
Electro-Acoustic Tools
High-Level Abstractions for Audio Manipulation and Spatialisation

Richard Thomas
School of Music

University of Leeds
UK, LS2 9JT

Abstract

This paper introduces Electro-Acoustic Tools
(EAT), a new set of abstractions for composition
and diffusion that are currently under development
in Pure Data Extended (Pd). EAT is accessible
for preliminary educative use, but it also embraces
the advanced functionality that Pd can provide for
digital signal processing (DSP) effects and spatial-
isation. EAT has a modular architecture with in-
stance specific MIDI and parameter preset func-
tionality to drive open ended applications. EAT
may be differentiated from pre-existing abstrac-
tion packages by its accessibility, dynamic patch-
ing, and flexible multi-point panning behaviours,
which are the primary focus of the discussion here.

An earlier version of this paper was published
in the conference proceedings of the 4th Interna-
tional Pd Convention convened 8–12 August 2011
at Bauhaus-Universität and Hochschule für Musik
Franz Liszt in Weimar, Germany [1].

Keywords

Abstractions, spatialisation, dynamic, dyn∼,
tools.

Download EAT

You can download the latest EAT package from
http://sourceforge.net/projects/eatpuredata/

Formatting Conventions

These formatting conventions are observed here:

Pd objects, externals, and abstractions are repre-
sented thusly: [object].

Pd messages are represented thusly: [message(.

Connections between Pd objects with left-to-right
data flow are represented by an intervening em
dash thusly: [message(—[object].

1 Introduction

There are a multitude of external and abstraction
packages that are freely available for Pd. Many of
them provide larger common building blocks from
which complex applications may be built more
quickly than through ad hoc solutions. Some ab-
stractions are self-contained applications and have
been provided with reduced GUIs for the end user
via Pd’s graph-on-parent (GOP) function. Ar-
guably, the interfaces of existing abstractions and
their accompanying documentation, if any, are
often not particularly intuitive for inexperienced
programmers. The EAT package aims to bridge
the gap for novices to graphical programming en-
vironments and to bring original patching archi-
tectures and GUIs to Pd abstractions. Exclud-
ing the numerous lower level development abstrac-
tions, there are currently ten user friendly EAT
abstractions for composition and spatialisation:

• [EAT_Audiofile∼]

• [EAT_Delay∼]

• [EAT_Highpass∼]

• [EAT_Lowpass∼]

• [EAT_MatrixMix∼]

• [EAT_MexicanWave∼]

• [EAT_Mix∼]

• [EAT_Record∼]

• [EAT_Reverb∼]

• [EAT_Transport]

• [EAT] (shell)

1.1 Education

Excellent progress has been made of late to flatten
what for many can be steep learning curve working
in Pd; the tutorials of Dr Rafael Hernandez, the
multi-authored Floss Manual, and Johannes Krei-
dler’s Loadbang may be considered of particular

note in this regard [2, 3, 4]. Although not intended
as a manual, Andy Farnell’s Designing Sound con-
tains an excellent introduction to programming in
Pd and includes many example patches that pro-
vide some very practical solutions [5]. The offi-
cial distributions of Pd and Pd-extended would
benefit from a direct menu hyperlink to the Floss
resource. EAT may help similarly to ingratiate
Pd to novice users on a practical level, providing
substantial DSP rewards for engaging with some
of the program’s basic conventions, including ob-
jects, control and signal connections, and argu-
ments. EAT represents a preliminary tool for edu-
cators to teach DSP without proprietary software
and provides opportunities to investigate more ad-
vanced Pd techniques at a latter stage of tuition.

1.2 Differentiating EAT

EAT was designed with generic and modular struc-
tures that are independent of a centralised ab-
straction. HID control via MIDI learn and control
functions sets EAT apart from comparable appli-
cations; in combination with its decentralised state
saving facilities, EAT provides a superior environ-
ment for real-time interfacing.

