Wetland Ecosystem Services Workshop

Bauhaus-Universität Weimar April 25-27, 2024

Establishment, management, and monitoring

Workshop description: Wetlands are rich and diverse landscapes in the water-land interphase. They provide many ecosystem services to people as well as habitats to flora and fauna. Created wetland is a term used for newly built wetlands which are designed to provide both multiple ecosystem services and habitats supporting high biodiversity. We will study the theory behind and learn the design process of created wetlands. To enrich the learning experience, and to support the planet one wetland at a time, we will design and hands-on implement a small new created wetland as a piece of living environmental art.

Outi Wahlroos

outi@palustrine.fi

Urbanization – the challenge

Erosion, draught, low biodiversity, invasive species, flooding, lower groundwater levels, losing connectivity to waterways, water quality

Stormwater reuse or irrigation?

Ecosystem services created at stormwater wetland parks

Ecosystem services by The Economics of Ecosystems & Biodiversity (TEEB)

1) **Provisioning services** (source of materials or energy)

2) **Regulating services** (state of the environment and natural processes)

3) Cultural services (interactive)

4) Habitat- or supporting services (maintaining diversity)

- 1) Biomass production; hunting, fishing and crayfish catching; berry picking; irrigation water
- 2) Impacts on microclimate; carbon binding; nutrient uptake; flow&flood control, water quality treatment; erosion control; reducing pathogens
- 3) Recreation and nature experiences, environmental education, view; source of artistic inspiration and scientific knowledge; builder and enhancer of sense of place
- Increasing diversity of flora and fauna; increased resilience of environmental change such as flow extremes in urban streams; diverse flora is functional and beautiful every year and season regardless of weather and pest extremes; supporting pollinators

Past and present

5

Barcelona 1900-1914, Modernismo, Antoni Gaudi y Cornet, Park Güell

6 OW Barcelona 1900-1914, Antoni Gaudi y Cornet, Park Güell A garden city; stormwater collection – purification – use; local materials, local shapes

Stormwater management landscaping

- What if? The site (genius loci), the climate

- Watersheds have changed -> hydraulic design, not restoration

- Diverse and healthy plant provides services and tolerates the stress of water level fluctuations -> natives

- "Soil works 90-100%, planting 0-10%" (self-establishment)

Acceptance of nature "A wetland? This used to all be wetland, terrible. Now it is all developed."

A Peatland – not..

Design scale? Entire watershed the best...

OW

Creating Urban Oases

Challenge: Urban runoff

Design and implement

Watershed and land-use matter

Monitor and improve

Employ plants and microbes

Share the joy of neighborhood wetlands

Design process

- Goals \rightarrow Set goals, review after site and watershed analysis
- Site analysis and watershed analysis → Land-use, topography, climate, soil type, land cover, water quantity&quality
- Conceptual plan \rightarrow What interventions, how are linked together
- **Design draft** \rightarrow Review draft with stakeholders
- Implementation design \rightarrow Details ready for construction
- Implementation \rightarrow Meetings with constructor
- **Monitoring** \rightarrow Monitor for set goals
- Maintenance \rightarrow Maintain goals and *allow site succession*

Challenge: Urbanization & climate change: Flow \uparrow -> Quality \downarrow

CLIMATE CHANGE: Global scale

LAND-USE CHANGE: Watershed scale

COMPENSATING STRUCTURES: Local scale

15 OW

Protect nature types in urban development

- Know what to protect
- Know how to protect

Wetlands are used for many purposes in urban areas

Treated wastewater to reintroduce groundwater, parks

Wastewater treatment

Floating wetlands: water quality and habitat

Stormwater management

Habitat, stormwater, view

Stormwater wetland or swale

Inflow stilling pond (coarse solids) – shallow treatment train (soluble and fine solids) – outflow pond (withered plants)

Important:

seasonal highwater table

- → increase retention time
- meandering not necessary, depends on wetland shape
- outlet dam controls water level and retention: bottom dam usually best, avoid pipes

Varying microtopography -> biodiversity -> N x treatment

normal water table

Graphs: 1980's Center for Watershed protection, Tom Schueler at al.

Stormwater swales: open water conveyance structures,

Water sensitive design – What is it? How? One landscape architect, one architect.

