
A Framework for Real-time Instrumental Sound Segmentation and
Labeling

Adriano Monteiro
Interdisciplinary Nucleus of Sound

Communication, University of Campinas
Campinas, Brazil

monteiro.adc@gmail.com

Jônatas Manzolli
Interdisciplinary Nucleus of Sound

Communication, University of Campinas
Campinas, Brazil

jotamanzo@hotmail.com

Abstract

This paper presents a collection of Pure Data
abstractions for real-time transcription of audio
signals produced by musical instruments. Initially
we describe the adopted methodology follow by its
implementation. Finally we show an application in a
computer-assisted improvisation system.

Keywords

Automatic Transcription, Musical Information
Retrieval, Assisted-Improvisation

1. Introduction

The aim of a musical transcription process is
to extract symbolic information from an audio
signal in order to find high-level musical
structures such as those in a traditional music
scores [1]. Further in western noted music, a
complete transcription requires solving pitch,
timing, and instrumentation of all sound events
[2]. The first step in this process is called
segmentation that determines the time boundaries
of each note-event in a continuous digital signal
by locating onsets and durations. Next, a labeling
task is required to extract the perceptual musical
content from each event such as pitches and
timbre. Finally, the task of the highest symbolic
level is to extract relationships among labeled
events, such as, melodic profile, rhythmic
patterns, harmonies and textures.

According to [2] [3] a music transcription
system can be applied to: a) music information
retrieval; b) music processing - parameters of
music and audio effects controlled in an adaptive
fashion; c) music-related equipment - e.g. light
and video effects controlled in real time; d)
musicological analysis; e) transcription tools for
amateur musicians; and f) human-computer
interaction - such as a system for co-
improvisation, generative composition, score-
following and accompaniment.

Here we are going to focus topic (f). We
describe an application in the context of
Computer-Assisted Improvisation Systems (CAI)
as defined in [4]. The principle of CAI is to
develop computer models of human musical
cognition to assist musician’s decision (computer
player) during a musical improvisation. The
cognitive models might include: memory and its
retrieval, sound analysis for multi-sensorial
reinforcement of the acoustic information, musical
solution/continuation/response suggestion.

In this article we concentrate on tools for
musical transcription of audio signals produced by
musical instruments. Our main interest is to study
free-improvisation between an acoustic instrument
player(s) and a computer player. In the next
section we review Pure Data implementations for
automatic transcription: a) onset detection and
note segmentation [3],[5]; b) harmonic feature
extraction [6]; c) recognition of percussion
instruments [7] and d) algorithms to handle the
musical data obtained by (a),(b) (c). In the
following section we present our application for
CAI [8] as part of a memory/information-retrieval
structure in real time. All implementation
presented here is included in the PDescriptors
library1. This library is a sub-product of our
research and it is a set of Pure Data abstractions
for audio feature extraction developed using the
BSP technique [9].

2. Instrumental Sound Transcription

This section presents the methods we adopted
for music transcription.

2.1 Segmentation

A commonly used approach to segmenting
musical events from an audio signal is to detect
the onset and offset time. The onset detection
method adopted here is mainly based on [3]. It is
divided into two steps: 1) the extraction of a

1
 https://sites.google.com/site/pdescriptors/

detection function which reduces signal
information and highlights onset moments and 2)
a peak picking algorithm applied to the detection
function.

 According to the proceedings of MIREX2,
detection functions extracted from the spectral
domain of an audio signal have successful results
and are the most widely used functions in onset
detection methods. Based on [5] we chose the
detection function based on the spectral difference
with half-wave rectification (spectral flux) for our
Pure Data implementation. We use this solution
due to its simplicity, good results and low
computational cost. In order to achieve good
temporal resolution, it is usually computed on
FFT windows varying from 512 to 2048 samples

The peak picking process is based on an
adaptive threshold described in [3]. It is composed
of three steps.