EAT’s ease of integration into conventional
patching structures will help to engender a famil-
iarity with the flexibility of graphical programming
in Pd and demonstrate an alternative to the se-
quencing and mixing styles of higher level pack-
ages (like Audacity or Ardour). Although EAT
adds an extra syntactical requirement of an iden-
tity tag for instantiation, it provides the facility
for multiple state saves outside of a housing ab-
straction – adding flexibility and efficiency over
alternative applications.

1.3 Progress in Usability

Usability and accessibility will be some of the
key features of the EAT abstractions. Since this
project has only recently been released to the Pd
community for testing (2 August 2011), it is too
early to make any concrete assertions about EAT’s
usability. Developing accessible abstractions for
EAT has required focus on areas including, but
not limited to: on-screen links to help files, text
help files, graphical help files using GEM to ex-
plain the GUI, consistent use of familiar font types,
high contrast interfaces, simple syntax, and palat-
able data representation and parameter controls.
Amongst its other objectives, EAT aims to make
complex DSP available to novice users. These ar-
eas are key to this type of development, but the
most beneficial information will be feedback from
end users.

2 Novel Patching

The EAT modules provide functionality in well
trodden areas for abstractions: sound file play-
back, DSP effects, and panning. All modules are
equipped with integrated MIDI-learn and param-
eter preset functionality, with data written to text
files and globally recalled via delocalised sends
from a coordinating abstraction. EAT contributes
a unique approach to abstraction design in three
principal areas: accessibility, efficiency and flexi-
bility, and multi-point panning.

Pd’s GUI objects are widely used in EAT to
create accessible and homogenous GOP interfaces
across all modules (see Fig. 1–9, below). A lim-
ited palette of black, turquoise, grey, and coral
was used to create the main GUIs for EAT. The
turquoise on black colour scheme was implemented
to provide a sense of familiarity to a novice audi-
ence, who are used to displays found in consumer
electronics such as compact disc players and per-
sonal hi-fi systems. Coral was used occasionally
because it contrasts well with the core palette of
turquoise, grey, and black. Using black control
targets on a light turquoise background improves
visual performance and is subjectively preferable
to end users [8]. The continuity and clarity of in-
terface found in EAT is as enticing for the first
time user as it is crucial in establishing conven-
tions of functionality and user interaction [9].

EAT uses dynamic patching, discussed in-
depth here, to provide efficiency and flexibility of
DSP by creating multi-monophonic modules of be-
tween one and thirteen channels. This approach to
abstraction design also reduces the labour required
to create new multi-monophonic modules and the
EAT modules may be considered easily extensi-
ble in this regard. EAT also takes advantage of
a previous project conducted by this author that
aspired to create a comprehensive Pd environment
for basic diffusion, DSP effects, and complex pan-
ning behaviours. The key piece of development in
the earlier project, a variable sine panning func-
tion, has come to prominence here with newly de-
veloped features in the EAT panning behaviours,
discussed later.

3 Dynamic Object Management

Dynamic object management is broadly over-
looked in most Pd documentation. It is a subject
that occasionally comes to light in lists and fo-
rum activity, but has hitherto been an area lacking
thorough documentation. Where audio tools are
required to dynamically alter their constitution,
developers have tended to shy away from using
Pd in favour of other programming environments,

due to fears over stability and audio drop-outs.
This paper demonstrates that, in the scenarios pre-
sented here, these fears are largely unfounded.

3.1 Why use dynamic techniques?

EAT was conceived with the intention of providing
the user with multi-monophonic effects (see Fig.
10, below). The dynamic creation of objects is
done during instantiation in response to abstrac-
tion creation arguments. Creating objects in Pd

when audio processing is enabled is often feared to
cause audio drop-outs, but experiments conducted
during this project encountered no such occur-
rences – with the exception of abstraction creation.
With large EAT modules, where several hundred
abstractions are nested within, there could be a
DSP drop-out of several seconds. It is expected
that all modules would be loaded before commenc-
ing performance; dynamic object creation involv-
ing abstractions is not suitable for on-the-fly per-
formances where drop-outs are unworkable.

