
A Pd framework for the Xth Sense:

enabling computers to sense human kinetic behaviour

Marco DONNARUMMA
Sound Design, ACE, The University of Edinburgh

Alison House, Nicolson Square
Edinburgh, UK, EH8 9DF

m.donnarumma@sms.ed.ac.uk
m@marcodonnarumma.com

Abstract

The Xth Sense is an interactive system for the
biophysical generation and control of music. It makes
use of muscle sounds1 produced by a performer as
both raw sonic material and control data. Presently the
Xth Sense (XS) technology consists of low-cost,
wearable biosensors and a Pure Data2 based
application for capture, analysis, real time processing
and playback of human muscle sounds. The technical
implementation of the XS biosensors has been
recently illustrated in [2].

This paper describes the design of the XS software; it
is a program that enables a computer to “listen” to the
MMG signals transduced by the XS biosensors, to
understand the performance main features, and
therefore to interact with the performer. After a brief
introduction on the nature of the interaction fostered
by the XS technology, I focus on the framework main
features such as: the XS library, a tabbed dynamic
interface (TDI), a MMG features extraction unit, and a
graph-on-parent3 (GOP) routing system for dynamic
mapping of gesture to sound.

Keywords

Biophysical music, muscle sounds, modular DSP
framework.

1 Computers that sense and act

Interactive music relies on a flowing exchange
between a human being and a computer. As Winkler
puts it, “nothing is more interactive than a good
conversation”; both parties are engaged, they both
share ideas and respond to each others inputs. A good
conversation is usually open ended, yet bounded by an

1 Technically called mechanical myography (MMG)

2 A programming language for real time signal processing
and computer music.

3 A Pd feature that enables a patch or abstraction to have
a custom appearance within the calling parent patch.

intangible frame of rules and cultural
contingencies, that are - more or less equally -
shared by the participants. It is a delicate
balance which can be achieved only by setting a
“consistent context” that produces “a feeling of
mutual understanding without being
predictable” [6]. On the other hand, for Rokeby
the computer is “objective and disinterested”,
and therefore the interaction (e.g. experience)
“should be intimate”. Computers are not smart.
Man creates their intelligence, Man forges them
as interactive agents, and ultimately defines
their degree of interaction with the real world.
Man can breathe an understanding of human
intimacy into the computer “tiny playing fields
of integrated circuits” [5].

At the heart of the XS project stands a
twofold motivation: to investigate the
modalities by which Man's intimate, bodily
energy can become digitally tangible; to
develop a context of rules and algorithms which
would enable computers to sense the varied
nuances of the body potential, and act
accordingly. Here, I purposely refer to the term
acting; I argue that it does not matter how much
complex a computing system is, it will always
be pretending to be able of making sense of
human behaviour. Its understanding is an
artificial product of Man's choices.

The following sections seek to outline the
aesthetic (e.g. the developer's choices) that
drives the mutual and creative exchange
between the user and the machine within the
XS digital framework.

2 Tools of interaction

Whereas the XS biosensors capture the raw,
sonic material produced by a performer's
muscle contractions, the central brain (e.g.
“consistent context”) of the interactive system

lies within the XS software. The program leads a
computer to develop an understanding of a human
kinetic performance by capturing, and analyzing
muscle sounds. It also handles the sonic behaviour of
a computer by indicating the rules by which it can
process and playback in real time the performer's
muscle sounds.

The application was developed with Pd-extended
0.42.5 and although it borrows some objects from
other libraries4, it is based on and developed with the
XS library, an ad hoc collection of Pd-objects.
Sections 2.1 outlines its structural characteristic.

2.1 The Xth Sense library

The XS library aims to bring together a set of GOP
objects specifically coded to be used with muscle
sounds processing, and a discrete amount of general
purpose abstractions that facilitate a faster
programming. The library is largely inspired by the
Pure Data Montreal Abstractions5 (Pd Mtl). Similarly
to the Pd Mtl library, the XS collection aims to
provide high-level, standardized objects to accelerates
the learning curve of new users, and to ensure a rapid
and more rewarding programming environment.

The library includes an overall amount of about a
hundred objects. As for the Pd Mtl library, Xth Sense
objects are categorized using a pragmatical taxonomy
based on function categories; each object is clearly
named after his function, and each function category
is easily recognizable by means of a self-explanatory
prefix. So far ten categories have been implemented:
count, counters objects; efx6, real time audio
processing; flow, analysis of numerical data; gen,
sound generators; gui, various GOP tools which can
be used to build more complex macros; mix, audio
mixing; scale, scaling of numerical data; smp, sample
based audio objects; utils, general purpose
abstractions.

