
DILib: Control Data Parsing for Digital Musical Instrument Design

William Brent
American University

4400 Massachusetts Ave NW
Washington DC, USA
w@williambrent.com

Abstract

The Digital Instrument Library (DILib) for Pure
Data is a set of abstractions and externals that
were developed for a course on digital musical in-
strument design. DILib is intended to streamline
the process of realizing musical instruments that
make use of built-in laptop hardware, accelerom-
eters, infrared fingertip tracking, full body track-
ing, multitouch surfaces, and other control data
streams. In addition to providing convenience, the
library’s components are designed to establish a
level of standardization with respect to the var-
ied methods for obtaining sensor data from widely
available hardware.

Keywords

Instruments, controllers, sensors, interfaces

1 Motivation

The number of viable options for physical con-
trol over digital synthesis processes has grown
tremendously in recent years. Alongside custom-
built hardware controllers, several types of com-
mercially available technologies are being used for
this purpose as well. These include multitouch sur-
faces like the iPad, and an array of hardware orig-
inally developed for use with video games, such as
Nintendo’s Wii remote, the Sony PS3eye camera,
and Microsoft’s Kinect sensor. In addition to be-
ing relatively inexpensive, this technology has the
advantage of providing sophisticated sensor data
in a standardized format. For a geographically
dispersed community of digital artists, standard-
ization and accessibility are often critical.

To complement this widely available hardware,
there is a need for a Pure Data library that parses
the associated data streams to further improve ac-
cessibility and ease of use. Such tools are very im-
portant for remote collaborations in general, but
they are particularly needed for digital musical in-
strument design—a field in which the creator of an
instrument is often its sole performer. Streamlin-

ing the process of obtaining sensor data will facil-
itate the further development and widespread use
of instruments shared by the Pd community.

1.1 Introduction

This paper describes the Digital Instrument Li-
brary (DILib) for Pure Data, a collection of ab-
stractions and external objects that were devel-
oped for a course on digital instrument design in
the Audio Technology program at American Uni-
versity. DILib is available under the GNU GPL,
and is intended to aid in realizing instruments that
make use of built-in laptop hardware, accelerome-
ters, infrared fingertip tracking, full body tracking,
multitouch surfaces, and other sources of control
data. Each library component parses and routes
its data to specified send symbols to be easily re-
ceived and applied by users. In some cases, raw
sensor data is also interpreted and normalized be-
fore being transmitted.

DILib will be maintained on a long term basis
with the intent of providing designers of new dig-
ital musical instruments a stable means of access-
ing data from an ever-increasing number of control
sources.

2 General Design

DILib currently contains abstractions to han-
dle data reported by laptop sensors, Wii remotes,
TouchOSC, infrared blob tracking, reacTIVision,
and OSCeleton (for the Kinect sensor). The com-
ponents of DILib do not obtain sensor data them-
selves. Rather, the purpose of the library is
to parse and manage data as it arrives from a
source. For example, the computer vision soft-
ware known as reacTIVision [2]—used for the re-
acTable interface—streams a great deal of data to
Pd. Management of the coordinates, rotation, and
speed of fiducial markers as reported by reacTIVi-
sion (as well as the distances between these mark-
ers and other relational data) is a considerable task

in itself. DILib provides tools that dramatically
simplify such issues.

DILib is intended to be used cross-platform,
and many of its components will be useful on
Linux, Macintosh, and Windows. For most data
sources, DILib’s abstractions provide parsed data
via carefully chosen symbolic send names, which
are listed in separate text files for reference. Some
library components, like that for the Wii remote,
provide multiple abstractions specific to the plat-
form or additional software being used. In such
cases, the goal is to provide any particular piece
of data via the same send symbol regardless of the
software or platform in use. Thus, digital instru-
ment patches can be designed more generally and
separate from these types of details. Users can
employ the abstraction appropriate for their sys-
tem, and the correct data will be supplied to the
receives of the general instrument patch for use in
its particular mapping scheme.

3 DILib Components

DILib is divided into directories relative to the
control data sources mentioned above. The follow-
ing sections provide details on each component.