Case: Viikki ecovillage

Water protection built 1999-2004

Viikki Intended Naturnacher stream

Viikki – riparian zone implementation: engineering only? However: a much enjoyed landscape Stormwater involved in community gardening

Anemone ranunculoides Butomus umbellatus Caltha palustris Carex acuta Carex pseudocyperus Claytonia sibirica Corydalis solida Eupatorium cannabinum Filipendula ulmaria Iris pseudacorus Juncus effusus Lysimachia thyrsiflora Lysimachia vulgaris Lythrum salicaria Myosotia scorpioides Oxalis acetosella Phalaris arundinacea Phragmites australis Ranunculus ficaria Scirpus sylvaticus Sparganium erectum Veronica longifolia Thelypteris palustris Typha latifolia

sanarimpi rentukka viiltosara varstasara alaskankleitonia pystykiurunkannus punalatva mesiangervo keltakurjenmiekka röyhyvihvilä terttualpi ranta-alpi rantakukka luhtalemmikki käenkaali ruokohelpi jarviruoko mukulaleinikki korpikaisla haarapalpakko rantatādyke nevaimarre leveãosmankāāmi

keltavuokko

Hannaaleppää käytetään mepeakanyutsena pinneeripuna. Misfakuusten ympärillä kasvavat Harmaalapät ja noin 255 supporpibilation and raidoista pristatan

metsalehmusrivi

Multiple student projects -> "Yes BUT"

24 OW Viikki campus wetland: It cleans up, it does not, it cleans up?

Outflow 1/3

A plant supporting local Inflow pond fauna is beautiful! EMERGENT HERBACEOUS **OPEN WATER** Outflow SUBMERGED pond EMERGENT HERBACEOUS Outflow pond Outflow 1/3 Outflow pond

Overflow

Outflow 1/3

Photo: Antti Nykänen

Design choices Environmental biotechnology Climate and hydrology

Figure 330-8. Location of imperviousness relative to drainageways in conventional development.

Figure 330-9. Impervousness placed high in the landscape. Note the lack of storm servers.

Critically learn from references

27 OW Requirements: existing inflow, no underground structures, pitch towards a possible overflow into a stormwater network, landscaping accepted, easy maintenance

Above ground looks "good"!

29 OW

Watershed analysis: curbs not visible..

Stormwater management tree swale retrofit

A-A (1:100, N2000 +m)

1.9.2017

Jaakonaho, Warences Rantakoites

Details!

Outflow dam defines mean water depth and water retention

Solutions vary

POIKKILEIKKAUS A-A 1:50

Kuva: Emmi Mäkinen / UUDELY

Example: Landscaping for Biodiversity at the Helsinki Zoo

Choice

mm

The Helsinki Zoo

An island (25ha) in the City of Helsinki and in the Baltic Sea (60°N, 20°E)

Site conditions

- Intense use: animals, visitors, maintenance
- Steep slopes, runoff, erosion, draught

Landscaping goals

- Healthy environment for the Zoo animals
- Visitor environmental awareness, sense of beauty
- Erosion and draught control
 - diverse vegetation
 - soil amendments
 - stormwater treated on site as a resource
- Support and benefit from local biodiversity

Green landscaping, but...

Green and edible...

Stormwater to support urban oases?

Watershed scale as a starting point 1. Steller's Sea Eagle subwatershed

- 2. European Bison subwatershed

et Hetubak hevostarha visenttitach

Korkeasaaren osavaluma-alueet ja pintavesien ohjaus

The Steller's Sea Eagle Watershed

- Site: an existing management area, new Sea Eagle enclosure, adjacent park area
- Condition: steep slope, draught, bare soil

2006

The Steller's Sea Eagle Enclosure Plan

- Conditions for the eagles: maximal space for flying, wading pools
- Runoff: controlled conveyance, establish shelter vegetation outside the enclosure
- Roof runoff reuse: not for the pools tap water & biofilter; runoff to support vegetation downhill

Enclosure: herbageous native vegetation mats

The Sea Eagle Watershed Plan

Controlled conveyance, lush vegetation, constructed wetland, infiltration

From dry and eroding south slope to a refreshing green oasis

2006

2010

Circa 3% area = wetland/swale Circa 35% impervious

Runoff management one watershed at the time

2009 pre-construction and 2009 post-construction

Monitoring for landscaping success: water quality

Example Nummela wetland: reduction of turbidity (inflow - outflow)

Korkeasaari pocket wetland: well, there is inflow when it rains...