First a low-pass filter is applied to smooth the
detection function and prevent some spurious
peaks. Next, a dynamic threshold is computed
over a small number of samples, including past
and future samples, to compensate pronounced
amplitude changes in the function profile. It is
composed of: a moving median filter that reduces
noise and selects the larger amplitude peaks; and a
moving mean filter that follows the amplitude
variation and smoothes the function profile. The
moving mean compensates the absence of DC-
removal and normalization processes present in
the off-line version of the algorithm [10]. Finally,
the local maximum over the threshold is
computed from at least three consecutive samples
also taking into account past and future data.

To detect offsets we used an RMS function
which is defined by the energy mean of a signal
window in the time domain. After an onset has
been detected, the offset position is selected when
the value of the signal amplitude decreases below
a threshold determined by the user. The algorithm
schema is shown in Figure 1.

The onset and offset time position returned by
the above algorithms are related to an analysis

2http://www.music-ir.org/mirex/wiki/MIREX_HOME

Figure 1- Segmentation algorithm schema

window. Since it has no information in regards to
the sample amplitude levels in a current window,
it can cause clicks if used as a parameter of an
event player algorithm. To solve this problem and
to improve the accuracy of the segmentation
point, we implement an algorithm that searches
for a zero-crossing point in an audio buffer. The
search is done in a decremental fashion starting
from the last sample of the onset/offset window
detected and stopping when the first zero-crossing
is found.

Finally, the event duration is given by the
subtraction of the offset time by the onset time.

2.2 Harmonic Features

For harmonic analysis we used the extraction
of the chroma feature, also commonly referred to
as the Pitch Class Profile. It is a vector in which
the values represent the spectral energy
distribution in the pitch classes according to the
octave division of Western music. We chose a
quarter-tone octave division that corresponds to a
24-dimensional chroma vector.

The conception behind chroma feature
extraction is based on observations related to the
circularity of the human pitch perception. Two
pitches with different tone heights (i.e., in
different octaves) share the same pitch class. The
tone height attribute is related to the octave
number and the chroma attribute is associated to
the pitch spelling of musical notes (C, C#, D…
B).

 A chroma vector is obtained from the spectral
domain of a sound signal by summing up the

energy contained in the sub-bands that correspond
to the same pitch class. Better results are found
when it is computed using large FFT windows
with 8192 samples, for example. The spectral
division in sub-bands is applied in the power
spectrum where the most significant partials can
be found. We adopted the Jehan [6] solution that
proposed six octaves ranging from C1 = 65Hz to
B7 = 7902 Hz. Next, a Hanning windowing is
applied to the bins included in each sub-band with
the window centered within each respective pitch
frequency. The sub-bands are summed and the
resultant 24-element vector is normalized by
dividing each of its elements by the maximum
element value. A chromogram is constructed by a
normalized histogram of successive chroma
vectors. Finally, these values are exponentiated
and the values above the mean of the total energy
are selected. The algorithm returns a 24-element
binary vector that represents the presence or
absence of the pitch-classes. The algorithm
schema is shown in Figure 2.

Figure 2 - Data flux representation of the

harmonic classification algorithm.

The chroma extraction is triggered by the
segmentation algorithm. It can be delayed for
some signal blocks to avoid possible noise
insertion to the pitch content caused by analyses
of attack transients. Analysis parameters are set by
the user, such as, the frequency range of the
spectrum to analyze, the number of successive
chroma vectors to consider and the number of
analysis windows to wait after onset detection.

2.3 Percussion Instrument Recognition

Brent [7] presents an efficient approach to
recognize percussion musical instruments. This
process requires an off-line training step. A data
set is collected from a sequence of percussion
sound events. The sound events are the strikes of
the percussion instruments and the data set
consists of one or many spectral features extracted

from the analysis frame (or frames) after the
attack peak. Brent’s criteria for instrumental
choice were: diversity of material, diversity of
spectrum and relatively short decay.

A delay after the attack is introduced to reduce
the presence of any pre-onset resonance in the
analysis window. The matching between the
training data set and incoming data is computed
by the Euclidian Distance.

Brent [7] conducted experiments to test the
performances of several features. The best scores
were found in cases where the BFCC feature
(Bark Frequency Cepstral Coeficients) was used.
One hundred percent accuracy was achieved by
combining BFCC with other features for all delay-
time tests (ranging from 0ms to 18.87 ms in steps
of 1.45 ms) and in cases of some successive-
frames analyses.