3.1 Laptop

For many computer musicians, the design of in-
struments using built-in laptop hardware as a pri-
mary control interface remains an interesting area
of investigation. The growth of laptop orchestras
has further encouraged this approach. Regardless
of hardware or platform, the on/off states of most
keyboard keys are available via standard Pd ob-
jects, while the apple library included with Pd-
extended offers access to data from various sen-
sors featured on recent Macintosh laptops—most
notably, a multitouch trackpad.

DILib’s laptop interface abstraction is a con-
venient wrapper for accessing data from the key,
keyname, and apple library objects. To receive the
state of a laptop keyboard key (or any other piece
of data), all that is needed is a receive object sup-
plied with the appropriate symbol as a creation
argument. Send symbols are provided for raw key
and sensor data, as well as higher level data re-
lated to the multitouch trackpad, from which a
variety of dependent and independent continuous
data streams can be drawn. In addition to re-
porting the two-dimensional coordinates and size
of each tracked fingertip, the abstraction provides

the distances and angles between points, and the
coordinates of their centroid. This information can
be used to follow various finger gestures—such as
pinching and rotation.

3.1.1 Continuity

When mapping gestural data to synthesis parame-
ters, it is often desirable to refer to specific tracked
points by stable identification indices. Raw track-
pad data given by the apple library’s multitouch
object does not attach this type of persistent iden-
tifier to its output. Point indices are assigned
based on the order in which they appear. This
causes problems for maintaining the continuity of
a parameter as its associated point disappears and
reappears on the tracking surface. Such interrup-
tions of data flow are common in sensor tracking
situations. Thus, an additional object is needed to
maintain a history of recent point locations. Based
on this history, stable indices for tracked points
can be assigned.

DILib’s continuity external accomplishes this
by comparing the coordinates of the most recent
set of points with those of the previous set. Once
assigned, indices can be used to follow the coordi-
nates of a virtual point that exists independently
of the fingertip by which it was most recently ma-
nipulated. The benefit of stable indices is demon-
strated in the help patch by means of a multi-point
two-dimensional slider control. Regardless of the
number of fingertips present on the trackpad or in-
terruptions in the flow of data, the virtual markers
in the patch maintain stable values. The continu-
ity object is appropriate for other applications as
well, such as three-dimensional infrared blob track-
ing, described below in Section 3.4.

3.2 TouchOSC

TouchOSC1 is an application that allows users to
wirelessly stream data from a number of multi-
touch devices to a computer under the OSC pro-
tocol. Data is generated in the application when
users manipulate various types of software con-
trols, such as sliders, knobs, toggles, and buttons.
Several fixed multi-layered controller layouts are
provided, as well as an editor for creating custom
layouts.

DILib’s TouchOSC component is comprised of
separate abstractions for each of the fixed layouts
that route data to given send symbols. Apart from

1http://hexler.net/software/touchosc

providing easy access to a swath of multitouch con-
trol surfaces, one of the most interesting poten-
tial applications of these abstractions is the design
of instruments featuring distributed control. By
invoking several instances with unique receiving
ports, multi-participant control of a global syn-
thesis environment can easily be arranged.

3.3 Wii Remote

The Wii remote has been widely used as a source
of gestural control data. In addition to several
buttons and an accelerometer, it also houses an
infrared (IR) camera with on-board blob tracking.
For Linux users, an external Pd object with a thor-
ough set of features is available for this device. An
external with more limited capability exists for the
Windows platform. At present, the most stable
option for Macintosh users is to stream data from a
separate application via OSC messages. Abstrac-
tions from DILib’s Wii remote component are de-
signed to deliver data captured using these various
methods in a more standard format.

Separate abstractions are provided for parsing
data received from additional software or objects
used directly in Pd. In each case, the send symbols
used to transmit data are consistent. For instance,
whether using the wiimote external under Linux,
or receiving data from the OSCulator2 application
on a Macintosh, the Wii remote abstractions re-
port the device’s vertical orientation via the re-
ceive symbol “wii-1-pitch”. Because the methods
listed above do not always provide data in stan-
dard parameter ranges, the abstractions also per-
form basic normalization on the data streams be-
fore they are transmitted.