 \rightarrow Standard monitoring for water quality is not useful for pocket wetlands

Vegetation establishment: Barnacle geese (*Branta leucopsis*) and the Korkeasaari Zoo¹

- Helsinki is on the arctic flyway of the wild barnacle geese
- The first wild barnacle goose pair in the Helsinki area settled to breed amongst captive barnacle geese at the Korkeasaari Zoo in 1989
- The Zoo released excess 54 captive barnacle geese in 1987-1990: these birds and the wild individuals attracted by them have formed the Helsinki urban barnacle goose population

¹ Väänänen V-M *et al.*, 2011, Habitat complementation in urban barnacle geese: from safe nesting isla nds to productive foraging lawns, *Boreal Env. Res.* 16(suppl.B):26-34.

- The barnacle geese in Helsinki utilize habitat complementation
 - islands for nesting, urban irrigated lawns near the shoreline for foraging, and sheltered bays and isl ets for roosting
- Population growth has been exponential
 - 45% increase per year in 1996-2003
 - After 2003 to 22,5% increase per year
- The number of nesting pairs
 - 1 pair in 1989
 - 1500 pairs in 2010
- The geese feel very much at home in Korkeasaari there predators such as the red fox cannot reach them
- At the Zoo nature-based stormwater landscapes the barnacle geese selectively ate herbaceous vegetation lowering diversity of plant species

48

Designing and evaluating urban stormwater landscapes is a complex task

The Nummela Gateway Wetland

SPECIES RICHNESS Established vegetation 1st and 2nd growing seasons

Zoo Pocket Wetland

SPECIES RICHNESS Planted and self-stablished vegetation 1st and 3rd growing seasons

The European Bison enclosure

- Site: steep slope, draught or standing water, erosion, nutrient release
- Goal: Bison bearing, no sharp stones; grasses for landscaping?

Multiple runoff management structures...

51

Slope runoff and erosion control

Local diverse vs. imported vegetation

- The built green oases can be supported by runoff even through dry seasons
- The constructed landscaping creates pleasant environments for enclosure animals and visitors alike
- Barnacle geese grazing impacts plant species present and must be considered when planning functional landscaping

- Diverse local vegetation provides functions and tolerates disturbances better than monoculture imported species
- Multiple landscape structures designed at the watershed scale is necessary
- Controlled conveyance, diverse vegetation, and soil mixtures contribute to erosion control success
- No more runoff from enclosures enters the Baltic Sea

Case Nummela: Kilsoi Stream wetlands and critically endangered clay stream habitat

KILSOI STREAM WATERSHED

W

А

Т

Ε

R

S

Η

Е

D

Graph: Emmi Mäkinen

OW

59

The Nummela Gateway Wetland Park

1. CULVERT from the 500 hectares urban(350)/urbanizing /agricultural/forest watershed. Steam flow 10 l/s (low flow)...1000 l/s (storm/snowmelt peak flow).

2. Wetland INLET monitoring point: even stream section.

3. Stilling POND.

4. Rocky bottom **DAM**s: keep water level relatively even and above the lake level; add oxygen.

5. Wide and slowly deepening shallow coast line: facilitating a large and diverse **WETLAND**.

6. Three habitat **ISLANDS** slow down flow increasing water contact time. Shoreline embankment of on-site made willow bundles.

7. Wetland **OUTLET** monitoring point: even stream section.

- 8. Conserved shoreline WETLAND.
- 9. Receiving LAKE Enäjärvi.

10. Conserved willow **SHRUBBERY**, open **MEADOW** patches supporting songbirds and insects. Drainage **DITCHES** were disconnected and conserved as frog habitats.

11. Conserved **FOREST** on a steep hill: conserved as erosion control and a designated flying squirrel habitat.

12. Planted buffer **TREES** to partially shade pond and wetland: wetland species richness, cool water temperature, habitat, erosion control.

Diffuse pollution treatment wetlands

- Often considered:
 - Permanently inundated area
 - Berms
 - Length
- Floods: heavy rain, snowmelt
- Nature-based:
 - Gentle sloping banks
 - Flood meadows
 - Flood pools
 - Riparian buffer

A TREATMET WETLAND ? DEEP, STEEP: NO PLANTS - PIPE DAM: ERODE, DISCONNECT

REDO: GENTLE SLOPES, SHALLOW, RECONNECTED CORRIDOR, NO GEOTEXTILE

WETLANDS ARE COMPLEX!

Nummela Gateway Wetland Park -> TEEB Nordic

2005

2011

65

100

0

22.2.

4.3.

14.3.

24.3.

3.4.

13.4.

23.4.

