
Machine Learning January 9, 2018

Lab Class ML:VI

By 2018-01-17 solutions for the following exercises have to be submitted: 1, 3.

Exercise 1 : Perceptron Learning

Solve the following problems on learning boolean functions with perceptrons. Use the values 0 for false
and 1 for true, and the threshold function ϕ(x) = max(sign(x), 0).

(a) Design a single perceptron with two inputs xA and xB . This perceptron shall implement the boolean
formula A ∧ ¬B with a suitable function y(xA, xB). Hint: to start, determine the training data and
draw it, and a suitable decision boundary, in a coordinate system; then, determine a set of suitable
weights w = (w0, w1, w2).

(b) Train the perceptron from (a) with two iterations of the batch gradient descent algorithm, with a
learning rate η of 0.1 and the weights initialized with w0 = −0.5 and w1 = w2 = 0.5. Use the
following examples in the given order:

x1 x2 c(x)

0 0 0
0 1 0
1 0 1
1 1 0

(c) Why can the boolean formula A XOR B not be learned by a single perceptron? Justify your answer
with a drawing.

Exercise 2 : Gradient Descent

(a) What are the differences between the perceptron training rule and the gradient descent method?

(b) What are the requirements for gradient descent being successful as a learning algorithm?

(c) What are the differences between the batch and the incremental (stochastic) gradient descent?

Exercise 3 : P Multilayer Neural Networks

Your task is to approximate the boolean formula A XOR B using a two-layer neural network with the
following architecture:

1 c©Stein/Völske/Chen 2018

R

x2 = B

x1 = A

x0 ≡ 1

Q

P

1

w0P

w0Q

w1P

w1Q

w2P

w2Q

wPR

wQR

w0R

UI UH UOwH wO

Following the notation used in the lecture:

UI = {x0, x1, x2}
UH = {x0, yP , yQ}
UO = {yR}
w = wH ∪wO

wH = {w0P , w0Q, w1P , w1Q, w2P , w2Q}
wO = {w0R, wPR, wQR}

For thresholding, we use the sigmoid function σ(x) = 1
1+e−x . Hence, for a given input x and weight

vector w, the network output yR can be written as:

yR(x,w) = σ (w0R + wPR · yP (x,wH) + wQR · yQ(x,wH))
= σ (w0R + wPR · σ (w0P + w1Px1 + w2Px2) + wQR · σ (w0Q + w1Qx1 + w2Qx2))

(a) For the 9 elements of w, first determine a set of suitable values by hand, so that all examples are
classified correctly. Assume the classification rule

ĉ(x) =

{
0 if yR(x,w) ≤ 0.5
1 if yR(x,w) > 0.5

Hints: first determine the training set D = {(x, c(x)) | x = (1, A,B); c(x) = A XOR B)} for all
possible A, B. Then, decompose the XOR function into simpler boolean functions, and set the
weights wH so that yP and yQ operate accordingly. Finally, set the weigths wO to get the correct
yR.

(b) Implement the weight adaptation via batch gradient descent to find a set of weights for the XOR
problem automatically. Employ the error function

Err(w) =
1

2

∑
(x,c(x))∈D

(c(x)− yR(x))2

Use the pseudocode for backpropagation with incremental gradient descent given in the Lecturenotes
for guidance, and consider the following hints:

• Represent the training set as a pair of two-dimensional numpy arrays with shapes (4, 3) and
(4, 1), e.g.:

inputs = array([[1, 0, 0], outputs = array([[0],
[1, 0, 1], [1],

...]) ...])

2 c©Stein/Völske/Chen 2018

https://www.uni-weimar.de/medien/webis/teaching/lecturenotes/machine-learning/unit-en-multilayer-perceptron.pdf#algorithm-multilayer-perceptron-training

• Represent the two weight vectors wH and wO as two-dimensional numpy arrays W_H and W_O
with shapes (3, 2) and (3, 1), and initialize them with random values in the range [−0.5, 0.5]
(use an appropriate function from numpy.random). Define the sigmoid function using
numpy array operations.

• Compute the forward pass as in the equation for yR given above. Convince yourself that the
hidden layer activations yH = (yP , yQ) can be computed for the entire training set with a
single dot product:

y_H = sigmoid(np.dot(inputs, W_H))

However, note that yH must receive an extra column of ones before yR can be computed in a
similar fashion.

• The goal of the backpropagation pass then is to compute an adjustment to each element of w
according to ∂Err

∂w . Refer to the lecture slides, but keep the difference between incremental and
batch gradient descent in mind.

• Run the batch gradient descent for 10000 iterations for different random starting weights, and
observe how Err changes over time. If your implementation fails to converge to a correct
solution a lot of the time, adjust the learning rate η, and consider using the momentum weight
adaptation discussed in the lecture.

3 c©Stein/Völske/Chen 2018