The Wii remote’s IR blob tracking component,
which tracks up to four points at once, executes
its own algorithm for maintaining continuity of
tracked points. Thus, the use of DILib’s conti-
nuity external is not required.

3.4 IR Blob Tracking

The most flexible and effective means of tracking
IR blobs in Pd is to use a high frame-rate cam-
era fitted with an IR band pass filter. Drivers for
Sony’s PS3eye USB camera are available on all
platforms, and offer rates above 100 frames per
second. Although the device includes a built-in
filter for rolling off light in the IR spectrum, it
can be removed and replaced with one that atten-

uates light at all but one specific IR wavelength.
By constructing an array of IR LEDs for shining
light on the area to be tracked, IR light can be
directed back toward the array (and camera) with
any highly reflective material. Figure 1 shows the
camera’s view of such a scenario and basic anima-
tion of the tracked points, illustrating how restrict-
ing the tracking scene to IR light eliminates diffi-
culties common to blob tracking in general (e.g.,
control of background information).

Figure 1: Tracking two fingertips on each hand via
infrared reflection.

DILib’s IR blob tracking abstraction uses basic
GEM objects to manipulate image contrast, and
pix_multiblob to capture blob coordinates and
sizes. Blob coordinate information is processed by
the continuity external, making it possible to reli-
ably map a specific point to any particular synthe-
sis parameter. The help patch assumes that four
fingertips are being tracked (as in Figure 1) and
uses the data to manipulate the shape of a poly-
gon rendered in GEM. Unlike the IR blob track-
ing available using the Wii remote, tracking of any
number of blobs can be attempted, and more con-
trol is available for setting tracking parameters
like minimum blob size and contrast. Assuming
that uniformly-sized reflective markers are used,
depth information can be tracked much more re-
liably than with the Wii remote. Further, the in-
formation can be obtained at a frame rate higher
than the Wii remote’s 100 frames per second, and
is available without the use of additional software.

3.5 reacTIVision & TuioHub

Jordà et al.’s reacTable project [1] is among the
most well known and frequently constructed dig-
ital musical instruments currently in use. The
associated reacTIVision computer vision software

2http://www.osculator.net

(for tracking markers on the table surface) and
accompanying client packages for receiving TUIO
data in various computer music programming en-
vironments are open source and freely available.
The external supplied for Pd is called TuioClient.
In order to apply the data it reports in a fully-
functional reacTable, however, an additional sys-
tem must be designed in Pd for storing, analyzing,
and retrieving marker coordinates. This can be
accomplished using table reading and writing ob-
jects, though some tasks—such as sorting markers
according to distance—are relatively cumbersome
in a patching environment, and better suited as
methods of an external object written in C.

DILib’s TuioHub external is a storage, analy-
sis, and retrieval object for fiducial marker infor-
mation reported by the TuioClient external. Sim-
ilar to the standard Pd object called value, Tu-
ioHub is designed so that any number of active
instances have access to the same memory space
via a common pointer. A primary “collector” hub
instance should be created to take input directly
from TuioClient, and multiple “retriever” hub in-
stances can be created as needed throughout the
patch. Figure 2 provides a basic illustration. The
collector is distinguished by supplying creation ar-
guments for: number of fiducials to track, prox-
imity threshold in pixels, and dimensions of the
tracking space. Retriever instances are given no
creation arguments, and respond to various “get”
messages. For instance, to check whether or not
fiducial 7 is active, the message “getFid_active 7”
should be sent to a retriever TuioHub instance.

Figure 2: A collector and three retriever instances
of TuioHub.

TuioHub’s analysis methods can report fidu-
cials in or out of range of any given fiducial, with
an option to sort according to distance. Based
on this information, connections between audio
sources and processing modules can be activated

or broken. Cursor data (i.e., tracked fingertip co-
ordinates) can also be sorted relative to fiducials.
By finding the nearest fiducial to a fingertip, it
is possible use TuioHub to calculate the angle of
the fingertip relative to the fiducial, which is useful
for modifying various parameters of the associated
audio module.

