
AUDIENCE for Pd, a scene-oriented library for spatial audio

Regis Rossi A. FARIA
Audio Engineering and Coding Center at LSI-EPUSP and Music Department at FFCLRP-USP

University of São Paulo
Av. Prof. Luciano Gualberto, tv.3, n.158

São Paulo, Brazil, 05508-010
regis@usp.br

Abstract

AUDIENCE for Pd is a library for audio immersion,
sound scene production and auralization. The software
enables to work independently the sound scene
composition, its acoustic rendering, the encoding of its
sound field in a suitable multichannel format, and finally
its audition using 2D/3D loudspeaker modes. The system
architecture is scalable, many scenes and sound sources
can be concurrently processed, and it is possible to
interactively place and move objects in the scenes in real
time. This paper presents the system architecture, design
premisses, and the software implementation. The library
structure is explained, as well as how to use it, giving
application examples. Ongoing developments and future
perspectives conclude the article.

Keywords

spatial audio, sound scene orientation, sound encoding,
auralization.

1 Introduction

The AUDIENCE for Pd (Audience4Pd) is a
software library made of Pure Data (Pd) objects
(externals) and abstractions (patches) conceived to
build general spatial audio applications. A major
feature is in the sound scene conception independence
of the listening mode, once the user can work out a
desired sound scene spatial experience regardless of
the loudspeaker configuration used to listen. The final
sound field can be exported and played back in stereo
and surround output formats.

Its development started back in 2005 and, together
with some customized hardware for multichannel
audio distribution and amplifier designs, it constitutes
the main result of the namesake project “AUDIENCE
– AUDio Immersion ExperieNce by Computer
Emulation”1.

Since then, many contributors have been involved
in software development, testing concepts, designs
and applications, reaching the current version 2.0.2
released in two different distributions: a full and
restricted version (AUDIENCE), and a basic and free
version (OpenAUDIENCE).

1 www.lsi.usp.br/interativos/neac/audience/

This paper introduces the system architecture,
and the design and implementation concepts
behind its development, explaining how it
works, implemented features, and giving
examples of applications built with it. The main
components of the current library version are
presented, and it concludes with a roadmap of
new developments towards the next generation.

2 System architecture

The AUDIENCE system architecture is based
on the concept of decoupled functional layers.
Simplicity, layers and interfacing are keywords
to understand this architecture.

The first proposal of the AUDIENCE
architecture was published in 2005 [1], and
since then it has been detailed and further
consolidated in later published papers [2][3][4]
[5]. Many practical applications were valuable
for validating the concepts and distinguishing
features.

This section is an overview of the
architecture, explaining its core and key
concepts, such as the functional layer and
interfaces, showing how the system architecture
is devised.

2.1 Functional layers

The core of the architecture in on the
functional layers, which can be viewed as
clusters of related functions. There are four
main audio processing layers in the
architecture, that are mandatory for any spatial
production-reproduction chain. They are:

• L1: scene composing and description layer,
resolving the auditory scene

• L2: scene acoustic model rendering or
simulation, using some acoustics method

• L3: spatial audio coding, packaging audio
data (with metadata or not) into a specific
format for distribution or storage

• L4: spatial audio reproduction, decoding
and generating multichannel output for a

given final audition configuration or surround
loudspeaker mode.

These layers constitute the core of the architecture.
Besides the functions within them, there are also other
functions that fit in what can be called auxiliary (or
service) layers. These implement functionalities that,
while not directly connected to the spatial audio
processing tasks, are required to link the core to
running applications and devices. Usually they are
platform-dependent and shall not interfere in the
subject dealt by the main audio processing chain.
They are:

• communication interfaces, implementing
communication mechanisms and input/output (I/O)
ports for the transmission and reception of audio
data and metadata to/from the main layers.

• user interface/control, implementing the GUI
blocks that command the main core. It is
responsible for admitting control and interactive
actions from the user/listener and sending
commands to the main layers. However, if GUI
blocks embed L1 functionalities they will get a L1
status.

Figure 1 shows the architecture hierarchy of layers.