3 The GUI

A relevant feature of the software is its graphical
user interface (GUI); this was designed and optimized
in order to offer a handy environment for fast
performance prototyping, while enabling first-time
users to achieve complex operations without dealing
with low-level objects. Next, I illustrate each area of

4 Namely, cyclone, flatspace, iemgui, iemlib, moocow,
moonlib. Few objects used come from libraries not
included in Pd-extended: iemguts, pdmtl, puremapping
and soundhack.

5 See: http://wiki.dataflow.ws/PdMtlAbstractions

6 Later, I refer again to the objects included in the efx
category; for a better readability I indicate them with the
term efx.

the GUI and its function.

3.1 Software anatomy

The software GUI consists of two main
canvases: a side panel and a main window. The
side panel hosts a browser7 to search for
specific abstractions in a determined folder, a
global preset saving system8, and a bang button
which opens the [pd adc.in] subpatch9; this
is the “ear” of the system, it is where the
computer captures the muscle sounds. [pd
adc.in] operates four functions:

1. audio filtering: a bank of band-pass,
hi-pass and low-pass filters clear the
MMG signal of unwanted
frequencies (e.g. noise), while
enhancing the amplitude of the
structural partials;

2. thresholding: an algorithm measures
the root mean square (RMS) of the
incoming wave, then, according to a
customizable threshold level, either
lets the wave enter the next stage or
stops it;

3. limiting: the input signal is increased
to reach its maximum amplitude
avoiding clipping;

4. distribute: a couple of [send~]/
[receive~] dispatch the sound
wave to the main interface, where the
processing takes place.

7 The object is [file.browser_] included in the Pd
Mtl abstractions.

8 [presetstore] from the sssad library by Frank
Barknecht.

9 A nested patch housed within a parent canvas.

Figure 1: The XS main interface

The main canvas includes several macro GOP units;
from top to bottom:

• [pd workspace], a wide area in which
digital signal processing (DSP) chains can
be programmed using the efx abstractions10;

• [pd control.values], a lookup module
which displays the numerical values of the
features extracted from two XS sensors;

• [pd analysis], it includes the algorithms
that compute the muscle sounds to extract
meaningful features; the layout is composed
of four sliders and two graphical scopes to
provide a visual feedback of the control
values and the incoming waveform;

• [pd routing.params], a GOP module
for one-to-one and one-to-many mapping of
MMG based control data to the DSP chains;

• [pd mixer], a 10 channels audio mixer
which includes individual, pre-fader aux
sends and a master level.

3.2 Usability concerns

The GUI was designed in order to obviate some
issues which can be encountered when working with
an intricate, multi-task environment in Pd. The first
concern was to maintain the readability and usability
of complex DSP chains that use GOP abstractions.
Usually nesting processes in subpatches is the most
common method to avoid Pd programs from being
unreadable; however, retrieving, opening and closing
several subpatches in a composite framework can
sometimes impede the user's creative flow; in fact,
such mechanism does not offer an intuitive navigation
of the interface which could be beneficial to both first-
time users and trained programmers.

This issue was addressed by the implementation of
a tabbed document interface (TDI), which allows
multiple subpatches to be enclosed within a single
window, and uses tabs as triggers to switch between
sets of subpatches. The TDI used in the XS software

10 Or any other Pd-object.

adopts animated buttons instead of tabs. The
idea of a Pd based TDI was inspired by the
concept of “space-awareness” embodied by
Zmölnig [7] in the Pd external called
[canvasposition]11. [canvasposition]
returns “the current position of the object within
its containing canvas” and it makes also
possible to set a new position.
[canvasposition]was incorporated in
several of the macro GOP units along with a
simple function, which sets the position of
multiple patches at once. This mechanism
enables the user to switch among six [pd
workspace], or to toggle the visibility of [pd
analysis] and [pd routing-params] with
a single click.

4 Interrelating kinetic behaviour with
musical performance

This section describes the aesthetic
principles, the design paradigms and the
mapping tools that enable the composition of a
performance based on the somatic behviour of a
performer. How to achieve a seamless, real time
interaction with a computer software for DSP,
which would guarantee richness of color and
sophistication of forms?

The main principles and some technical
implementations are illustrated below.

