
Machine Learning January 10, 2019

Lab Class ML:XI

By 2019-01-23 11:59 am, solutions for the following exercises have to be submitted: 1 4, 5.

Exercise 1 : Data

Classify the following attributes as binary, discrete, or continuous. Also classify them as qualitative or
quantitative. Some cases may have more than one interpretation, so briefly indicate your reasoning if you
think there may be some ambiguity.

(a) Time in terms of AM or PM.

(b) Brightness as measured by a light meter.

(c) Brightness as measured by people’s judgments.

(d) Angles as measured in degrees between 0 ◦ and 360 ◦.

(e) ISBN numbers for books.

(f) Bronze, Silver, and Gold medals as awarded at the Olympics.

(g) Height above sea level.

Exercise 2 : Data Quality

Which of the following statements are true?

2 Noise can sometimes be interesting or desirable.

2 Outliers can sometimes be interesting or desirable.

2 Noise can introduce outliers.

Exercise 3 : Cluster Analysis Principles

Which of the following statements are true?

2 k-means is a supervised algorithm since the centroids are specified.

2 The runtime of k-medoid is higher than that of k-means due to the medoid computation.

2 Density-based cluster analysis is more efficient than single link.

2 DBSCAN is particularly efficient in high dimensions.

Exercise 4 : Hierarchical Cluster Analysis

Consider hierarchical agglomerative clustering in a two-dimensional feature space with Manhattan
distance. Construct a minimal example where the single link and group average link cluster distance
measures produce different dendrograms.

1 c©Stein/Chen/Ajjour 2018

Exercise 5 : P Exemplar-based Clustering

(a) Implement the exemplar-based iterative clustering algorithm as a Python function, based on the
pseudocode given on the lecture slides, with the following signature:

def exemplar_based_clustering(X, k, dist, pick_exemplar, t_max):
[your code here ...]

Your function should expect the following parameters:

• An n-by-p numpy array X, containing n points in p dimensions.
• An integer k specifying the number of clusters.
• A distance function dist, which takes two arguments—earch of them a p-dimensional

point—and returns a real number.
• A function pick_exemplar which takes an m-by-p array (containing all the points in one

cluster) as its only argument, and returns a p-dimensional point.
• An integer t_max specifying the maximum number of iterations.

Note that this deviates slightly from how the algorithm is specified on the slides. You may use the
following “convergence” criterion: your implementation should terminate if it finds the exact
same clusters in two consecutive iterations. The return value of your function should be
a 2-tuple (C,R). The value C is a 1-dimensional array with n elements, each of which is an integer
between zero and k − 1, where the i-th element of C is your algorithm’s cluster assignment for
the i-th point in X . The value R is a k-by-p array, containing the k cluster exemplars selected by
your algorithm.

(b) Verify that your function can be used to implement the k-means algorithm in the following way:

import numpy as np
euclidean_distance = lambda a, b: np.linalg.norm(a - b, ord=2)
pick_centroid = lambda cluster: np.mean(cluster, axis=0)
kmeans = lambda X, k, t_max: exemplar_based_clustering(

X, k, euclidean_distance, pick_centroid, t_max)

Example usage:

>>> kmeans(np.array([[0, 0], [1, 1]]), 2, 100)
(array([1, 0]), array([[1, 1], [0, 0]]))

Note that your implementation is still correct if the order of the elements in the returned arrays is
different.

(c) Implement a function pick_medoid. Use this function, as well as euclidean_distance and
exemplar_based_clustering, to implement the k-medoids algorithm.

(d) The following code snippet generates two artificial datasets of two-dimensional points. Run your
implementations of k-means and k-medoids on the blobs and moons dataset, with different values
of k. Visualize the points in a scatter plot, using different colors for the clusters found by your
implementation. Also highlight the cluster exemplars in your plot.

import sklearn.datasets as sd
np.random.seed(42)
blobs = sd.make_blobs(1000, 2, 3)[0]
moons = sd.make_moons(1000, noise=.05)[0]

Note: you may have to install the scikit-learn library. It is included in the Anaconda Python
distribution.

2 c©Stein/Chen/Ajjour 2018

https://webis.de/downloads/lecturenotes/data-mining/unit-en-cluster-analysis-iterative.pdf#clustering-exemplar-based
http://scikit-learn.org/stable/