Figure 1 – AUDIENCE system reference architecture

Notice that the architecture proposes a hierarchy of
layers, where L1 is the highest semantic level and L4
is the lowest one. Synchronization and other data rate
increase from L1 to L4. Observe also that there are
different classes of information in the interfaces
between layers, among metadata, audio data, sync
signals and control data. Figure 1 suggests a top-down
data flow in the chain, from layer i to layer i+1. In
some circumstances one processing chain may feed
input to another chain and then it happens that a layer
i will feed a layer j, where i, j ∈ {1, 2, 3, 4}. A
practical sequence encompasses functions in different
stages, and these data naturally include audio payload,

metadata, control parameters and sync signals.

The layers must be independent from each
other, and then shall have a self-contained and
sufficient set of working rules and algorithms to
control its behavior, e.g. algorithms to act in
case of audio clipping, invalid data range, etc.
Inputs coming from graphical user interfaces
(GUIs) provide control to all layers. GUI’s can
deliver specific commands to control functions
and behaviors in all layers.

Functions in a layer can deliver messages,
data and instructions to other layers using some
sort of communication interface, which is
shown in a generalized form in the figure 1.
Audio data (shown in blue color) can flow
directly from L2 to L3 and from L3 to L4.
Audio data flowing from L4 to other layers is
indicated by the feedback of audio from L4 into
the audio interfaces.

The next section presents the design and
implementation of the library according to this
architecture.

3 System design and implementation

This sections presents the software design
premisses, the development history, the library
organization, its features and objects, and how
it was conceived to work.

3.1 Design premisses

A practical realization of a software for
spatial audio based on the AUDIENCE
architecture was advantageous to be developed
over Pd due to the several reasons: (a) flexible
programming platform for prototyping audio
processing functions in the form of blocks that
can be connected through cords, (b) real time
operation, (c) portability, and (d) free access.

An auralization software will execute several
functions that appropriately fit into one of the
architecture layers. The main requirement was
to map all necessary functions in every layer to
individual objects in Pd, so as the data flow
could be established by connecting them.

To build an AUDIENCE functional object in
Pd some requirements shall be observed. First,
the definition of its target layer. Each object
implements one functionality in one and just
one of the layers, i.e. every object must belong
to one valid layer among the main 1, 2, 3 or 4
layer, or to the auxiliary layer. To permit an
immediate identification of the layer it belongs
to all blocks are named according to the

following syntax:

audce+_+layer+_+functionName

Second, the design of its interface and core process:
the function(s) that it execute will use input data/audio
to produce output data/audio. Data can be supplied in
several ways but mainly through argument creation or
passed in messages to the block. Output data can be
piped to outlets. A general rule is that a layer i block
shall accept layer i-1 outputs and produce inputs
signals to the layer i+1.

The third requirement is its compliance to the layer
message set: an object may use defined parameters,
attributes of scene objects, which are used or
addressed by other blocks in the scene patch. For
example, L1 blocks may change the user position and
need to propagate this new position using a defined
syntax. AUDIENCE has a mechanism to update the
data values using message passing that can be
propagated using a communication send/receive
mechanism, the simplest one being a data connection
from one block outlet to a block inlet. An object in
layer i must be able to receive messages with data to
this layer, and to interpret them. Usually messages
have the name of the parameters itself and are
followed by its new values.

The accompanying software documentation carries
a list of implemented messages than can be used to
build inter-object communication mechanisms (e.g.
using direct connections with inlets/outlets,
send/receive Pd messages, or UTP messages).

Finally, the implementation form must be defined.
It can be built as a patch block (abstraction) using the
Pd built-in objects, or built as an external, linking a
function written in C/C++.

3.2 Development history

The AUDIENCE software has been developed since
2005 at the Audio Engineering and Coding Center
(NEAC) at the Polytechnic School of the University
of São Paulo, and been used in several scientific and
artistic projects since then.