OW

67

HERBACEOUS VEGETATION SELF-ESTABLISHMENT

Herbaceous species	2010	2017
Total	50	151
Non-native	2	4

July 2010

July 2011

July 2012 Graph: Emmi Mäkinen

Nummela Gateway

Water quality, example: Nummela Gateway wetland, 0,1% area of watershed: TP

- Calculated monthly averages from 10 min interval continuous monitoring

- Monthly relative (%, white bars) and absolute (kg/month, grey bars) reduction rates of Total Phosphorus (annual 10% 2013; 13% 2014, 16% 2015, 21% 2016)

2013, "Normal weather"

2014, "Climate change weather"

Stormwater treatment wetland

- Discrete source pollution
 - Stilling pond: coarse solids
 - Shallow emergent vegetation area: fine solids, dissolved compounds
 - Outlet pool: organic debris from the wetland
 Outlet = bottom dam
- Wetland area of contributing watershed: recomendation 1-5 %
 - \circ Already 0,1 % meaningful

WATER QUALITY e.g. Gateway, TP

- Hydrological year: Nov 1st –Oct 31st
- Years are different
- Construction etc. at the watershed
- Heavy rain or snowmelt:
 - Flow 个
 - Turbidity \uparrow
- At the wetland

P in

- Flood meadow becomes inundated, flow \downarrow HRT \uparrow
- Relative reduction, $\% \downarrow$
- Absolute reduction, kg \uparrow

Absolute reduction

Rain [mm]

Water quality after Niittu and Portti

Wetland, construction year, size of watershed

Niittu, 2013-2015, 0,3% and Portti, 2010, 0,1%

Suspended solids reduction in spring 2016

•Snowmelt period

• Niittu 4% + Portti 13% = 17%

•Construction of urban development after snowmelt period

• Niittu 22% + Portti 9% = 31%

Landuse and landscape management impact

Construction

Upstream (conductivity, turbidity)

Downstream (conductivity, turbidity)

LUODE

- Hydraulic retention time
- - Wetland maturation
- - Growing season

Graph and lower photo: Pasi Valkama

Frogs: most *Rana temporaria*, hibernating in water, some *R. arvalis*, soil

Wetland	Constructio	Inundated area ha	Fish access	Frogspawn cluster count									
site	n year			2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Gateway	2010	≥ 0.5 *	yes	27	36	36	30	48	37	33	22	41	42
Niittu (four distinctive parts)													
Pocket wetland	2011	0.1	low	> 115	129	2	8	87	89	36	0	14	8
Intermitte nt flood area	2013	max 0.4 **	no	0	44	230	193	> 587	> 531	> 258	> 406	> 280	181
Braided clay stream	2013 - 2014	0.1	very low	6	57	91	82	54	184	102	29	43	37
Main pool	2013 - 2014	0.9	yes	0	6	75	94	3	5	8	14	19	7
Niittu total	2011 - 2014	1.5	varies	> 121	236	398	377	> 731	> 809	> 374	> 449	> 356	233
*Up to > 1	ha flooded du	ring high flo	bods ca. 5	x yr. **	'Max ha	inunda	ted dur	ing spri	ng ampl	nibian s	pawning	g season	. May

dry completely in late summer.

Habitat capacity: frogs (common+moor)

Frogspawn cluster count Gateway and Niittu created stormwater wetlands

- Gateway wetland ca. 30-40 female frogs
- Niittu wetland ca. 300-400 female frogs

METHANE EMISSIONS

KEEP THE WETLADS COMPLEX!

- IMPORTANT AT S-RICH AREAS
- REDUCE METHANE EMISSIONS
- BIODIVERSITY AND HABITAT
- WATER QUALITY

FLOOD MEADOWS:

Concern: sink habitats -> Safe passages for fauna

Water invertebrates

- Species diversity development
 - Succession and environmental conditions

Environmental education

Evaluating ecosystem services of wetlands

Understanding water treatment

Aerial: Google Maps 2021

Ecosystem services valuation?

Waterworks park, Renton, WA

Wastewater Treatment Wetland Park, Arcata, CA

Incline Village (NV, USA) -Tres Rics (AZ, USA) Stormwater Treatment Area 1W (FL, USA) Environmental Operations Park (AZ, USA) Stormwater Treatment Area 5 (FL, USA) Stormwater Treatment Area 3-4 (FL, USA) -Vereen (SC, USA) -Stormwater Treatment Area 2 (FL, USA) -

82000

Value in EUR/ha/year (log-scale)

Fig. 3. Estimated per-hectare flow of recreational values in 2013 €/ha/year for 42 constructed treatment wetlands and waste stabilization ponds. From Ghermandi & Fichtman 2015 Ecological Engineering.