4.1 Performance and design principles

Major aim of designing with MMG audio
signals is to avoid a perception of the sound
being dissociated from the performer's gesture.
The dissociation I point at not only refers to the
visual feedback of the performer's actions being
disjointed from the sonic experience, but it also,
and most importantly, concerns a metaphorical
level affecting the listener's interpretation of the
sounds generated by the performer's somatic
behavior [1]. The use of muscle sounds in this
project had to be clearly motivated in order to
inform classical approaches to gestural control
of music. Therefore, chosen sound processing
and data mapping techniques were evaluated
according to their capability of enhancing the
metaphorical interpretation of the performer's
physiological behaviour.

From this perspective, some essential
principles were defined as follows:

11 The object is part of the iemguts library by
IOhannes Zmölnig, which deals with
metaprogramming in Pd.

Figure 2: A Pd based TDI

• to make use of biological sounds as major
sonic source and control data;

• to exclude the direct interaction of the
performer with a computer and to conceal
the latter from the view of the public;

• to demonstrate a distinct, natural and non-
linear interaction between kinetic energy
and sonic outcome which could be
instinctively controlled by the performer;

• to provide a rich, specific and
unconventional vocabulary of
gesture/sound definitions which can be
unambiguously interpreted by the audience;

• to allow the performer to flexibly execute
the composition, or even improvise a new
one with the same sonic vocabulary;

• to make both performer and public perceive
the former's body as a musical instrument
and its kinetic energy as an exclusive sound
generating force.

4.2 MMG features extraction

Presently, the analysis operations computed by the
XS software provide 8 variables; here I describe in
detail the features extraction methods.

 Since the project deals with sound data (e.g. the
muscle sounds), a pitch tracking system may have
been a straightforward solution for an automated
evaluation and recognition of gestures, however
muscle sounds resonant frequency is not affected by
any external agent and the pitch seems not to change
significantly with different movements [4]. Whereas
muscle sounds are mostly short, discrete events with
no meaningful pitch change information, the most
interesting and unique aspect of their acoustic
composition is their extremely rich and fast dynamic;
therefore, extraction of useful data can be achieved by
RMS amplitude analysis and tracking, contractions
onset and gesture pattern recognition. In fact, each
human muscle exerts a different amount of kinetic
energy when contracting and a computing system can
be trained in order to measure and recognize different
levels of force, i.e. different gestures.

The subpatch [pd calibrate] contains an
algorithm that enables the computer to identify which
finger is being contracted. This is achieved by
adjusting the software sensitivity according to the
force threshold of a finger discrete contraction; the
threshold is defined by normalizing and measuring the
maximum force exertion level of each finger.
Although the resemblance between the force
amplitude exerted by the minimus (little finger) and
the thumb causes the output to be slightly unstable,

this method allows the determination of six
discrete events (e.g. binary trigger control
messages), namely, fingers and wrist
contractions.

Secondly, the continuous amplitude average
of the performer's arms contractions is
measured with [flow.average]; next, this
value is fed to [flow.last.max], which
returns the running maximum amplitude
(RMA) of performer's gestures. Often, being
that the linear output of this algorithm tightly
mirrors the performer's gesture, values can be
generated too fast; for this reason, the RMA
value is extracted every 2 seconds, then
interpolated with the prior one using [line3]
in order to generate a continuous event;
eventually this is normalized to MIDI range and
set ready for being mapped.

Lastly, the output of a [snapshot~], which
converts the raw MMG signal into a control
value, is fed to the [smooth] object which
applies an equation of single exponential
smoothing (SES) in order to forecast a less
sensitive continuous control value [3].

4.3 Dynamic data mapping

The composition and design of a performance
require concentration, therefore an intuitive
mapping system can be very helpful and
timesaving. Such system would satisfy a
twofold mapping: one-to-one and one-to-many.

In Pd control parameters can be distributed
locally in several ways, however the main
methods use chord connections created
manually or chord-less communication
exploiting [send] and [receive]. I first
excluded chord connections for a pragmatical
motivation: when rehearsing a piece for the XS
the performer's body is completely engaged,
thus the use of mouse and keyboard needs to
reduced to the minimum. A chord-less method
could not satisfy the requirements of the
framework either; de facto, a given Pd-object
cannot be reached anyhow, unless the user
creates a new [send]/[receive] couple and
connect them accordingly. Moreover, both
approaches imply that Pd is in Edit Mode,
which is not always desirable. Such
observations motivated an alternative approach.
The proposed solution is an enclosed dynamic
mapping system, based on a communication
protocol which helps the program to identify a
given efx object and parameter when this is
“touched” by the user in Run Mode.