The first objects were designed and built during the
AUDIENCE project. Aiming at flexible and scalable
immersive audio tools (hardware and software) for
applications in complete virtual reality (sound and
visual immersion) this project was concluded in 2005
delivering an octophonic speaker system for a CAVE
with an auralization engine capable of receiving scene
data from immersive visual applications and rendering
the sound scenes using Ambisonics to encode 2D/3D
sound fields and decode them to a cubic rig. Several
experiments with virtual auditory scenes with musical

instruments and planar rigs for audition were
also implemented which led to extending the
number of software objects and application-
specific patches.

 This development naturally opened room for
a second round or investigations, as the
architecture and auralization engine had shown
potential to solve problems in a more general
scope related to the design of sound systems,
and culminated with a second research project:
the OpenAUDIENCE. Starting in 2006 this
project led to the establishment of guidelines to
extend the library by creating new components
open to the community, and led to the
consolidation of a free version of the software,
bringing also resources for programming.

The current software library is a direct result
of these development projects. In the first
versions it worked with 2, 4, 6 and 8
loudspeakers setups running Ambisonics and
incorporated a simple GUI for L1 scene
creation and control. The perceptual spatial
impressions were quite good for open-field
virtual worlds and got improved as layer-2
processes were implemented, such as an image-
source L2-algorithm [3]. Progressively new
methods and techniques were incorporated and
presently the full version works with
Ambisonics (up to 3rd order), multichannel
PCM, MPEG-4 AAC, MPEG Surround, and
further blocks are on the way.

The OpenAUDIENCE (OA) is a free
distribution of the software library, based on the
full version. The main difference between them
is the existence of non-free (proprietary)
objects, libraries and source codes included
only in the full version.

While the full-version library AUDIENCE is
available to the team of developers and
researchers involved in development projects,
the OA version can be downloaded freely from
its project website2. This project is open to any
contributors from both technical and artistic
backgrounds willing to create new applications
or develop new objects (functions).

3.3 Library organization

The AUDIENCE for Pd is a collection of
functional components in the form of Pd objects
and patches. A functional component in this

2 Formerly hosted at recently deactivated FAPESP
incubator at http://openaudience.incubadora.
fapesp.br, a website migration is planned soon.

library is simply a processing block built as a self-
contained Pd object or a patch.

The blocks are sorted in 4 functional layers plus an
auxiliary one, running on top of Pd. The figure 2
shows the software stack.

Figure 2 – Software stack

The current full library structure is organized in 12
directories:

- app: applications and demos directories
- aux: auxiliary objects3

- bin: extra binaries necessary in some applications
- doc: documentation
- img: images used in interfaces
- include: include files for compiling/building
- L1: layer 1 objects and abstractions
- L2: layer 2 objects and abstractions
- L3: layer 3 objects and abstractions
- L4: layer 4 objects and abstractions
- lib: third-party libraries
- snd: sounds
- src: source files
- tst: test patches

The full distribution is aimed to developers and
licensees, as it includes all components. The OA
distribution comes with basic applications in /app
(examples) and, while it may include {src,lib,bin}, it
excludes all restricted components. A minimum
executable core needs only {L1,L2,L3,L4,aux} to run.

In the subdirectory /tst one will find useful test
patches to verify the status of many functionalities.
For instance, the patch test_audience_volume_patches
summarizes all volume abstractions available in the
current version.

An included readme.txt file summarizes few words
on how the software works and information about the
directory structure, development guidelines,
installation and operational notes, a documentation
guide, and a version reference list (release notes). All
external objects are compiled to Win32 (.dll), MAC
OSX (.pd_darwin) and Linux (.pd_linux).

3 For the Win32 environment this directory is named
auxiliary, as this OS does not permit the creation of any
directory aux in its file system.

3.4 Features and library components

Table 1 lists the main functional objects and
abstractions implemented in AUDIENCE for Pd
version 2.0.2. For each block it is presented (a)
its layer group (L1, L2, L3, L4 or Auxiliary),
(b) the name of the object or abstraction in Pd,
and (c) a short description.

The full distribution version 2.0.2 supports a
scalable interactive sound scene graphical user
interface (GUI), Ambisonics (up to the 3rd
order) and MPEG-4 AAC codecs, image-
source-based acoustic simulation, multichannel
recording and playing (including 5.1) and it can
decode to 11 different speaker layouts.

