3.1.3 Dollar and Hash Variables
	3.2 Native Dynamic Patching
	3.2.1 Object Creation
	3.2.2 [namecanvas
	3.2.3 Connections
	3.3 dyn
	3.3.1 Arguments and Message Inputs
	3.3.2 Workarounds and Patching Strategies
	3.3.3 dyn Wrapper
	4 Multi-point Panning
	4.1 Routing
	4.2 Algorithm
	5 Acknowledgements

	06_25.Kent_Jolly-Using_Pure_Data_in_Spore_and_Darkspore_-_successes_and_failures
	1 Introduction
	2 The EApd audio object Interface
	2.1 The Group and GroupSize Objects
	2.2 The Play and Dplay Objects
	2.2.1 Play and Dplay - the basics
	2.2.2 Play and Dplay - the arguments
	2.2.3 Play and Dplay - the parameters
	2.3 The Mixer Object
	2.4 The Fparam and GFparam Objects
	2.5 The Function Object
	2.6 The Coll Object
	2.7 The Thisinstance Object
	3 Exporting patches
	4 Functionality overlaps with Spore audio system
	5 Conclusion
	6 Acknowledgements

	07_02.José_Rafael_Subía_Valdez-Custom_Spatialisation_PD_Patch_for_a_Large_Non-conventional_Area
	1
	2
	2.1 Space as a poetic component, how to use it?
	2.2 Equal power panning
	2.3 The Equal Power Panning modifications
	3 Pure Data implementation
	3.1 Equal Power Panning Program
	3.1.1 Panning Function, Creating, Storing Reading
	3.1.2 Amplitude Control
	3.2 Doppler effect
	3.3 Reverberation Depth
	4 Graphical User Interface (GUI)
	4.1 Position and Movement
	4.2 Oblique Movements
	5 Conclusion
	6 Acknowledgements

	08_33.Chun_Lee-Music_in_expression_-_A_DSP_based_compositional_methodology
	1 Introduction
	1.1 Motivation
	1.3 Musical context
	2 Operation examples
	2.1 Design principles
	2.2 Step counter
	2.3 Structure derivation
	2.4 Phase Shift
	2.5 Consitional test
	2.6 Pulse wave
	2.7 Compositional examples
	3 Conclusion

	09_30.Regis_Faria-AUDIENCE_for_Pd,_a_scene-oriented_library_for_spatial_audio
	1	Introduction
	2	System architecture
	2.1	Functional layers
	3	System design and implementation
	3.1	Design premisses
	3.2	Development history
	3.3	Library organization
	3.4	Features and library components
	3.4.1	Licenses
	3.4.2	Creating new objects
	3.5	How it works
	4	Usage
	4.1	Installation and licenses
	4.2	Building applications or how to use it
	4.3	 Application examples
	5	Next phases and conclusions

	10_35.Kyriakos_Tsoukalas-A_collaboration_workflow_from_sound-based_composition_to_performance_of_electroacoustic_music_using_«Pure_Data»_as_a_framework
	1 Introduction
	2 A workflow
	2.1 Composer's role
	2.1.1 Aesthetic criteria
	2.1.2 Music cognition
	2.1.3 Composition ideas
	2.1.4 Synthesis methods

	2.2 Engineer/programmer's role
	2.2.1 Hardware and software
	2.2.2 Synthesis engine

	2.3 Performer's role
	2.3.1 Control interface
	2.3.2 Sound

	2.4 Listener

	3 Performance of electroacoustic music
	3.1 Performance behavior

	4 PD graphical programming environment as asynchronous collaboration platform
	5 Conclusion
	6 Acknowledgements

	12_14.Miller_Puckette-Voice_as_joystick_and_oscillator
	1 Introduction
	2 Analysis
	3 Oscillators
	4 Delay network
	5 Conclusion
	6 References

	13_32.IOhannes_zmölnig-Plug_your_cam_-_extending_Gem_the_modular_way
	14_26.Peter_Brinkmann-Embedding_Pure_Data_with_libpd_Design_and_Workflow
	1 Introduction
	2 Overview
	3 Workflow
	4 Design decisions
	5 Language bindings
	6 Pd for Android
	7 Pd for iOS
	8 Pd for Processing
	9 Pd for OpenFrameworks
	10 Pd everywhere
	11 Outlook
	12 Acknowledgments
	Appendix: Sample code