4.3.1 Chordless, dynamic data mapping with
[sssad] and [iem_s]

Each efx object includes a set of [sssad]
abstractions that inform the program of its current
state (e.g. arguments); in fact, the conventional scope
of [sssad] is to safely save and restore state data.
Nonetheless, it can also be used to identify specific
objects in a complex patch. Every time a parameter
foo of a given object is modified, the embedded
[sssad] sends to a global receiver a new message,
which usually appear as follow:

SSSAD foo 125

Such message can work very well for a simple
patch, but it cannot be used in complex patches as it
refers to a global12 foo. Specifically, if more instances
of foo are used in the same program, all the instances
will be updated with the same state. In the case of
complex patches that use multiple instances of the
same abstraction this issue can be prevented by stating
a unique name as an argument for each abstraction.
Hence, the new message would read:

SSSAD unique-name foo 125

Thanks to its TDI, the XS software enables the user
to navigate six [pd workspace] and to deploy any
number of efx in order to create DSP chains;
arbitrarily naming each efx with no defined syntax,
but using a unique name can be counterproductive.
Therefore, in order to clearly identify each efx across
the whole interface, the argument of an abstraction
can be further elaborated by prepending a path-like
syntax: a prefix which indicates the number of the
[pd workspace] where the object lives (e.g. wp1); a
single value referring to the object creation order; an
acronym which states the class of the object. For
instance, a message reporting the foo state of the third
delay object created in the first workspace would
appear as:

SSSAD /wp1/3/del.foo 125

Such syntax appears more consistent than a unique
name, as it includes several information about the
object itself, and far more flexible, as it is OSC
compatible. But how the system can be aware of
where an efx lives? In which ways the program can
find and communicate with a given efx?

This was achieved by implementing a dynamic
system based on [iem_s]13. Every time an efx slider
is “touched” on the screen by the user, the matching

12 A global variable is intended as a variable which is
accessible at all levels of the enclosing context of a
program.

13 A settable chord-less sender included in the iemlib
library by Thomas Musil.

[sssad] sends an appropriate OSC message
similar to the one described previously. This is
intercepted by the macro object
[gui.sssad.send] which operates four
functions:

1. parsing: the messages produced by
[sssad] are lists and contain also
the current state of an object, which
is needed for preset saving, but not
for mapping operations. Thus, first
the argument is taken out and
secondly, the message is transformed
into a symbol (for later use with
[iem_s]);

2. storing: the resulting symbol is stored
in a [symbol] object without being
outputted;

3. connecting: when triggered by the
user, the stored symbol is fed as an
argument to [iem_s], which
becomes immediately able to send
control data to the given efx
parameter;

4. disconnecting: when triggered by the
user, [iem_s] is disconnected from
the efx parameter by reseting its
argument to a dummy value.

Unfortunately, the written description of this
process may seem too complex, and it does not
respect the real world experience of the user. In
fact, without considering the computational
operations hidden within
[gui.sssad.send], all the user has to do
can be summed up in four steps:

1. select the source control value to be
routed

Figure 3: The [gui.sssad.send] abstraction

(by clicking a bang button in [pd
control.values]);

2. activate one of the 8 inputs within [pd
routing.params]
(it will automatically enable the specified
port to receive values from the source
selected in step 1);

3. indicate to the system which efx parameter
the source value needs to be routed to
(by “touching” the matching slider);

4. activate one of the 8 outputs of
[gui.sssad.send]
(it will automatically enable the specified
port to send values to the parameter
selected in step 3).

Additionally, the unit displays matching labels, and
provide another GOP abstraction which allows to
customize the mapping curve of the source control
data, before it is sent to the DSP chain.

4.4 Mapping kinetic energy to control data

The implementation of a dynamic mapping system
dramatically improved the composition workflow.
This paragraph describe some mapping models
developed during the composition of Music for Flesh
II14, a solo sound piece for the Xth Sense.

A first mapping model deployed the 6 triggers
previously described as control messages. These were
used to enable the performer to control the real time
SSB modulation algorithm by choosing a specific
frequency among six different preset frequencies; the
performer could select which target frequency to
apply according to the contracted finger; therefore, the
voluntary contraction of a specific finger would

14 See: http://marcodonnarumma.com/works/music-for-
flesh-ii/

enable the performer to “play” a certain note.