The basic objects described in table 1 will
process audio and information for one sound
source in scene. To easy the processing of
several sources at once there are abstractions in
the distribution combining several basic objects
and extending the functionality to a set of N
sound objects (e.g 3, 5 or 8 sources). For
example, to encode and mix at once 3 sources
in 1st order Ambisonics one can use the
abstraction audce_L3_3obj_amb1st~. Extension
abstractions are listed and available inside their
layer's subdirectory in the distribution.

A number of objects and abstractions are
included in the auxiliary layer with resources
for essential functions not belonging to the 4
main layers, such as data formatting, graphical
user interfaces, arithmetic and DSP operations,
mixing operations, data I/O, timing and
scheduling, synchronization, transport and
signal switching. They are helpful to build new
abstractions and applications patches, and to set
and control parameters.

Auxiliary objects include multichannel audio
file recorders, data format converters (e.g.
time-to-samples), audio format converters (e.g.
6 audio-signal to 5.1-file), mixers, convolvers,
and abstractions for building control interfaces
for transport, volume (loudness) and time flow.

Some alternative abstractions implement
useful variations in slider scale excursion style
(e.g. logarithmic or linear) and in working
ranges (e.g. min/max linear and dB gain
values). For example the audce_aux_objvol1~
is a volume control with VU meter with gain in
the range [-100, +12] dB. The volume
abstractions have inlets to receive on/off
commands and input level setup from outside.

Layer Object Description

L1 audce_L1_gui Scene GUI for positioning sound sources (sound objects)

L2 audce_L2_allen Image source acoustic simulator for one source, outputs an Ambisonics Impulse Response (B-IR)

L2 audce_L2_RMgen Rendering Matrix generator for n sound objects w/ dedicated output per each one

L3 audce_L3_amb_3rd~ Ambisonics encoder up to 3rd order

L3 audce_L3_aacenc MPEG-4 AAC encoder

L3 audce_L3_5.1render 5.1 mode audio program generator using the metadata produced by L2 Rendering Matrix

L3 audce_L3_ambirconv~ Ambisonic Impulse Response (B-IR) set convolver for one sound source, outputs B-Format

L4 audce_L4_amb_3rd~ Ambisonics decoder up to 3rd order

L4 audce_L4_aacdec MPEG-4 AAC decoder

L4 audce_L4_amb_rot~ Object for rotating ambisonics scene (B-Format field) around reference axes

L4 audce_L4_objplay~ One source sound file player, abstraction interface w/ file_open + transport

L4 audce_L4_objplay1~ One source sound file player, interface w/ file_open + transport + time counter

L4 audce_L4_objplay2~ One source sound file player, interface w/ file_open + transport + time counter + volume setup

Aux audce_aux_convolver~ External to stream-like convolve one audio signal with a Impulse Response in real time

Aux audce_aux_counter Abstraction providing a time meter in minutes and partials

Aux audce_aux_dbvol~ Tiny patch for volume control in dB

Aux audce_aux_mixer~ Mixer for n-signals (channels) with individual level setup via message

Aux audce_aux_recordmc~ Abstract GUI to record a multichannel sound file w/ setup for no. of channels (up to 6) and SR

Aux audce_aux_playmcfile~ Abstract GUI to play a multichannel sound file w/ setup for no. of channels (up to 6) and SR

Aux audce_aux_move Experimental abstraction to provide automation for sound object motion in sound scene

Aux audce_aux_objtime Patch to control time of a sound object in the sound scene in the main patch

Aux audce_aux_vol~ Patch to control volume of a sound file or audio line

Aux audce_aux_objvol~ Patch to control volume of a sound file or audio line with VU meter

Table 1: Main objects/abstractions available in the AUDIENCE for Pd version 2.0.2

Also, there are a number of default messages used
to convey commands and to set parameters in blocks
in a patch. Simplicity is a rule for defining syntax
style, such as in this example: “src_pos n x y z” is a
message for positioning sound object n at the cartesian
coordinates {x,y,z} in the scene, and similarly
“rcv_pos x y z” positions the listener in the scene.

