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Abstract 

This paper presents a collection of Pure Data 
abstractions for real-time transcription of audio 
signals produced by musical instruments.  Initially 
we describe the adopted methodology follow by its 
implementation. Finally we show an application in a 
computer-assisted improvisation system. 

Keywords 

Automatic Transcription, Musical Information 
Retrieval, Assisted-Improvisation 

1. Introduction 

The aim of a musical transcription process is 
to extract symbolic information from an audio 
signal in order to find high-level musical 
structures such as those in a traditional music 
scores [1]. Further in western noted music, a 
complete transcription requires solving pitch, 
timing, and instrumentation of all sound events 
[2]. The first step in this process is called 
segmentation that determines the time boundaries 
of each note-event in a continuous digital signal 
by locating onsets and durations. Next, a labeling 
task is required to extract the perceptual musical 
content from each event such as pitches and 
timbre. Finally, the task of the highest symbolic 
level is to extract relationships among labeled 
events, such as, melodic profile, rhythmic 
patterns, harmonies and textures. 

According to [2] [3] a music transcription 
system can be applied to: a) music information 
retrieval; b) music processing - parameters of 
music and audio effects controlled in an adaptive 
fashion; c) music-related equipment - e.g. light 
and video effects controlled in real time; d) 
musicological analysis; e) transcription tools for 
amateur musicians; and f) human-computer 
interaction - such as a system for co-
improvisation, generative composition, score-
following and accompaniment.   

Here we are going to focus topic (f).  We 
describe an application in the context of 
Computer-Assisted Improvisation Systems (CAI) 
as defined in [4].  The principle of CAI is to 
develop computer models of human musical 
cognition to assist musician’s decision (computer 
player) during a musical improvisation. The 
cognitive models might include: memory and its 
retrieval, sound analysis for multi-sensorial 
reinforcement of the acoustic information, musical 
solution/continuation/response suggestion.  

In this article we concentrate on tools for 
musical transcription of audio signals produced by 
musical instruments. Our main interest is to study 
free-improvisation between an acoustic instrument 
player(s) and a computer player. In the next 
section we review Pure Data implementations for 
automatic transcription: a) onset detection and 
note segmentation [3],[5]; b) harmonic feature 
extraction [6]; c) recognition of percussion 
instruments [7] and d) algorithms to handle the 
musical data obtained by (a),(b) (c).  In the 
following section we present our application for 
CAI [8] as part of a memory/information-retrieval 
structure in real time. All implementation 
presented here is included in the PDescriptors 
library1. This library is a sub-product of our 
research and it is a set of Pure Data abstractions 
for audio feature extraction developed using the 
BSP technique [9].   

2. Instrumental Sound Transcription 

This section presents the methods we adopted 
for music transcription.  

2.1 Segmentation 

A commonly used approach to segmenting 
musical events from an audio signal is to detect 
the onset and offset time. The onset detection 
method adopted here is mainly based on [3].  It is 
divided into two steps: 1) the extraction of a 
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detection function which reduces signal 
information and highlights onset moments and 2) 
a peak picking algorithm applied to the detection 
function. 

 According to the proceedings of MIREX2, 
detection functions extracted from the spectral 
domain of an audio signal have successful results 
and are the most widely used functions in onset 
detection methods. Based on [5] we chose the 
detection function based on the spectral difference 
with half-wave rectification (spectral flux) for our 
Pure Data implementation. We use this solution 
due to its simplicity, good results and low 
computational cost. In order to achieve good 
temporal resolution, it is usually computed on 
FFT windows varying from 512 to 2048 samples  

The peak picking process is based on an 
adaptive threshold described in [3]. It is composed 
of three steps.  

First a low-pass filter is applied to smooth the 
detection function and prevent some spurious 
peaks. Next, a dynamic threshold is computed 
over a small number of samples, including past 
and future samples, to compensate pronounced 
amplitude changes in the function profile. It is 
composed of: a moving median filter that reduces 
noise and selects the larger amplitude peaks; and a 
moving mean filter that follows the amplitude 
variation and smoothes the function profile. The 
moving mean compensates the absence of DC-
removal and normalization processes present in 
the off-line version of the algorithm [10].  Finally, 
the local maximum over the threshold is 
computed from at least three consecutive samples 
also taking into account past and future data.  

To detect offsets we used an RMS function 
which is defined by the energy mean of a signal 
window in the time domain. After an onset has 
been detected, the offset position is selected when 
the value of the signal amplitude decreases below 
a threshold determined by the user.  The algorithm 
schema is shown in Figure 1.  

The onset and offset time position returned by 
the above algorithms are related to an analysis  
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Figure 1- Segmentation algorithm schema 

 

window. Since it has no information in regards to 
the sample amplitude levels in a current window, 
it can cause clicks if used as a parameter of an 
event player algorithm.  To solve this problem and 
to improve the accuracy of the segmentation 
point, we implement an algorithm that searches 
for a zero-crossing point in an audio buffer. The 
search is done in a decremental fashion starting 
from the last sample of the onset/offset window 
detected and stopping when the first zero-crossing 
is found.    