Considering the low computer cost, we
implemented a BFCC algorithm. In Brent’s
experiments it also achieved 100% of accuracy
for 13.06 ms, 15. 96 ms and 17.42 ms delay times
in the single-frame analysis case and for 9 of 10
delay times below 13.06 ms, in the successive-
frames analysis case. The algorithm is described
in Figure 3.

Figure 3- Timbre recognition algorithm data flux

representation

The bonk~ object used by Brent for onset

detection and BFCC triggering was replaced by
the algorithm described in section 2.1.

2.4 Implementation

The algorithms above were implemented as
Pure Data abstractions. There are common types
of arguments for the three objects: FFT-size, Hop-
size (like in Pd switch~ and block~ objects) and
an object name. The objects must share the same
name in order to onset trigger command (bang) to
be sent by the segmentation algorithm to the
harmonic and timbre classifiers. A graphical

interface version was also implemented (Figure 4)
that provide icons for parametrical interface as
well icons for data display.

Figure 4 - Transcription objects interface

2.5 Data Handling

This is a collection of seven Pure Data
abstractions that provides memory and selection
of the data extracted by the transcription
algorithms:

• a dynamic resizing buffer for symbolic data;

• an object which accesses slices of the
symbolic data buffer

• a silence filter;

• a duration filter with two operation modes:

- filtering duration values above or
below a threshold determined by the
user;

- Selecting specific duration values
determined by the user.

• a harmonic filter with two operation modes:

- filtering chroma vectors containing
the pitches set by the user.

- selecting the exact chroma vectors set
by the user.

• A percussion timbre selection algorithm that
selects similar events compared to a target
event.

• A simple player with four operation modes
related to the event permutation: sequence
player, Brownian movement player, serial
player, and a random player. It plays slices of
an audio buffer according to the onset-offset
times recorded in the symbolic data buffer.

The data buffer must be connected with the
segmentation algorithm shown in section 2.3. The

other objects send and receive lists of data indexes
in the buffer and can be connected in a sequence
where the slicer algorithm is first and the player is
last.

3. Application on CAI

In this section we show a musical application
in computer-assisted improvisation (CAI) of the
tools described above.

3.1 System Overview

The compositional system was conceived as
an algorithmic composition and a computer-
assisted improvisation system for a piece
including computer and electric bass. The piece
was called “As Duas Criaturas que Estavam a
Mesa de Chá não Tiveram esta Conversa” (The
Two Creatures on the Tea Table Didn’t Have this
Conversation) and was presented during the 3rd

PDcon, July 2009 in São Paulo.

The system is constructed in four algorithmic
modules for sound generation by synthesis and/or
sound processing of the bass. The modules are:

• Distortion: a wave-shaping distortion is
applied to the bass sound using a signal
function as a transfer function;

• Pitch-shift: a pitch- shifter effect is applied to
the bass sound;

• Phaser: a phaser effect is applied to the bass
signal and to clipped sinusoidal sounds.

• Attractor: values resulting from iterations of a
non-linear function described in [11] as the
Latoocarfian attractor are stored in an array. It
is read as a waveform in a synthesis process
and applied as a transfer function in a wave-
shaping process to the bass sound. The
waveforms generated by the attractor function
always converge for variations of six main
types: simple periodicity, complex
periodicity, random (noise), pulse train and
constant zero (silence).

In the first version of the algorithm, most of
the controlling parameters are directly changed
through icons in the graphical interface (GUI)
(Figure 4). Serial and random permutations are
also applied in the fourth module to control some
parametric changes. A deeper view of the
algorithm properties can be seen in [8]

3.2 Architecture of the New Version

In the second version of the piece new tools
were developed in order to: 1) increase the
interaction between bass player and the computer
player/system; 2) provide access to performance

memory through a high-level symbolic layer
related to musical features and system parameters.

