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ABSTRACT 

 
By measuring the electrostatic discharge of human bodies 

together with Mimosa Pudica and other plants in response to 
the human movement we have been able to recognize (a) 
individuals based on their distinctive pattern of body 
movements with 66% accuracy as well as (b) positive or 
negative mood based on their gait characteristics with 85% 
accuracy. We use the Plant SpikerBox, a device that measures 
the electrical action potential while also measuring the 
electrostatic discharge between the electrode on the leaves of 
a plant and the capacitively coupled human body. 

Index Terms— plants, sensors, IoT, electrostatic 
discharge, human-plant interaction 

 

1. INTRODUCTION 
 

In this paper, we describe how plants can be integrated as 
biological parts into an electric field detection unit to sense 
human behavior and emotions. Embedding plants into 
sensors is a natural and powerful extension of the Internet of 
Things. Plants naturally pervade our environment and are 
significantly less expensive in terms of production, operation, 
and maintenance costs than any artificial device (Manzella et 
al. 2013). Furthermore, plants do not fall under privacy and 
GDPR1 concerns. Moreover, conventional wireless systems 
usually store data or transmit data through Bluetooth. Unlike 
wearables, direct contact between the electrode and the 
human body is not necessary. Our approach is affordable, 
wear-free, and fit for long-time monitoring during daily 
activities. Furthermore, no devices need to be placed on the 
subject’s body, which may have been perceived as 
uncomfortable or obtrusive. In earlier, related work, 
researchers have used plants as sensors for environmental 
monitoring, e.g., pollution, and fires, in agriculture, e.g., for 
monitoring irrigation, plant health, and the use of chemicals, 
and area monitoring, e.g., for avalanches, and flooding 
(Chatterjee et al. 2015). To the best of our knowledge, this 

                                                        
1 General Data Protection Regulation 

use case applying electric field sensing to plants has not been 
described before. 

 
2. MEASURING THE ELECTROSTATIC 

DISCHARGE OF HUMANS WITH PLANTS 
 

For our experiments, we are using the commercially available 
Plant SpikerBox2, an Arduino-based data acquisition system 
with filters for plant signal measurement with a low bias-
current amplifier already installed. For checking the 
environmental conditions, we used a RaspberryPi-based 
monitoring system. Using different sensors for soil-moisture, 
CO2-concentration, temperature, and humidity, we were able 
to check the environmental conditions change during a 
measuring session. The changes in all measured fields were 
negligible.  
 
Human gait has, in the past, been measured through 
electrostatic discharge (Chen et al. 2012). When a human 
walks, steps, or jumps, static electricity is produced as a result 
of friction between the body and clothing. The separation 
between the human foot and the ground during walking also 
charges the human body (Li et al. 2018). 
 

 
(a) 

2 https://backyardbrains.com/products/plantspikerbox 
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(b) 
Figure 1. Electrostatic discharge is shown while experimenter walks 
by Mimosa Pudica which is connected to plant spiker box (PSB) (a) 
Schematic Diagram of Experiment (b) 
 
This change in static electricity arises when the foot makes or 
breaks contact with the floor. A negative charge occurs when 
the foot contacts the ground, while a positive charge is 
generated when the foot detaches from the ground (Chen et 
al. 2012). Therefore, it is possible to distinguish a foot 
making and breaking contact. These effects are known as 
contact electricity charges. During the walking motion, 
human capacitance (CB) can be expressed by Equation (1) 
(Chen et al. 2012). The capacitance between the foot and the 
Ground (CF) depends on the height of the sole. Both CF and 
the capacitance relative to nearby objects inside the room (Cr, 
i) is relative to the position of the individual. 
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The induced current i(t) due to the human walking motion is 
illustrated in equation (2) and (3). Qe is the charge induced on 
the plant electrode. The capacitance between the human body 
and the plant electrode is Cplant. S represents the equivalent 
area between the human body and the plant. X (t) and y(t) 
illustrate the horizontal distance and vertical distance, thus 
considering the radial distance to the plant. The permittivity 
of the air is described with 𝜀. I(t) takes to account the induced 
current generated by the feet motion without considering the 
variation of capacitance between the human body and the 
plant electrode, e.g., stepping in place. 
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The influence on the amplitude of measured electric field 
strength caused by environmental factors such as temperature, 
humidity, and clothing should be taken into consideration 
(Chubb 2008) as they will cause noticeable variations on 
amplitudes of measured signals. However, these 
environmental conditions will not change during a measuring 
session. The influence of the session itself is discussed in 
section 4.  
 