In order to demonstrate TuioHub usage, DILib
includes a reacTable patch with 15 audio source
modules, 10 processing effects, and 10 LFOs (35
fiducials in total). Basic fiducial marker anima-
tion (shown in Figure 3) is rendered in GEM for
projection onto the tracking surface. Using the in-
cluded abstractions for managing connections be-
tween audio modules, the patch can be adapted to
handle any number of fiducials.

Figure 3: Basic GEM representation of fiducial
markers and connections.

3.6 OSCeleton

OSCeleton3 is open source multi-platform software
that interprets data from Microsoft’s Kinect sen-
sor and produces three-dimensional coordinates
for the primary points of a body being tracked. Its
output can be received in Pd via OSC messages.
DILib’s OSCeleton component includes three ab-
stractions for parsing and routing this skeleton
data. The global parsing abstraction receives all
data from OSCeleton, and routes the information
to send names for each body point, regardless of
user number. It also keeps track of which users are
currently active. The user routing abstraction re-
ceives global data, filters according to a given user
number, and routes information to user-specific
send names. For instance, the horizontal position
of the right hand of user 2 can be received using
the symbol “oscel-2-r_hand-x”. Finally, a drawing
abstraction renders a user’s basic skeleton frame

3https://github.com/Sensebloom/OSCeleton

to provide visual feedback, as shown in Figure 4.
The latter abstractions must be supplied with a
user number as a creation argument, but user fo-
cus can be changed via the first inlet.

Like other DILib components, the OSCele-
ton abstractions generate relative data in addi-
tion to raw coordinates. Distances between the
left and right hands and feet are reported, as well
as distances from the abdomen to each extremity.
For continuous synthesis parameters, such as the
modulation index of simple frequency modulation,
these relative measurements are an effective map-
ping choice.

Another variety of relative data is the offset of
an extremity from its attaching joint—such as the
three-dimensional position of the right hand in re-
lation to the right shoulder. The raw coordinate
of a user’s right hand can be polled to control a
global parameter, while its relative offset from the
right shoulder maintains a high degree of indepen-
dence and is suitable for mapping to another pa-
rameter. Thus, a single element may be mapped
to two related parameters. For example, the rela-
tive offset can be used to control pitch, while the
global position can be made to affect timbre. As
with acoustic instruments, such systems present
an interesting set of constraints, where individual
parameters can be modified with near—but not
complete—independence.

Figure 4: Skeleton frame rendering of two simul-
taneous users.

There is currently no external object that
makes skeleton data based on the Kinect sensor
available directly in Pd. When such an object is
created, an alternate version of the global parsing
abstraction will be supplied, so that any patches
making use of this DILib component in its present
state will still function properly after a simple re-
placement.

4 Conclusion

DILib is in its initial stages of development
and will be actively expanded as additional mass-
produced hardware useful for instrument design
becomes available. Whenever possible, future de-
velopment will maintain the delivery of data in
a standard, platform neutral manner as a central
aim. Even at this stage, the components described
above are suitable for creative and educational use,
and will facilitate the creation and re-creation of
novel instruments, allowing a focus on higher lev-
els of instrument design rather than the details of
data parsing and analysis.

Other than the reacTable example, DILib does
not include in-depth example patches that apply
its components in actual digital instruments. A
further development goal is to compile and re-
lease an examples package containing instrument
projects created by the author and willing contrib-
utors from the Pd community.

References

[1] S. Jordà and G. Geiger and M. Alonso and M.
Kaltenbrunner: “The reacTable: Exploring the
Synergy Between Live Music Performance and
Tabletop Tangible Interfaces.” Proceedings of
the 1st International Conference on Tangible and
Embedded Interaction, pp. 139-146, 2007.

[2] M. Kaltenbrunner and R. Bencina: “reacTIVi-
sion: a Computer-vision Framework for Table-
based Tangible Interaction.” Proceedings of
the 1st International Conference on Tangible and
Embedded Interaction, pp. 69-74, 2007.

	1 Motivation
	1.1 Introduction

	2 General Design
	3 DILib Components
	3.1 Laptop
	3.1.1 Continuity

	3.2 TouchOSC
	3.3 Wii Remote
	3.4 IR Blob Tracking
	3.5 reacTIVision & TuioHub
	3.6 OSCeleton

	4 Conclusion