Most objects have help patches (files) containing
information about its creation arguments, the data it
holds (e.g. sound object position in space, order of
Ambisonics, etc.), usage examples, the I/O interface
signals (i.e. the valid signals that are accepted in inlets
and signals available in the outlets), known bugs and
limitations. They also include a version history
(release notice) and links to affine objects (“see also”).

3.4.1 Licenses

AUDIENCE and OA are released under a series of
different licenses that apply on a object-usage basis.
Most objects/abstractions .pd files and/or help files
include information about version release and licenses
that may apply, as they individually use different
resources available in the Pd extended version, in
proprietary and/or specific third-party objects.

Native AUDIENCE objects are BSD licensed, and
where third-party libraries or GPL software are used,
their terms are applicable and acknowledged. Third-

parties' objects may be GPL-licensed or adopt
other scheme. Individual files must be
consulted for individual licensing conditions as
well as the accompanying manual, with detailed
information on this matter. Some objects, such
as the convolvers, for example, use the GPL
FFTW3 library from Matteo Frigo, and L3/L4
AAC codecs use aacPlus© licensed from
Coding Technologies (later on Dolby).

3.4.2 Creating new objects

Creating new AUDIENCE externals will
require a C/C++ development environment and
access to the source files, headers and the
makefile. The externals’ source files and the
makefile lie into the /src directory. Header files
are inside the /include directory. The makefile
script holds compilation and building
instructions for the compiler and it is meant for
use with all supported OS's.

The accompanying documentation has a
section instructing interested developers on how
to build new AUDIENCE objects and testing
them.

3.5 How it works

A practical spatial audio application is built creating
data flows by instantiating and connecting objects.
Figure 3 shows an example of a typical top-down data
flow to illustrate the processing rationale.

It shows a patch using “generic” objects per layer
generating the combined sound field of 3 sound
sources irradiating in a sound scene, and generating an
audition in 5.1 surround mode. In the top layer 1 there
is a scene data holder, which parses data to the
subsequent processing objects in layer 2. Acoustic
simulators in layer 2 can produce, for instance,
impulse responses in B-Format and pass them to the
spatial-temporal encoders in layer 3. These spatial
encoders take streaming audio data from each sound
source (src1, src2 and src3) and generate their
individual sound fields as listened in a specific
position in the scene (the receiver position).

Figure 3 – Generic top-down data flow

As we are interested in the complete scene sound,
the 3 individual sound-field data sets are mixed (one
mixer for each sound-field channel) and the result is
the distribution output program (e.g. in B-Format).

The last component, the layer 4 decoder, could be
local or remote, and will be able to decode the
distribution media to an specific output loudspeaker
mode. This operation reconstructs the sound field of
the scene, agnostically from what has been done in the
other layers.

Many pipelines of similar processes can be created
in parallel and real-time operation may be established.
As long as a data path exists, live processes can work
around the clock, continuously executing, exactly as
acoustic processes occur in the nature. For example,
as long as a reverberant chamber exists it will always
process all incoming sounds. Similarly, processes can
be roughly terminated by simply dismounting the

chain, disconnecting the objects and destroying
them. This intuitive process of creating and
destroying applications is a powerful and
typical feature of the Pd and other similar
object-oriented graphical programming
platforms.

4 Usage

This section covers installation, how to use
the library and application examples.

4.1 Installation and licenses

From the installation source, replicate
the /audience directory structure in you file
system, and have the Pd search path updated
pointing to L1, L2, L3, L4, aux (auxiliary) and
bin sub-directories. Individual help files and the
manual troubleshooting should be consulted in
case of problems. Most externals will display
error messages in console if not created.

4.2 Building applications or how to use it

AUDIENCE for Pd offers resources to build
a wide range of spatial audio applications, such
as sound-field recorders and players, acoustic
simulators, multichannel sound creation/
manipulation and mixing, 2D/3D sound scene
encoding (e.g. using Ambisonics up to the 3rd

order), spatial sound reproduction (auralization)
to 11 output loudspeaker setups, convolution of
impulse responses with dry sound sources, and
to establish audio and metadata streams from/to
other applications (e.g. computer graphics or
virtual reality).