2.1 Experimental Setup 
 
A high-impedance voltage amplifier that is attached to the 
plant and capacitively coupled to the human body can sense 
this change in static electricity. Figure 2 visualizes the key 
components of our experimental setup. In our approach, we 
use a single-ended measurement of the plant stem using the 
soil as the local ground. The electrode can be used for electric 
field sensing due to the high resistance of the plant. In 
addition to electric field sensing, we can measure the action 
potentials of the plant generated by physical stress, like 
touching the leaves. 

 
 
Figure 2. Schematic of our Data-Acquisition system 
 
The electrical signals must be converted to features suitable 
for machine learning. Spectrograms are commonly used for 
ECG/EEGs (Colomer et al. 2016) and are utilized for audio 
classification in deep learning applications (Hershey et al. 
2017). In the past, researchers have extracted statistical 
features like MFCCs (Mel-frequency cepstral coefficients) 
for audio analysis (Tahon & Devillers 2016). The gathered 
signals in our approach look similar in envelope, shape, and 
frequency to signals in audio analysis. MFCCs are a small set 
of 10-20 features that describe the overall shape of a spectral 
envelope. In this paper, we used the parameters shown in 
Table 1 for feature extraction using MFCC. The sampling rate 
is given through the Plant SpikerBox. One reason to calculate 
MFCCs is to reduce the dimensionality of the amplitude 
spectrum, as well as to capture its envelope. 
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Features : MFCC 
Sampling Rate 10000 

Number of MFCCs 20 
Window Size 2500 
Hop Length 1250 
Exponent of 
Magnitude 2 

 
Table 1. Parameters to extract MFCC from a sample 
 
The first step is to measure the energy in the filter banks. 
Those triangular filters are spaced over the Mel scale 
(Marechal et al. 2019). The denser resolution in low 
frequencies compared to higher frequencies fits our approach 
since most of the information in the electrical signal we are 
measuring is at lower frequencies. The importance of the 
envelope in our application of gait-based electrostatic 
discharge was shown in (Chen et al. 2012). The Window Size 
and Hop Length for calculating the MFCCs were chosen to 
fit best for our application of electric field sensing and 
analyzing human gait of 1-2Hz (Li et al. 2019). Every feature 
has an additional time dimension to take walking time into 
account, resulting in additional calculations every 100ms. 
 
2.2 Applying Machine Learning for Individual Prediction 
 
Figure 3 describes the process we are applying for analysis, 
converting the electrical signals captured with the Plant 
SpikerBox into 20 MFCC signals, which are used to train a 
machine learning model. For plants, we have used Mimosa 
Pudica, common basil, thyme, and orchids. We have also 
been able to obtain the same electrical signal when 
connecting the electrodes of the plant spiker box to a fresh 
twig of hazel, beech, or apple tree with the grounding wire 
connected to the water in the vase where the twig was 
standing. 
 
Each gathered electrical signal had been trimmed so that 
every sample had the same length. Subsequently, each gait-
sequence was standardized using the Z-Transformation. In 
doing that, we eliminated the effect of different amplitude 
dimensions on subsequent analyses. By using MFCCs as our 
main feature, the dataset was reasonably large enough to use 
a decision tree based random forest classifier. Good accuracy 
has been achieved using decision trees to predict dangerous 
chemicals from electrical signals in plants (Chatterjee et al. 
2017). For predicting human gait characteristics using 
electric field sensing, decision trees have also been shown 
viable (Li et al. 2019). 
 