	15_07.Alexandre_Porres-Dissonance_Model_Toolbox_in_Pure_Data
	16_19.Koray_Tahiroğlu-An_Exploration_on_Mobile_Interfaces_with_Adaptive_Mapping_Strategies_in_Pure_Data
	1 Introduction
	2 Section
	3 Section
	3.1 Subsection
	4 Section
	4.1 Subsection
	5 Conclusion
	6 Acknowledgements

	17_17.Adriano_Monteiro-A_Framework_for_Real-time_Instrumental_Sound_Segmentation_and_Labeling
	18_31.Frank_Barknecht-rj_-_abstractions_for_getting_things_done
	Introduction
	rj: Goals and restrictions
	Overview of the rj library
	Library Contents: Analysis
	Library Contents: Synths
	Library Contents: Effects
	Library Contents: GUIs
	Library Contents: Mappings
	Library Contents: Controllers
	Library Contents: Utilities

	Parameter Control and State Saving
	Sample Management
	Powerful Synthesizers
	Future work
	Acknowledgements

	19_20.Urban_Schlemmer-Reverb_Design
	1 Introduction
	2 Aesthetic Concepts
	2.1 Intelligibility
	2.2 Texture and Coloration
	3 Design Concepts
	3.1 Multistream Design
	3.2 Slope
	3.3 Modulation
	3.4 Nested vs. Parallel Structures
	3.5 Multichannel I/O
	4 The Reverberation Development Kit
	4.1 Key Features
	4.2 Example Design
	5 Conclusion
	6 Acknowledgements
	7 Appendix A
	8 Appendix B

	20_12.Aleš_Černý-VisualTracker_-_modular_pd_environment_for_sequencing_events_on_the_timeline
	 1 Introduction
	 2 VisualTracker environment (VTe)
	 2.1 Program location
	 2.2 User Interface
	 2.2.1 Control windows
	 2.2.2 Module_library window
	 2.2.3 Composition_timeline window
	 2.2.4 Loaded_Modules window

	 2.3 Sequencer
	 2.3.1 Sequence division
	 2.3.2 Tempo
	 2.3.3 Selection
	 2.3.4 Sequencer looping
	 2.3.5 Sequencer Controls

	 2.4 Timeline
	 2.4.1 Module canvas position and manipulation
	 2.4.2 Composition time (horizontal grid division)
	 2.4.3 Tracks (vertical grid division)

	 2.5 Composition storage
	 2.5.1 Saving main VisualTracker abstraction
	 2.5.2 Storage system
	 2.5.3 Global values storage
	 2.5.3.1 [storge] abstraction arguments

	 2.5.4 Module values storage
	 2.5.4.1 [mstorge] abstraction arguments

	 2.5.5 External storage file
	 2.5.6 Auto save
	 2.5.7 Reload composition

	 3 Modules
	 3.1 Visualtracker connector
	 3.1.1 Module canvas
	 3.1.2 Single execution points
	 3.1.3 Multiplication
	 3.1.4 Module duration
	 3.1.4.1 no fit
	 3.1.4.2 fit to bars
	 3.1.4.3 fit to bpm

	 3.1.5 Creation bang

	 3.2 Sends/receives
	 3.2.1 Module receives
	 3.2.2 Module sends
	 3.2.1 Global receives

	 3.3 Initial module values
	 3.4 Module template
	 3.5 Basic Modules
	 3.5.1 [vt_bang]
	 3.5.2 [vt_toggle]
	 3.5.3 [vt_line]

	 4 Future development
	 5 Documentation
	 5.1 VisualTracker program
	 5.2 Module development

	 6 Releases
	 6.1 Program pack
	 6.2 Module pack

	 7 Licence
	 8 Conclusion
	 9 VisualTracker is regularly developed and tested for more than a year with the idea of cooperation and open source evolution with hope to attract pd fans and enthusiastic and tempt them to use VisualTracker as a platform for their experiments, extend the library of modules and come up with new ideas. The basic functions featured are already seen in proprietary software such as Ableton Live or ACID, but only in open source and 100% readable environment of Pd they can be really explored and used the way they were never used before.
	 10 Acknowledgements
	 11 References