Finally, the event duration is given by the 
subtraction of the offset time by the onset time. 

2.2 Harmonic Features 

For harmonic analysis we used the extraction 
of the chroma feature, also commonly referred to 
as the Pitch Class Profile.  It is a vector in which 
the values represent the spectral energy 
distribution in the pitch classes according to the 
octave division of Western music. We chose a 
quarter-tone octave division that corresponds to a 
24-dimensional chroma vector. 

The conception behind chroma feature 
extraction is based on observations related to the 
circularity of the human pitch perception. Two 
pitches with different tone heights (i.e., in 
different octaves) share the same pitch class. The 
tone height attribute is related to the octave 
number and the chroma attribute is associated to 
the pitch spelling of musical notes (C, C#, D… 
B). 

 A chroma vector is obtained from the spectral 
domain of a sound signal by summing up the 



energy contained in the sub-bands that correspond 
to the same pitch class. Better results are found 
when it is computed using large FFT windows 
with 8192 samples, for example.  The spectral 
division in sub-bands is applied in the power 
spectrum where the most significant partials can 
be found.  We adopted the Jehan [6] solution that 
proposed six octaves ranging from C1 = 65Hz to 
B7 = 7902 Hz. Next, a Hanning windowing is 
applied to the bins included in each sub-band with 
the window centered within each respective pitch 
frequency. The sub-bands are summed and the 
resultant 24-element vector is normalized by 
dividing each of its elements by the maximum 
element value. A chromogram is constructed by a 
normalized histogram of successive chroma 
vectors. Finally, these values are exponentiated 
and the values above the mean of the total energy 
are selected. The algorithm returns a 24-element 
binary vector that represents the presence or 
absence of the pitch-classes. The algorithm 
schema is shown in Figure 2.  

 
Figure 2 - Data flux representation of the 

harmonic classification algorithm. 
 

The chroma extraction is triggered by the 
segmentation algorithm. It can be delayed for 
some signal blocks to avoid possible noise 
insertion to the pitch content caused by analyses 
of attack transients. Analysis parameters are set by 
the user, such as, the frequency range of the 
spectrum to analyze, the number of successive 
chroma vectors to consider and the number of 
analysis windows to wait after onset detection.  

2.3 Percussion Instrument Recognition 

Brent [7] presents an efficient approach to 
recognize percussion musical instruments. This 
process requires an off-line training step. A data 
set is collected from a sequence of percussion 
sound events. The sound events are the strikes of 
the percussion instruments and the data set 
consists of one or many spectral features extracted 

from the analysis frame (or frames) after the 
attack peak. Brent’s criteria for instrumental 
choice were: diversity of material, diversity of 
spectrum and relatively short decay.  

A delay after the attack is introduced to reduce 
the presence of any pre-onset resonance in the 
analysis window. The matching between the 
training data set and incoming data is computed 
by the Euclidian Distance. 

Brent [7] conducted experiments to test the 
performances of several features. The best scores 
were found in cases where the BFCC feature 
(Bark Frequency Cepstral Coeficients) was used. 
One hundred percent accuracy was achieved by 
combining BFCC with other features for all delay-
time tests (ranging from 0ms to 18.87 ms in steps 
of 1.45 ms) and in cases of some successive-
frames analyses.  

Considering the low computer cost, we 
implemented a BFCC algorithm. In Brent’s 
experiments it also  achieved 100% of accuracy 
for 13.06 ms, 15. 96 ms and 17.42 ms delay times 
in the single-frame analysis case and for 9 of 10 
delay times below 13.06 ms, in the successive-
frames analysis case. The algorithm is described 
in Figure 3. 

 
Figure 3- Timbre recognition algorithm data flux 

representation 
 
The bonk~ object used by Brent for onset 

detection and BFCC triggering was replaced by 
the algorithm described in section 2.1.  

2.4 Implementation 

The algorithms above were implemented as 
Pure Data abstractions. There are common types 
of arguments for the three objects: FFT-size, Hop-
size (like in Pd switch~ and block~ objects) and 
an object name. The objects must share the same 
name in order to onset trigger command (bang) to 
be sent by the segmentation algorithm to the 
harmonic and timbre classifiers.  A graphical 



interface version was also implemented (Figure 4) 
that provide icons for parametrical interface as 
well icons for data display.  

 

 
Figure 4 - Transcription objects interface 

2.5 Data Handling 

This is a collection of seven Pure Data 
abstractions that provides memory and selection 
of the data extracted by the transcription 
algorithms:  

• a dynamic resizing buffer for symbolic data;  

• an object which accesses slices of the 
symbolic data buffer  

• a silence filter;  

• a duration filter with two operation modes: 

-  filtering duration values above or 
below a threshold determined by the 
user; 

- Selecting specific duration values 
determined by the user. 