 
Figure 3. The machine learning process for people/emotion 
recognition 
 
 
In general, decision trees tend to be robust since they can 
work with different types of data and outperform other 
methods such as linear or logistic regression. They have no 
problem in the case of heterogeneous features or mixing 
completely different ranges of values (Strobl et al. 2007). To 
avoid overfitting and to make full use of the experimental 
data, a 10-fold Cross-validation algorithm was used for the 
train/test data split. A stratified algorithm was used to ensure 
that each fold has the same proportion of observations with a 
given categorical value. An additional shuffling of the data 
before the stratified 10-fold split was introduced to avoid 
overfitting even further. For the hyperparameters of our 
random forest, we used a randomized search optimization 
using over 7920 possible combinations and 100 iterations 
(Bergstra & Bengio 2012). 
 

3. PREDICTING THE MOOD OF DIFFERENT 
PEOPLE BASED ON THEIR WALKING PATTERN 

 
Dysphoric mood can be observed in gait patterns of 
individuals. Characteristics associated with being sad are 
smaller amplitudes in vertical movements of the upper body 
and reduced walking speed (Michalak et al. 2009). For our 
experiment, four individuals have walked “sad” and “happy” 
accordingly, collecting over 139 samples. Figure 5 shows two 
samples of z-transformed signals. Signal A shows the 
induced electric current of someone walking sadly towards a 
plant over time. The slower footsteps are shown as the spikes 
appear in much lower frequencies. The increasing amplitude 
results from the decreasing distance of the capacitively 

Mimosa Pudica

Mel-Frequency-Spectogram

MFCC Feature Vector

Random-Forest Classifier

Cropping and Z-Transformation
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coupled human and the plant. Signal B shows the signal of a 
human walking happily away from a plant. The spikes are not 
only higher in amplitude but also occur at a higher frequency. 
Signal B is shorter than signal A since the walking speed of a 
happy person is higher. Using the random forest classifier, an 
accuracy of 85.5 % was achieved (Cohens κ=0.711, 
AUROC=0.856). Table 2 shows an overview of the used 
hyperparameters for the “sad” and “happy” classification. 
 

Classifier : Random-Forest 
N 139 

Number of Classes 2 

Cross-validation 10-Fold CV and 80/20 
Train/Test Split 

Estimators 100 
Minimum Samples 

to split Node 5 

Minimum Samples 
per Leaf 4 

Maximum depth 
of Tree 100 

Samples drawn 
with replacement False 

 
Table 2. Hyperparameters of our random forest classifier 
 

 

(a)  
 

(b)  
Figure 4. Sample signals of one person walking sadly (a) and 
happily towards a plant (b) 
 
4. PREDICTING INDIVIDUAL PEOPLE THROUGH 

THEIR GAIT 
 
Similarly, electrostatic discharge of 6 people was recorded, 
identifying the correct person based on her/his gait. Two 
electrical signals gathered from two different persons 
walking by a plant are shown in Figure 5. The amplitude is 
increasing while walking towards and decreasing when 
walking away from the plant in both signals. While the 
frequency of steps seems to be identical, the way the foot rises 
and moves is different. The shapes around the area of the 
peaks change accordingly. The envelope of our gathered 
signals is comparable to the simulations and measurements of 
other studies in electric field sensing (Chen et al. 2012). 
Using a random forest classifier with 100 trees, and applying 
it on 212 samples classified into six classes, one per person, 
66% accuracy was achieved (Cohens κ=0.51, 
AUROC=0.876). 

 

(a)  
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(b)  
Figure 5. Sample signals of two different people walking by 
Mimosa Pudica 
 
In figure 6, we compared the random forest classifier to a 
baseline 0R-classifier, which always predicts the class with 
the most samples. When only two classes are to be predicted, 
the accuracy of the random forest classifier reaches 88% 
Accuracy comparable to the classification of “happy” and 
“sad” walking. With more than four people, the accuracy of 
the random forest classifier stays constant at 66%, whereas 
the accuracy of the 0R-classifier falls because of the 
additional diversification. This trend shows that our approach 
could be used in crowded areas or in public events. 
 