Figure 4 – Basic usage flowchart

The flowchart in figure 4 summarizes the basic
tasks to create applications using AUDIENCE. A
typical project flow involves creating a sound scene
(L1 object), configuring an acoustic rendering scheme
(L2 object), encoding the spatial sound of the
rendered scene (layer L3 object) and then decoding
and playing the sound scene through a loudspeaker rig
(layer 4 object). Auxiliary functions, such as transport,
mixing and volume controls are available from objects
in the auxiliary layer.

As soon as a new Pd patch is created, the first step
is to instantiate a L1 scene object (e.g. a L1 GUI) with
the desired geometry and number of sound sources.
Alternatively, one can have an external application
send scene data to a L1 abstraction that will parse and
distribute the L1 messages thereafter [2].

If an acoustic simulation is desired, select an
appropriate L2 processor (e.g. an image-source
simulator) that will render the scene for one
irradiating source and produce a set of parameters
(e.g. an impulse response) to drive a L3 encoding
method. For a free-field spatialization instead, go
directly to the L3 encoder selection. In AUDIENCE
the default spatial-temporal encoder selection is
Ambisonics, and for a n-source scene you will need n
pairs of L2-L3 objects, one per source.

The L3 processes consume audio and metadata to
generate the final encoded multichannel media, so the
next phase is to create the input/output links for audio
source and data (e.g. a L4 sound file player or a adc~
object) and L4 monitors, with any needed auxiliary
objects to configure them (e.g. volume controllers,
time counter and transport commands).

The above process should be repeated for all sound
sources in scene. After that, the encoded media for
every source shall be mixed together, producing a
compound signal set that corresponds to the whole
rendered scene (e.g. linearly summing the B-Format
4-channels of source 1 with those of source 2).

The final basic task is to calibrate the show
parameters, i.e. to configure all sound sources
parameters and their behavior (e.g. source position
and its volume calibrated at a given distance from the
listener). If show parameters change during a
performance, it might be necessary to use an
automation abstraction to drive them (e.g. the
audce_aux_move, that automates simple trajectories
for moving sound sources in time).

As soon as all the links are connected, the whole
patch will behave like a virtual acoustic environment
containing the irradiating sound sources. The
difference is that the user can define the format and
mode of the output sound, i.e. the output signal set
that will drive a loudspeaker rig for listening.

4.3 Application examples

AUDIENCE was used in 2007 to spatialize
the piece “The Unanswered Question” by
Charles Ives (1906) with 9 instruments (a string
quartet, a wind quartet and a trumpet) [6]. In the
same year its architecture was proposed as a
framework for the new MPEG SAOC (Spatial
Audio Object Coding) codec [7].

In 2009 the electro-acoustic piece “Kitchen”
by Fernando-Lopez Lezcano, with 8 sound
sources, was spatialized during the SBCM 2009
symposium in Recife4. AUDIENCE is presently
employed as auralization engine in a CAVE
system at the University of São Paulo, and has
been further used as reference audio engine for
reconfigurable digital music applications,
soundscape design applications and scene-
oriented mixing.

The figure 5 shows an example of application
patch with 1 scene containing 2 sound objects
of different audio sources: a flute (from a sound
file) and a voice (from a real time adc~ port).
The figure illustrates the flexibility in rendering
the sound field independently for each source,
as the voice uses the L2 audce_L2_allen image-
source acoustic simulator and the flute is
processed in open-field. Based on the image-
source method proposed by Allen (1979) the
audce_L2_allen calculates the ray propagation
from a sound source to the receiver and all the
reflections obtained in a box-like room in a
given time range, outputting a set of impulse
responses in Ambisonics B-Format [3].

In L3 both sources are encoded into
Ambisonics (1st order) and mixed to derive an
single sound-field. However, two different
output listening modes are used: a stereo (e.g.
for simple monitoring) and a quadraphonic
output.