Educational surveys

SURVEY ON THE USAGE OF URBAN WETLANDS IN VIIKKI

CONSTRUCTED WETLANDS AND THEIR USAGE

Stream Viikinoja and stream Säynäslahdenpuro watersheds are located in VIIkk. Wetland areas are located within these stream networks.

<u>Wetland</u> is part of a landscape, small waters (river, stream or pond) or coastal areas that is saturated with water at least part of the year, and that has a characteristic vegetation of aquatic plants. Wetlands can be either natural or constructed.

<u>Urban wetlands</u> address various values simultaneously - such as recreation, biodiversity, and water and flood protection. The stream Vikinoja has been augmented with a winding shape, aquatic plant life and tiny islands. Natural wetlands are located in Southern part of Vikki, within the Vanhankaupunginlahti Bay area, which is nature conservation zone.

Sdyndsiahdenpura wetland in summer 2016. Photo: Janue Antikainen

4. How often do you visit the following wetland areas? (Please select one from each area)

	Vikineja park	Säynätlahdenpuro	Vanhankaupunginlahti Bay
I have never visited	[]	11	[]
Daily	()	()	()
Weekly	11	11	[]
A few times a month	11	11	11
Once a month	[]	11	I 1
A few times a year	0	11	11
Once a year or less	11	11	1.1

Evaluating ecosystem services

Survey to Vihti residents on wetland parks Niittu and Gateway as examples

Interests

- Pathways with trash collectors, information boards, nature observation, nature schools
- Meadows, trees & shrubs
- Views and biodiversity

Willingness to pay by stormwater fee

- Lake water quality improvement & recreation, not for species diversity
- Increased if had previously visited a constructed wetland
- Sum more than twice the current management cost

Respond to requests

Participatory design

Allowing and observing succession, engaging locals to environmental protection and citizen science

Volunteer events

- Making, knowing and caring for your backyard
 - Learning solutions and outreach

One must start somewhere

Further example, an agricultural wetland Existing site conditions

Implementation design

Implementation design detail

100

3D plan for constructor

First year after construction

Second spring after construction, migrating geese and other water fowl

How much water comes to the puddle?

(This runoff estimation method is called the "rational method")

Q=CIA Q = [l/s], I = [l/(s*ha)], A= [ha]

Or:

Q = 0,0028*C*I*A

Q = peak inflowing stormwater runoff rate [m3/s]

C = runoff coefficient: the proportion of rain that turns to runoff (0=none, 1=all)

I = intensity of the design storm [mm/h]

A = area of watershed from which water is collected [ha]

(0,0028=(mm/h)*(1m/1000mm)*(1h/3600s)*(ha)*(10.000 m2/ha))

(1 m3/s = 1000 l/s)

design storm = intensity for a rain event with known duration and return period (such as a 15 min rain event occurring once in 3 years)

			C values		
Surface			Min.	Max	
Street asphalt			0.70	0.95	
Street, concrete	E		0.80	0.95	
Drives and walk	G			0.85	
Roots			0.75	0.95	
Pervious areas.	A soils*	0-1% slopes	0.04	0.09	
		- 2-6% slopes	0.09	0.13	
		steep slopes	0.13	0.18	
Deminus areas	R soils*	0-1% slopes	0.07	0.12	
Pervious areas		2-6% slopes	0.12	0.17	
		steep slopes	0.18	0.24	
-	C colle =	0.1% slopes	0.11	0.16	
Pervious areas.	C SOILS	7-6% slopes	0.16	0.2	
		teep slopes	0.23	0.31	
-	Philasellet.	0-1% dopes	0.15	0.20	
Pervious areas	, D sous	2-6% slopes	0.20	0.25	
		steep slopes	0.28	0.38	
Composite v	alues			-	
Recidential	single-fam	ily detached	0.30	0.50	
The area to the state	multi-units	, detached		0.60	
	multi-units	s, attached	0.60	0.7	
	suburban	lots, < .2 ha (0.5 acre)	0.25	0.40	
	suburban	lots, ≥ .2 ha (0.5 acre)		0.4	
Apartment dv	Apartment dwelling areas				
Industrial	light areas	§	0.50	0.0	
	heavy are	185	0.60	0.3	
Parks and cer	0.10	0.4			
Playgrounds			0.20	0.4	
Railroad yard	areas	10.1.1	0.10	0.4	
Unimproved	areas	pasture (flat-steep)	0.31	0.4	