• a harmonic filter with two operation modes: 

- filtering chroma vectors containing 
the pitches set by the user.  

- selecting the exact chroma vectors set 
by the user.  

• A percussion timbre selection algorithm that 
selects similar events compared to a target 
event.  

• A simple player with four operation modes 
related to the event permutation: sequence 
player, Brownian movement player, serial 
player, and a random player. It plays slices of 
an audio buffer according to the onset-offset 
times recorded in the symbolic data buffer. 

The data buffer must be connected with the 
segmentation algorithm shown in section 2.3. The 

other objects send and receive lists of data indexes 
in the buffer and can be connected in a sequence 
where the slicer algorithm is first and the player is 
last. 

3. Application on CAI 

In this section we show a musical application 
in computer-assisted improvisation (CAI) of the 
tools described above. 

3.1 System Overview 

The compositional system was conceived as 
an algorithmic composition and a computer-
assisted improvisation system for a piece 
including computer and electric bass. The piece 
was called “As Duas Criaturas que Estavam a 
Mesa de Chá não Tiveram esta Conversa” (The 
Two Creatures on the Tea Table Didn’t Have this 
Conversation) and was presented during the 3rd 

PDcon, July 2009 in São Paulo. 

The system is constructed in four algorithmic 
modules for sound generation by synthesis and/or 
sound processing of the bass. The modules are:  

• Distortion: a wave-shaping distortion is 
applied to the bass sound using a signal 
function as a transfer function;  

• Pitch-shift: a pitch- shifter  effect is applied to 
the bass sound;   

• Phaser: a phaser effect is applied to the bass 
signal and to clipped sinusoidal sounds. 

• Attractor: values resulting from iterations of a 
non-linear function described in [11] as the 
Latoocarfian attractor are stored in an array. It  
is read as a waveform in a synthesis process 
and applied as a transfer function in a wave-
shaping process to the bass sound. The 
waveforms generated by the attractor function 
always converge for variations of six main 
types: simple periodicity, complex 
periodicity, random (noise), pulse train and 
constant zero (silence). 

In the first version of the algorithm, most of 
the controlling parameters are directly changed 
through icons in the graphical interface (GUI) 
(Figure 4). Serial and random permutations are 
also applied in the fourth module to control some 
parametric changes. A deeper view of the 
algorithm properties can be seen in [8] 

3.2 Architecture of the New Version  

In the second version of the piece new tools 
were developed in order to: 1) increase the 
interaction between bass player and the computer 
player/system; 2) provide access to performance 



memory through a high-level symbolic layer 
related to musical features and system parameters. 

 

 

Figure 5 - GUI of “The Two Creatures on the Tea 
Table Didn’t Have this Conversation (v.1)” 

 

In Figure 5 we show the new system 
architecture. The yellow rectangles represent parts 
of the system already present in version 1. The 
blue rectangles represent the parts of the system 
related to the development presented in this paper.  
Temporal and pitch data extracted from the bass 
signal are recorded on-the-fly. It can be accessed 
and modified by the performer through the data 
handling objects then applied to the synthesis 
parameters in the attractor module 

The retrieved values, when applied to the 
synthesizer are feedback to the memory with new 
values extracted from the bass  

The red rectangles represent a method for 
analysis and visualization of times series related 
to spectral features on the Poincaré Maps that we 

also implemented in the new version. We applied 
it as a system to retrieve information describing 
recursive dynamics of spectral features within 
sections of the piece. This approach was used in 
order to assist the computer player decisions. The 
discussion of this method is not within the scope 
of this work. Further information can be seen in 
[12] and [13]. 

 

 
Figure 6 - Data flux representation of the “The Two 
Creatures on the Tea Table Didn’t Have this 
Conversation (v.2)”. 
 

   The Figure 6 shows the graphical interface 
of the new system (version 2) where the central 
window is the main system interface inherited 
from the previous version.  

 
Figure 7 - GUI of “The Two Creatures on the Tea Table Didn’t Have this Conversation(v.2)”



The left and right windows are respectively 
the interface for manipulation of data 
extracted from the bass sound and a display 
showing the memory of system parameters.  
The bottom window is a Poincaré map 
which plots a recursive spectral analysis of 
memory slice (section) selected by the user. 

4. Conclusion  

In this paper we presented Pure Data 
implementations of methods for music 
transcription. We showed examples of its 
application as a structure for memory and 
retrieval of musical information in a 
computer-assisted improvisation system. 
Next steps in this work include 
implementation of other methods for music 
transcription and methods related to 
stylistic music generation to be used for 
solution/response suggestion mechanisms 
in our improvisation systems.  
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