 
Figure 6. Accuracy of random forest classifier in comparison with 
baseline classifier over the number of persons 
 

Besides the 20 MFCC features, the plant type and the location 
were included in the prediction, to investigate their influence. 
Random forests can be used for feature selection. When the 
algorithm is fit, features that are not useful will not be used to 
split the data (Breiman 2001). For calculating the feature 
importance, we used the Mean Decrease in Impurity (MDI). 
Proportionally to the number of samples the tree splits, the 
sum over the splits across all trees is calculated. As 
mentioned above, besides Mimosa Pudica, different plants 
were used. The measurements were taken in Boston at two 
different locations, and as well as in Switzerland.  As figure 
7 illustrates, location and plant type were not essential 
predictors; the MFCC features from the electrostatic 
discharge signal were far more predictive. The feature 
importance indicates that the type of floor, the type of plant, 
and the location do not play a significant role in identifying a 
person. The lower order coefficients of the MFCCs and thus 
the lower frequencies of the electrical signal contain most of 
the information about the individual human gait 
characteristics. 

 
Figure 7. Feature importance for predicting different people 
 

5. MEASURING LEG SHAKING WITH PLANTS 
 
Leg shaking is often viewed as a negative behavior and is a 
common human stereotype that many people exhibit while 
sitting down. A study (Niehaus et al. 2000) found that over 
half of the study’s population (N=750) experienced some 
form of leg shaking. Leg shaking was reported to disrupt 
normal function and carry a negative social stigma while also 
being linked to medical conditions such as Attention Deficit 
Hyperactivity Disorder (ADHD). However, subjects without 
these conditions may also experience leg shaking due to 
anxiousness or agitation. Additionally, significant relations 
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between the Big Five personality traits and leg shaking have 
been found. (Oshio 2018) 
 
To see how well our method works with leg shaking, we let 
individuals sit on a chair and observed their leg shaking 
besides the plant. In figure 8, the measured electrical signal is 
shown over time. As soon as the individual starts shaking 
their leg, a distinct pattern with a frequency of 5-6 Hz is 
visible.  
(Xia et al. 2018) studied leg shaking prediction using 
accelerometers. They found that the power peak of the signal 
is around 6 Hz. Using the ratio of frequencies and feeding it 
into a Bayes’ classifier, they were able to get an accuracy of 
greater than 90%. As shown in figure 8, we were able to pick 
up the same spectrum of signals using our method. 
 

 
Figure 8. Sample signals of one individual shaking their legs 
besides the plant 
 
Our system would have applicability for instance for patients 
without medical conditions like Restless Leg Syndrome, so 
they can voluntarily halt their leg shaking once aware of the 
motion. The individual can be notified in real time once our 
setup detects leg shaking. 
	

6. CONCLUSION AND FUTURE WORK 
 
In this paper, we investigated how plants and humans can be 
connected through electric field sensing. Simple data 
acquisition systems and electrodes on plants enable us to pick 
up the electrostatic discharge of humans that are passing by. 
These signals contain information on gait characteristics that 
can be extracted using features like MFCC. With a 10-fold 
cross-validated random forest classifier, it was possible to 
predict one out of six humans that are walking by the plant 
with 66% accuracy. Dysphoric mood observable in gait-
patterns of these humans could be predicted with an accuracy 

of 88%. Similar to gait-characteristics, the behavior of sitting 
individuals’ leg-shaking can be observed using our system.  
Further analysis revealed that low-frequency MFCCs are the 
most predictive feature for walking patterns. The type of plant 
used, and the location where the experiment was conducted 
were not significant for the prediction.  
 
Applications for this plant-based sensing system could be 
used in large scale office environments or public events. 
Information about the happiness and other emotions of 
customers and employees could be used to improve office 
climate and performance. Smartwatch-based collaboration 
measurement tools such as the Happimeter (Roessler & Gloor 
2020) could be upgraded to enhance mood prediction using 
plants as emotion sensors. 
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