Figure 5 - GUI of “The Two Creatures on the Tea
Table Didn’t Have this Conversation (v.1)”

In Figure 5 we show the new system
architecture. The yellow rectangles represent parts
of the system already present in version 1. The
blue rectangles represent the parts of the system
related to the development presented in this paper.
Temporal and pitch data extracted from the bass
signal are recorded on-the-fly. It can be accessed
and modified by the performer through the data
handling objects then applied to the synthesis
parameters in the attractor module

The retrieved values, when applied to the
synthesizer are feedback to the memory with new
values extracted from the bass

The red rectangles represent a method for
analysis and visualization of times series related
to spectral features on the Poincaré Maps that we

also implemented in the new version. We applied
it as a system to retrieve information describing
recursive dynamics of spectral features within
sections of the piece. This approach was used in
order to assist the computer player decisions. The
discussion of this method is not within the scope
of this work. Further information can be seen in
[12] and [13].

Figure 6 - Data flux representation of the “The Two
Creatures on the Tea Table Didn’t Have this
Conversation (v.2)”.

 The Figure 6 shows the graphical interface
of the new system (version 2) where the central
window is the main system interface inherited
from the previous version.

Figure 7 - GUI of “The Two Creatures on the Tea Table Didn’t Have this Conversation(v.2)”

The left and right windows are respectively
the interface for manipulation of data
extracted from the bass sound and a display
showing the memory of system parameters.
The bottom window is a Poincaré map
which plots a recursive spectral analysis of
memory slice (section) selected by the user.

4. Conclusion

In this paper we presented Pure Data
implementations of methods for music
transcription. We showed examples of its
application as a structure for memory and
retrieval of musical information in a
computer-assisted improvisation system.
Next steps in this work include
implementation of other methods for music
transcription and methods related to
stylistic music generation to be used for
solution/response suggestion mechanisms
in our improvisation systems.

Acknowledgments

We thank the Brazilian agencies
FAPESP and CNPq for supporting
Monteiro and Manzolli.

References

[1]Scheirer, E. “Extracting Expressive
Performance Information from Recorded
Music”. Master’s Thesis, MIT, 1995.

[2]Klapuri, A., & Davy, M. ed. “Signal
Processing Methods for Music
Transcription”, Springer
Science+Business Media LLC, New York,
USA, 2006.

[3]Brossier, P. “Automatic Annotation of
Musical Audio for Interactive
Applications”, PhD Thesis, Queen Mary
University of London, 2006.

[4] Maniatakos, F., Assayag , G., Bevilacqua,
F., Agon, C. “On Architecture and

Formalism for Computer-Assisted
Improvitsation” In:
http://articles.ircam.fr/textes/Maniatakos1
0a/index.pdf

[5] Dixon, S. “Onset Detection Revisited”
Proc. of the 9th Int. Conf. on Digital
Audio Effects (DAFx-06)

[6] Jehan, T. “Creating Music by Listening”
PhD Thesis, MIT, 2006.

[7] Brent, W. “Cepstral Analysis Tools for
Percussive Timbre Identification” In
Proceedings of the 3rd Pure Data
Convention, Sao Paulo, 2009.

[8] Monteiro, A.C. Manzolli J., “Estudo de
Performance e Interação Utilizando
Processamento em Tempo Real”,
Proceedings of Performa’11, Aveiro, 2011

[9] Barknecht, F.. “Applications of Blocked
Signal Processing (BSP) in Pd” In
Proceedings of Linux Audio Conference
2010 (LAC2010), Ultrecht, the
Netherlands, 2010.

[10]Bello, J.P. Daudet, L., Abdallah, S.,
Duxbury, C., Davies, M., Sandler, M.B.
“A Tutorial on Onset Detection in Music
Signals” IEEE Transactions on Speech
and Audio Processing, 13, 1035–1047,
2005.

 [11]Pickover, C.A. “Chaos in Wonderland:
Visual Adventures in Fractal World”. St.
Martin's Press, New York, USA. (1994)

[12]Monteiro, A.C. Manzolli, J., “Análise
Computacional de Texturas Sonoras via
Mapas de Poincaré” proceedings of XXI
Congress of ANPPOM, Uberlândia, 2011.

[13]Monteiro, A.C., Manzolli, J., “Análise de
Áudio e recuperação da Informação
Musical em um Ambiente Computacional
Voltado a Improvisação, proceedings of
13th Brazilian Symposium on Computer
Music (SBCM), Vitória, 2011.