Fi
g.

 1
: E

AT
_A

ud
io

fil
e~

 w
ith

 n
o

fil
e

lo
ad

ed
.

Fi
g.

 2
: E

AT
_L

ow
pa

ss
~

w
ith

 1
3

ch
an

ne
ls

 o
f 1

0-
po

le
 fi

lte
rs

.

Fi
g.

 3
: E

AT
_M

ex
ic

an
w

av
e~

.

Fi
g.

 4
: E

AT
_M

ex
ic

an
w

av
e~

 >
 A

D
V,

 1
2x

12
 m

at
rix

 m
ix

er
.

Fi
g.

 5
: E

AT
_M

ix
~.

Fi
g.

 6
: E

AT
_R

ec
or

d~
.

Fi
g.

 7
: E

AT
_R

ev
er

b~
.

Fi
g.

 8
: E

AT
_R

ev
er

b~
 >

 A
D

V.

Fi
g.

 9
: M

ID
I L

ea
rn

 a
nd

 C
on

tro
l m

en
u

in
 E

AT
_M

at
rix

m
ix

~

EAT_Delay~

EAT_Delay-advanced

EAT_Delay-GUI

EAT_delay~-help

EAT_delay-help-image

EAT_delay-help-text

EATi_dynwrapper~

EATi_delay~

EATi_MIDICCMONO

EATi_MIDILC

EAT_Transport EATi_demultiplex_channelsPreset Storage

Fig. 10: An abstraction of the structure of multi-monophonic DSP effects in EAT using
[EAT_Delay∼] as the example.

3.1.1 Hardcoding

Producing hardcoded multichannel variations of
every DSP effect contained in EAT would create a
substantially bigger abstraction package and make
the abstraction creation arguments less intuitive.
The general atom format for the creation EAT
modules is [EAT_Effect∼ ID_tag n -channels],
e.g. [EAT_Delay∼ vocals 13].

3.1.2 [switch∼]

Maintaining the syntax, the same end may be
achieved by using the [switch∼] object inside the
mono effects patches. [switch∼] may be toggled
to turn digital signal processing on or off for that
patch and any sub-patch or abstract descendants
contained within. The disadvantage of this tech-
nique is that the GUI will contain obsolete control
elements for disabled channels that will still draw
on the computer’s resources and will not always re-
semble the active functionality of the patch. With
dynamic object management, GUI objects can be
made to appear, disappear, and change their form,
which is useful for modular multichannel systems
like EAT; parameters of multi-monophonic EAT
modules are replicated across all channels, but the
maximum number of channels are not always in-
stantiated.

3.1.3 Dollar and Hash Variables

The creation arguments of EAT modules are inher-
ited by nested abstractions using $n arguments.
EAT parameter controls use the in-built send and
receive properties of Pd’s GUI objects to inherit
instance names and channel numbers. There is
a need to clarify the nature of these arguments in
different situations. In object boxes, $n arguments
inherit the housing abstraction’s creation argu-
ments, with the exception of the local $0 counter.

In GUI property sends or receives, $n argu-
ments only work at the start of the name (e.g. $0-
Oramics); at other positions in the name, a hash
symbol must be used (e.g. Oramics-#0, see Fig.
11. With $n > 0 arguments, the $ is automatically
substituted for # accordingly, but it is important
to be aware of the variation as a matter of course.
Note that this discussion has no bearing on dollar
signs used in messages, which are message time
variables that have nothing to do with object ar-
guments.1

3.2 Native Dynamic Patching

3.2.1 Object Creation

Objects, including abstractions, can be created
by sending the appropriate message to a patcher
via the special ‘pd’ target, which is not to
be confused with the ‘pd’ prefix used for sub-
patches, e.g. [;pd-mypatcher.pd obj 30 350

1
Cf. Miller Puckette’s Pd manual for clarification of the difference between $ arguments in objects and messages [10].

metro 1000(. This is identified as the newer,
correct method for addressing a given patcher in
namecanvas-help.pd. The older verbatim method,
using a separate message and receive object, pro-
vides the same facility, e.g. [obj 30 350 metro

1000(—[s pd-mypatcher.pd].