5 Next phases and conclusions

This paper presented an example of a general
spatial audio application build-up framework
for Pd using the AUDIENCE architecture, its
basic functions and usage. The system is going
to its 3rd generation, with design improvements
in usability and sound quality, expanding the
number of spatial processing functions, and
looking forward to wide-spreading its
availability for new applications and new user
groups, considering for instance its inclusion in
the Pd Extended distribution.

4 http://compmus.ime.usp.br/sbcm/2009/

Figure 5 – Patch processing a scene with 2 sources (one
with L2 processing), encoding in Ambisonics and
listened through 2 different modes (2.0 and 4.0)

A new development started within the scope of the
MÓBILE project (www.eca.usp.br/mobile/) towards
supporting Wave Field Synthesis encoding/decoding.
Also, a L2 acoustic simulator with ray-tracing and
radiosity support, a loudness manager and an object-
oriented timeline are currently under development.

An universal object template is a future wish to be
developed, so that creation of new blocks get easier
and the incorporation of an external algorithm or
integration to an external plug-in or other software is
done faster, more in a plug-and-play fashion.

There are also a number of experimental objects and
abstractions under development. On spatial audio
codecs the L3 MPSenc and L4 MPSdec are an
experimental pair of MPEG Surround encoder and
decoder objects based on the reference software
issued in 2007. These developments, however, are not
stable yet. Another experimental abstraction under
development is the audce_L4_sceneplay, which aims
at extending the L4 object players to all sources in a
given scene.

 More detailed information on advanced features of
the architecture and specific applications are planned
for future papers.

Acknowledgements

This software has had contributions of many

researchers along the way. We would like to
thank specially the researchers Leandro F.
Thomaz and Renan Vital, the Laboratory of
Integrable System (LSI) of the University of
São Paulo for hosting the projects, and the
company Coding Technologies (later on Dolby)
for providing support to MPEG-4 AAC codecs.
We also thank the support of Brazilian agency
FAPESP through the process 2008/08632-8.

References

[1] R. R. A. Faria: Auralização em ambientes
audiovisuais imersivos. PhD Thesis, Electronic
Systems Engineering, Polytechnic School,
University of São Paulo, 2005.

[2] R. R. A. Faria et al: “AUDIENCE – Audio
Immersion Experiences in the Caverna Digital”,
SBCM 2005 - 10th Brazilian Symposium on
Computer Music, 2005, Belo Horizonte,
pp.106-117.

[3] R. R. A. Faria and J. A. Zuffo: “An
auralization engine adapting a 3D image source
acoustic model to an Ambisonics coder for
immersive virtual reality”, AES 28th

International Conference, 2006, Piteå, Sweden,
pp.157-166.

[4] L. F. Thomaz, R. R. A. Faria, M. K. Zuffo and
J. A. Zuffo: “Orchestra spatialization using the
AUDIENCE engine”, ICMC 2006 –
International Computer Music Conference,
2006, New Orleans.

[5] R. R. A. Faria et al: “Improving spatial
perception through sound field simulation in
VR”, VECIMS 2005 – IEEE Conference on
Virtual Environments, Human-Computer
Interfaces and Measurement Systems, 2005,
Giardini Naxos, Italy.

[6] L. F. Thomaz: Aplicação à música de um
sistema de espacialização sonora baseado em
Ambisonics. Master Dissertation, Electronic
Systems Engineering, Polytechnic School,
University of São Paulo, 2007.

[7] R. R. A. Faria: ISO/IEC JTC1/SC29/WG11
(MPEG). Document m14753. New reference
architecture for broad-scope spatial audio
object coding and spatial sound frameworks.
Lausanne, Switzerland, Jul. 2007. /MPEG, 81st
MPEG & 42nd JPEG Meeting/

	1	Introduction
	2	System architecture
	2.1	Functional layers
	3	System design and implementation
	3.1	Design premisses
	3.2	Development history
	3.3	Library organization
	3.4	Features and library components
	3.4.1	Licenses
	3.4.2	Creating new objects
	3.5	How it works
	4	Usage
	4.1	Installation and licenses
	4.2	Building applications or how to use it
	4.3	 Application examples
	5	Next phases and conclusions