	22_08.Rudi_Giot-Image_Processing_Algorithm_Optimization_with_CUDA_for_Pure_Data
	1	Introduction
	2	CUDA
	2.1	Architecture
	2.2	Programming
	3	CUDA integration inside Pure Data
	3.1	GEM Library
	3.2	CUDA integration inside GEM
	4	Results and performances
	5	Conclusion
	6	Acknowledgements

	23_24.Richard_Graham-A_Live_Performance_System_in_Pure_Data_Pitch_Contour_as_Figurative_Gesture
	A Live Performance System in Pure Data: Pitch Contour as Figurative Gesture
	1 Introduction
	2 Beyond Instrumental Convention
	2.1 Beyond MIDI Technology
	2.1.1 Hardware – The “Septar” Board
	2.1.2 Hierarchies in Auditory Scene Analysis
	4 Discussion
	6 Acknowledgements

	24_13.Charles_Henry-Graphics_processing_unit_audio_signals_processing_in_Pure_Data,_and_PDCUDA,_an_implementation_with_the_CUDA_runtime_API
	1	Introduction
	1.1	GPU Computing
	1.2	Pure Data
	2	Design of GPU Extensions
	2.1	Design Goals
	2.2	Usage Cases
	3	Implementation
	3.1	Extending the DSP State
	3.2	Separation Between Memory Spaces
	The symbol “cuda_dsp” is introduced in order to keep CUDA based routines separate from their host counterparts. When canvas_dodsp runs for a given cucanvas, it finds all instances of objects from its gl_list with the symbol “cuda_dsp” and adds their ugens to the dspcontext.
	An existing class may then be extended to work with PdCUDA by adding an additional method, instead of adding an entirely new class for the same purpose. In this scheme, there is no risk of mixture between memory spaces.
	3.3	User Interface
	User control over the application of CUDA routines needs to be handled at the canvas level. This works within expected user interfaces presented by Pd and provides the user capability to control the coarseness of organizing CUDA based patches. The symbol “cucanvas” is introduced for creating root level canvases. The canvas (glist) data structure is extended by adding a gl_hascuda element. The user interface also adds a subcanvas creation symbol “cu”.
	It is possible to create subcanvases of any type within canvases of another type. This is important for creating abstractions that are handled in the same way that Pd abstractions are commonly used.
	3.4	Modifications to Pd Code
	3.5	The PdCUDA API
	4	Conclusion
	Refrences

	25_29.Katja_Vetter-Pure_Data_implementation_of_an_ESS-based_impulse_response_acoustic_measurement_tool
	26_22.Peter_Venus-Extended_View_Toolkit
	1 Introduction
	2 Input processing
	2.1 Image stitching
	2.1.1 Problems
	2.1.2 Parallax error
	2.1.2 Lens distortion
	2.2 Stitching images using the toolkit
	3 Output processing
	3.1 Problems
	3.2 Video projection with GEM
	3.2.1 Straight projection
	3.2.2 Angular projection
	3.2.3 Multiple screens
	3.2.5 Soft-edging & overlap
	3.2.6 Multiple Projectors
	3.2.7 Curved screens
	3.2.8 Realtime Systems
	3.3 Immersive Media Environments
	4 Conclusion
	6 Acknowledgements

	27_04.João_Pais-Click_Tracker_PerformanceORcomposition_tool_for_metrically_complex_scores
	28_38.Edward_Kelly-Gemnotes/_A_Realtime_music_notation_system_for_pure_data
	29_34.William_Brent-DILIB_Control_Data_Parsing_for_Digital_Musical_Instrument_Design
	1 Motivation
	1.1 Introduction

	2 General Design
	3 DILib Components
	3.1 Laptop
	3.1.1 Continuity

	3.2 TouchOSC
	3.3 Wii Remote
	3.4 IR Blob Tracking
	3.5 reacTIVision & TuioHub
	3.6 OSCeleton

	4 Conclusion

	ende