Fig. 11: GUI Properties Window.

3.2.2 [namecanvas]

In earlier Pd releases, this system for address-
ing patchers could only be achieved using the
[namecanvas] object, which despite its inclusion
in the current release has long since been de-
clared obsolete in help-intro.pd. [namecanvas]

allows the user to address its containing patcher
via an alias provided by an argument, such as
[namecanvas Matthews], where the object cre-
ation message to the canvas could be [; Matthews

obj 21 4 max 2011(. The [namecanvas] alias
may also include the unique $0 counter.

Although antiquated, [namecanvas] remains
a uniquely important tool in the Pd library.
When there is a need to identify individual in-
stances of abstractions—EAT requires this facil-
ity for instance specific MIDI CC and parameter
preset recall and dynamic object management—
[namecanvas] is the only solution. [namecanvas]
must be used within the abstraction to create an
alias containing the $0 counter, which prevents

cross-talk between abstraction instances. There
is currently no alternative method for achieving
the same result via the global ‘pd’ target, since
the canvas of an instance cannot be targeted us-
ing an abstraction’s creation arguments. The rec-
ommendation must be made that the status of
[namecanvas] as obsolete should be revised in fu-
ture Pd distributions, until an alternative facility
can be provided.

3.2.3 Connections

When making inlet and outlet connections, the
objects are referred to sequentially according to
the order in which they were created in the patch,
numbering from zero. Object inlets and outlets are
referred to sequentially in left-to-right order, again
numbering from zero, e.g. [; pd-mypatcher.pd

connect 3 0 2 1(, which would connect the first
outlet of the fourth object created to the second
inlet of the third object created.

It is plain to anticipate the difficulties one en-
counters with dynamic patches where more than a
few objects are required; the order of object cre-
ation quickly becomes unfathomable. When one
also considers the circuitous method for the re-
moval of objects, imitating cursor selection and
cutting, native dynamic object management rep-
resents an arduous prospect of trial and error. Cut
and paste editing also affects the order of object
creation, which does not improve the method any.
A bug exists under 0.42.5-extended, when connec-
tions are made using the above method within an
abstraction at initiation time, ghosts of the patch
cords appear on the root canvas. One method
to reduce the difficulties encountered with expan-
sive dynamic patches is to house groups of ob-
jects within dynamically created sub-patches, but
this is still far from ideal. The finest solution has
been provided by Thomas Grill with his external
[dyn∼].

3.3 [dyn∼]

Thomas Grill’s [dyn∼] external provides a much
more comfortable facility for dynamic object man-
agement. It allows the user to assign identifying
(ID) tags to new Pd objects, bypassing the diffi-
culty of object indexing by order of creation that is
encountered with the native technique. [dyn∼] is
not without its own set of difficulties and idiosyn-
crasies, some of which might seem rather damning
given its intended functionality, but these can be
overcome with careful management.

3.3.1 Arguments and Message Inputs

[dyn∼] takes four integer arguments: signal in-
lets, control message inlets, signal outputs, and
control message outputs. All object creation and
connection messages are sent to the left-most in-
let, which conspicuously appears as a signal in-
let. All objects are created within the external’s
self-contained canvas. The [dyn∼] canvas can
be opened and closed using the Boolean [vis n (
message, which would be [vis 1(to open or [vis
0(to close.