A one-to-many mapping model, instead, used
the continuous values obtained through the
RMS analysis to control several processing
parameters within five DSP chains
simultaneously. Being that this paper does not
offer enough room to fully describe the whole
DSP system which was eventually
implemented, I will concentrate on one example
which can provide a relevant insight on the
chosen mapping methodology; namely, a DSP
chain which included a SSB modulation
algorithm, a lofi distortion module, a stereo
reverb, and a band-pass filter.

The SSB algorithm was employed to increase
the original pitch of the raw muscle sounds by
20Hz, thus making it more easily audible.
Following an aesthetic choice, the amount of
distortion over the source audio signal was
subtle and static, thus adding a light granulation
to the body of the sound; therefore, the moving
global RMS amplitude was mapped to the
reverb decay time and to the moving frequency
and Quality factor15 (Q) of the band-pass filter.

The most interesting performance feature of
such mapping model consisted of the possibility
to control a multi-layered processing of the
MMG audio signal by exerting different
amounts of kinetic energy. Stronger and wider
gestures would generate sharp, higher
resonating frequencies coupled with a very
short reverb time, whereas weaker and more
confined gestures would produce gentle, lower
resonances with longer reverb time.

Such direct interaction among the perceived
force and spatiality of the gesture and the
moving form and color of the sonic outcome
happened with very low latency, and seemed to
suggest promising further applications in a
more complex DSP system.

5 Conclusions

I presented the XS modular framework for
real time processing of muscle sounds. When
coupled with the XS biosensors this technology
appear to disclose promising prospects for an
experimental paradigm of musical performance
based on MMG.

Along with a technical description of the
software and the motivations underpinning its
design, the text also addresses some usability
issues of the Pd environment. The solutions
adopted during the software development were

15 Narrowness of the filter.

Figure 4: Dynamic routing unit

http://marcodonnarumma.com/works/music-for-flesh-ii/
http://marcodonnarumma.com/works/music-for-flesh-ii/

introduced and the abstractions used in this process
were unveiled; although these abstractions are at the
moment usable only within the XS framework, I
believe a further step in the software implementation
might be focused on their standardization16.

Whereas the XS software has been proved fully
functional in the composition of Music for Flesh II,
several improvements to the tracking and mapping
techniques can lead to a further enhancement of the
expressive potential of the XS framework. Hereafter
priority will be given to the extraction of other useful
features, to the development of a gesture pattern
recognition system and to the implementation of a
system for multiple sensors.

References

[1] D. Arfib, J.M. Couturier, L. Kessous, and V.
Verfaille: “Strategies of mapping between gesture data
and synthesis model parameters using perceptual
spaces” Organised Sound, vol. 7, 2003.

[2] M. Donnarumma: “Xth Sense: researching muscle
sounds for an experimental paradigm of musical
performance” Proceedings of the Linux Audio
Conference (LAC'11), 2011.

[3] “NIST/SEMATECH e-Handbook of Statistical
Methods.” Single Exponential Smoothing, e-
Handbook of Statistical Methods, 2003. Available at:
http://www.itl.nist.gov/div898/handbook/pmc/section4
/pmc431.htm [Accessed July 10, 2011].

[4] G. Oster, and J. Jaffe: “Low frequency sounds from
sustained contraction of human skeletal muscle”
Biophysical Journal, vol. 30, Apr. 1980, pp. 119-127.

[5] D. Rokeby: “Very Nervous System”. Available at:
http://homepage.mac.com/davidrokeby/vns.html
[Accessed July 10, 2011].

[6] T. Winkler: Composing Interactive Music:
Techniques and Ideas Using Max. The MIT Press,
2001.

[7] I.M. Zmölnig: “Reflection in Pure Data” Proceedings
of the Linux Audio Conference (LAC'09), 2009.

16 In order to allow the larger Pd community to deploy
these abstractions outside of the XS software.

	1	Computers that sense and act
	2	Tools of interaction
	2.1	The Xth Sense library
	3	The GUI
	3.1 	Software anatomy
	3.2	Usability concerns
	4	Interrelating kinetic behaviour with musical performance
	4.1	Performance and design principles

	4.2	MMG features extraction
	4.3	Dynamic data mapping
	4.3.1	Chordless, dynamic data mapping with [sssad] and [iem_s]
	4.4	Mapping kinetic energy to control data
	5	Conclusions