Objects are created on the [dyn∼] root
canvas, denoted by the dot, using the mes-
sage format [newobj . ID_tag object_name

argument_1 argument_2...(, e.g. [newobj .

thunderous pipe 1000(. The ID tag assigned to
the object, here assigned ‘thunderous’, allows you
to control the specific object instance using fur-
ther messages sent to the far-left inlet of [dyn∼].
The method of message creation is similar, using
the message format [newmsg . ID_tag content

content...(, e.g. [newmsg . PH flush(.
[dyn∼] inlets and outlets are numbered

from left-to-right, starting from zero, in the
same manner as the native method. Connec-
tions are made by sending the message [conn

ID_tag outlet_number ID_tag inlet_number(,
e.g. [conn PH 0 thunderous 0(, which in this
example would connect the first outlet of [flush(
to the first inlet of [pipe 1000] on the [dyn∼]

root canvas. This is a much simpler and more intu-
itive process than the native dynamic connection
technique. To delete an object the message format
is [del ID_tag(. To clear all objects and connec-
tions the message is [reset(. To re-instantiate all
objects and connections the message is [reload(,
but this functionality does not seem to have been
implemented fully at the time of writing.2

3.3.2 Workarounds and Patching Strategies

As mentioned in Grill’s 2004 paper on [dyn∼], the
signal inlets do not work [11]. This would appear
to sideline the external somewhat for use in dy-
namic audio environments. Greg Hynds suggested
a workaround that uses the facility that [dyn∼]

provides for object creation to solve the issue
[12]. If the user first creates audio receives inside
[dyn∼], then audio can be sent to them remotely.
The minor difficulty with this workaround —when
creating a set number of audio channels at instan-
tiation as is the case with EAT— is that the user

must then dynamically create sends in [dyn∼]’s
enclosing patcher, which must be done natively.
Similarly, there is no GOP functionality for the
[dyn∼] canvas and therefore the GUI elements of
effects for EAT had to be created separately, again
using the native method.

Although abstraction arguments are inher-
ited into the [dyn∼] canvas, it is not pos-
sible to parse the $ symbol into newly cre-
ated objects since this is replaced at mes-
sage time. Dollar variables should be ex-
panded before the creation message is sent to
[dyn∼], e.g. [bang(—[symbol $3]—[newobj .

chorus.$1 my_chorus∼(—[dyn∼ 0 4 2 3].

3.3.3 [EATi_dynwrapper∼]

The [EATi_dynwrapper∼] abstraction, as the
name suggests, is a wrapper for [dyn∼] that
aides the creation of multi-monophonic effects of
up to thirteen channels (see Fig. 12). The
wrapper could be adjusted to generate an infi-
nite number of effects channels, limited only by
the host’s resources. A limit of thirteen chan-
nels was imposed to streamline the EAT modules’
capabilities and appearance and to prevent acci-
dental syntax errors that might hang the system.
The wrapper takes three arguments in the for-
mat [EATi_dynwrapper∼ mono_fx_name ID_tag

n -channels]. Inside EAT modules, of course,
the second and third arguments would be inher-
ited from the parent using dollar variables, since
the wrapper would be nested within the main ab-
straction that contains the GOP GUI.

There are thirteen inlets and outlets that have
sends and receives dynamically created inside and
outside [dyn∼] and then connected depending on
the wrapper’s third argument (see Fig. 13). The
wrapper is connected up to thirteen channels in-
side its parent, but it only creates the guts for the
number of channels required (see the monophonic
DSP effects created inside [dyn∼] in Fig. 14).
This permits the instantiation of a single abstrac-
tion for between one and thirteen channels depend-
ing on the arguments provided. The DSP effects
are created with channel numbers and the unique
ID inherited from the parent abstraction, which
complete the dot delimited sends and receives in-
side the effects (see Fig. 15). It is not clear from
Grill’s paper what processes are duplicated using
[dyn∼] for this purpose, but preliminary testing
suggests that it is an efficient solution.3

2[dyn∼] version 0.1.2 tested under OS X 10.6.7.
3
There is scope for a formal study of the effects of dynamic patching on DSP across different systems and workloads.

Fig. 12: [EAT_Delay∼ Unique_ID 13].

Fig. 13: [EATi_dynwrapper∼ EATi_Delay∼ $1 $2] nested within [EAT_Delay∼ Unique_ID 13].

Fig. 14: [dyn∼] canvas within [EATi_dynwrapper∼ EATi_Delay∼ $1 $2].

Fig. 15: [dyn∼] canvas within [EATi_dynwrapper∼ EATi_Delay∼ $1 $2].4

4
The workaround in Fig. 15 uses [loadbang] to send [float 0] to [*∼], since it was discovered that [*∼] would

cease to function without it. The reason for this error is unknown, but the workaround is successful.

4 Multi-point Panning

[EAT_MexicanWave∼] was the first panning mod-
ule developed as part of the EAT toolkit. It takes
advantage of sine waves, in a similar manner to
equal power panning, in order to produce a vari-
able window width.

4.1 Routing

In order to facilitate a dynamic input to output
ratio of audio channels, an output channel num-
ber can be set by a creation argument between
1–12 (giving 2–13 channels, since channel 13 is re-
served for a subwoofer signal that is always ac-
tive, but not subject to the same type of gain con-
trol). The distribution of input channels to out-
put channels could be handled externally, using
the [EAT_MatrixMix∼] module or an alternative
ad hoc solution, but a 12x12 matrix mixer was
integrated into a sub-menu with a default one-to-
one input-to-output routing to provide more au-
tonomous flexibility.

4.2 Algorithm

A complete cosine wave varies between 1 and −1
over a period of 2π. The intention of the algorithm
is to reproduce a cosine wave over the available
channels to create a Mexican wave panning be-
haviour. The cosine wave is stretched to a period
equal to the required number of output channels,
determined by the abstraction’s third creation ar-
gument, by dividing the input to the cosine argu-
ment by the third creation argument. The out-
put of the algorithm needs to be within a use-
ful range of between 0 and 1, which is achieved
by halving the output of the cosine (changing the
range from −1 to 1 into −0.5 to 0.5) and adding
0.5 to then shift the wave into the ideal 0 to 1
range. Where y = channel gain control value,
variable x = x-coordinate on wave ramping be-
tween (channel number) and (channel number+v)
at a frequency of between −10Hz and 10Hz, and
v = total number of channels, the following equa-
tion represents a complete implementation of a
sine wave panning algorithm5 (see Fig. 16, below):
y = 1

2
cos(x 2π

v
) + 0.5

In order to extend the functionality provided
by Resound, the system developed by Dr David
Moore and Dr James Mooney that inspired this
module, a variable to allow a customisable sine
window was inserted [13]. The cosine range needed
to be altered by a positive variable (u) so that it
varied sinusoidally between the lowest fixed point
defined by (u−2)

u
(with a deepest trough of −65 2

3
where u = 0.03, and maximum of 0.98 where

u = 100) and a constant peak of 1. The output
range reduction (previously 1

2
) becomes 1

u
and the

position compensation (previously +0.5) becomes
(u−1)

u
to bring the maximum wave value to 1, giv-

ing: y = 1
u
cos(x 2π

v
) + (u−1)

u
To prevent negative values from being dis-

tributed to input-to-output attenuators (where
u < 2), a max function is included to en-
sure the output value never falls below 0. 2π
is pre-calculated and the u variable factored
out to give the implemented formula: y =
max(1

u
(cos(x 6.283185

v
)− 1) + 1, 0)

This formula was implemented us-
ing a tidy Pd expression, where x =
$f1, v = $f2, and u = $f3: [expr

max((cos($f1*(6.283185/$f2))-1)/$f3+1,

0)] (see Fig. 17, below). This provides a si-
nusoidal wave that can be attenuated by varying
u to achieve a subtle variation of gain between
channels (see Fig. 18, below), or a sharp pan be-
tween individual channels (see Fig. 19, below).
Further modules, with multiple or complex waves
for instance, could be developed quickly and easily
using this algorithm as a starting point.

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Fig. 16:
y = max(1u(cos(x

6.283185
v)−1)+1, 0), u = 2, v = 12

Fig. 17: [EATi_cosfunction∼ $2 1 $0 $1]

within [EAT_Mexicanwave∼ Unique_ID 12].

5
When u = 2 the function illustrated in Fig. 1 provides the same output as the function shown here.

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Fig. 18:
y = max(1u(cos(x

6.283185
v)− 1) + 1, 0)

u = 10, v = 12

1 2 3 4 5 6 7 8 9 10 11 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Fig. 19:
y = max(1u(cos(x

6.283185
v)− 1) + 1, 0)

u = 0.5, v = 12

5 Testing EAT

EAT comprises a diverse set of modular tools that
all use similar syntax for instantiation and have lu-
cid documentation in the form of two help files per
module and a ‘README’ available to download
online; there is little additional instruction for test-
ing that would prove EAT’s intended functional-
ity, since the aim of the tools is to fulfil open-ended
compositional applications. However, the step-by-
step guide below will instruct some basic use of
EAT. This guide assumes that you have installed
Pd-extended v0.42.5 on your system successfully.

1. Download the current version of EAT for
your operating system.

2. Unpack the contents to your Pd plug-ins
folder: Pd-extended > Contents > Re-
sources > extra.

3. Run Pd-extended.

4. Identify the EAT folder that contains the
plug-ins in the menu under Pd > Preferences
> Path.

5. Open a new patch.

6. Save it in a new folder (keeping it in a sepa-
rate folder keeps all the preset files together).

7. Enable DSP.

8. Create an object box.

9. Create [EAT_Audiofile∼] using the
README arguments in the object box, e.g.
[EAT_Audiofile∼ playback].

10. Load an audio file in [EAT_Audiofile∼] by
clicking ‘OPEN’ and selecting a compatible
sound file (WAV is fine).

11. Create a [dac∼] object.

12. Connect the active outlets of [EAT_Audiofile∼]

(denoted by green ticks) to the [dac∼] ob-
ject.

13. Click ‘PLAY’ in [EAT_Audiofile∼]. You
may want to adjust the volume using the
slider on the right of the module.

14. Now create [EAT_Delay∼] – check the
README for arguments.

15. Connect it between [EAT_Audiofile∼] and
the [dac∼] object and experiment with the
parameters in the ‘ADV’ panel.

16. Connect and configure a MIDI controller.

17. Enter the ‘MIDI’ panel on the front of
[EAT_Delay∼].

18. Click the ‘ML’ and ‘MC’ toggles on next to
one of the parameters, then move an appro-
priate fader, knob, or switch on your MIDI
controller.

19. You should then be able to control that pa-
rameter with the MIDI controller you just
moved and the ‘ML’ toggle will have auto-
matically cleared.

20. Set some more MIDI control parameters and
alter parameter values using MIDI control as
in the previous two steps.

21. Create [EAT_Transport] or click the link at
the bottom of any EAT MIDI window. Try
saving some parameter and MIDI presets.

22. Alter your MIDI control and parameter
settings again. Save another preset in
[EAT_Transport] and try toggling between
them using the ‘LOAD’ buttons.

23. Create some other EAT modules, described
in the README, and experiment by altering
their positions and parameters. Try saving
some more presets and explore some more
MIDI control options.

6 Further Research

This project has made practical headway into the
provision of accessible and efficient DSP modules
in Pure Data. Although readily extensible, the
modules would benefit from more homogenous ar-
chitectures of nested abstractions and argument
inheritance. Further attempts should be made to
extract the current patcher name to customise pre-
set file names and reduce hardcoding within send
and receive names. Similarly, the help documen-
tation, despite being reasonably comprehensive in
terms of content, could benefit from restructur-
ing according to self-modifying rules and meth-
ods. This would make the help documentation
easily imitable and bring it in line with the de-
sirable convention proposed by Mathieu Bouchard
[14]. Following this core framework development,
the EAT modules should be expanded using the
PdLive! abstractions as a foundation.

The EAT modules could be adapted and opti-
mised for inclusion in Aleš Černý’s Visual Tracker
application. Visual Tracker is constructed with ex-
cellent sequencing and storage architectures, but
this should not become the sole vehicle for EAT.
Visual Tracker is arguably not as flexible as EAT
for general patching, state saving, or provision of
HID control, and it would not encourage users of
higher level sequencers (such as Ardour or Audac-
ity) to engage with Pd conventions or to learn DSP
techniques.

Future projects could investigate the poten-
tial of Processing to provide an efficient OSC in-
terface for EAT. Alternatively, new native inter-
faces could be developed for EAT modules using
advanced graphics to mask GUI objects. The dis-
course on dynamic patching natively and using ex-
ternals would benefit from a formal study of the ef-
fects of dynamic object management on DSP con-
sistency and CPU/GPU resources.

7 Acknowledgements

My thanks go to James Mooney and David G.
Thomas to both of whom I am indebted for their
generous advice and support during this project.
I would also like to thank Thomas Grill, Hans-
Christoph Steiner, Thomas Musil, and Miller
Puckette whose work has greatly benefitted this
project.

References

[1] Thomas, R., ‘Electro-Acoustic Tools (EAT):
High-Level Abstractions for Audio Manipula-
tion and Spatialisation’, in Proceedings of the

4th International Pd Convention, 2011, pp.
31–35.

[2] Hernandez, R., ‘Pure Data’
[Playlist], YouTube, 2011. Available:
http://youtube.com/user/cheetomoskeeto

[3] Holzer, D. et al, Pure Data, 2011. Available:
http://en.flossmanuals.net/pure-data

[4] Kreidler, J., Loadbang, trans. by Mark Bar-
den. Hofheim: Wolke Verlag, 2009. Available:
http://pd-tutorial.com

[5] Farnell, A., Designing Sound. Cam-
bridge, MA: MIT, 2009. Excerpt available:
http://aspress.co.uk/ds/pdf/pd_intro.pdf

[6] Recoules, B., PdLive!, 2011. Available:
http://code.google.com/p/pdlive/

[7] Černý, A., ‘VisualTracker – Modular Pd En-
vironment for sequencing events on the time-
line’, in Proceedings of the 4th International
Pd Convention, 2011, pp. 123–131.

[8] Kong-King, S. and Chin-Chiuan, L., ‘Ef-
fects of Screen Type, Ambient Illumination,
and Color Combination on VDT Visual Per-
formance and Subjective Preference’, in In-
ternational Journal of Industrial Ergonomics
26(5), Elsevier, 2000, pp. 527–536.

[9] Galitz, W., The Essential Guide to User In-
terface Design, 2nd edn. New York: Wiley,
2002.

[10] Puckette, M., Pd Documentation, 2011. Avail-
able: http://crca.ucsd.edu/∼msp/

[11] Grill, T., ‘Dyn: Dynamic Object Man-
agement’, in Proceedings of the 1st Inter-
national Pd Convention, 2004. Available:
http://download.puredata.info/convention04/

[12] Hynds, G., ‘Dyn∼ Object for Pure Data’.
Available: http://konkanok.com/page/10/

[13] Mooney, J. and Moore, D., ‘Resound: A
Design-Led Approach to the Problem of Live
Multi-Loudspeaker Sound Spatialisation’, in
Proceedings of the RMA Annual Conference,
2008. Available: http://james-mooney.co.uk

[14] Bouchard, M., ‘Self-Modifying Help Patches’,
in Proceedings of the 4th International Pd
Convention, 2011, pp. 26–30.

	1 Introduction
	1.1 Education
	1.2 Differentiating EAT
	1.3 Progress in Usability
	2 Novel Patching
	3 Dynamic Object Management
	3.1 Why use dynamic techniques?
	3.1.1 Hardcoding
	3.1.2 switch
	3.1.3 Dollar and Hash Variables
	3.2 Native Dynamic Patching
	3.2.1 Object Creation
	3.2.2 [namecanvas
	3.2.3 Connections
	3.3 dyn
	3.3.1 Arguments and Message Inputs
	3.3.2 Workarounds and Patching Strategies
	3.3.3 EATi_dynwrapper
	4 Multi-point Panning
	4.1 Routing
	4.2 Algorithm
	5 Testing EAT
	6 Further Research
	7 Acknowledgements

