
Machine Learning November 23, 2017

Lab Class ML:III

By Wednesday, 2017-12-06 solutions for the following exercises have to be submitted: 1, 4, 5, 6.

Exercise 1 : Decision Trees

Construct a decision tree for each of the following boolean functions. Note: The target concept is the set of
all models, i.e., set of interpretations (0/1 assignments to the boolean variables) that fulfill a formula.

(a) A ∧ ¬B

(b) A ∨ (B ∧ C)

(c) A XOR B

(d) (A ∧B) ∨ (C ∧D)

Exercise 2 : Decision Trees (Background)

(a) For the construction of a decision tree almost always a top-down greedy search in the hypothesis
space is employed. Explain the term Greedy Search (synonymously: search with a greedy strategy).
What are its advantages and what are its disadvantages? When is a greedy strategy useful? Which
alternative strategies exist?

(b) The inductive bias of the Candidate Elimination algorithm is based on a different mechanism than
the inductive bias of the ID3 algorithm. Explain this statement by analyzing the rationale of the
inductive bias for each algorithm.

(c) What is the time complexity of the ID3 algorithm? Explain your answer.

Exercise 3 : Decision Trees (Overfitting)

(a) What is overfitting?

(b) Why is the example set D partitioned in a test set and a training set? Is such a partitioning necessary
to avoid overfitting?

(c) An approach to avoid overfitting is the use of so-called post-pruning algorithms: initially, an
oversized decision tree is constructed, which then is generalized by means of pruning. Explain
different pruning strategies such as reduced-error pruning and rule post pruning.

1 c©Stein/Völske/Chen 2017

Exercise 4 : Impurity Functions

Let D be a set of examples over a feature space X and a set of classes C = {c1, c2, c3, c4}, with |D| = 24.
Consider the following illustration of two possible decision trees, t1 and t2 – the colors represent the
classes present in each document set associated with the nodes of the trees; the numbers denote how many
examples of each class are present.

D2,1 D2,2

c1

c2

c3

c4

(t1) (t2)6

6 6

6
66

66

6 6
6 6

6 64
42
2

2 3 4 3 6 6 4 1 6 1 1 4 6 1

D1,1 D1,2

(a) First, consider only the first split that each of the two trees makes: compute ∆ι({D1,1, D1,2}) and
∆ι({D2,1, D2,2}) with the misclassification rate ιmisclass and the entropy criterion ιentropy as
splitting criterion. Interpret the results: which of {D1,1, D1,2} or {D2,1, D2,2} is the better first split?

(b) Which of t1, t2 is the better decision tree, and why?

(c) Assuming the splits shown are the only possibilities, which of t1 or t2 would the ID3 algorithm
construct, and why?

Exercise 5 : Cost functions

Consider the set of training examples describing mushrooms, and the simple one-level decision tree given
below:

Color Size Points Eatability
1 red small yes toxic
2 brown small no eatable
3 brown large yes eatable
4 green small no eatable
5 red large no eatable

attribute: size

small large

label: ?label: ?

(a) Determine the labels of all nodes using the cost function cost(c′ | c):

cost(c′ | c)

{
= 1 if c′ 6= c, c ∈ C
= 0 otherwise

(b) Devise a new cost function to ensure that none of the poisonous mushrooms in the training set are
classified as eatable, and determine the labels of all nodes (for this exercise, the structure of the tree
remains fixed).

(c) Using the formula given in the lecture slides, compute the misclassification costs of the tree for both
cost functions.

2 c©Stein/Völske/Chen 2017

Exercise 6 : P Algorithm ID3 and Measuring Performance

Develop a basic Python implementation of the ID3 algorithm discussed in the lecture. Use the mushroom
example data from the slides to develop and test your implementation. For convenience, represent the
examples as a list of Python dictionaries mapping attributes to their values. Hence, the example dataset
becomes:

mushrooms = \
[{’Color’: ’red’, ’Eatability’: ’toxic’, ’Points’: ’yes’, ’Size’: ’small’},
{’Color’: ’brown’, ’Eatability’: ’eatable’, ’Points’: ’no’, ’Size’: ’small’},
{’Color’: ’brown’, ’Eatability’: ’eatable’, ’Points’: ’yes’, ’Size’: ’large’},
{’Color’: ’green’, ’Eatability’: ’eatable’, ’Points’: ’no’, ’Size’: ’small’},
{’Color’: ’red’, ’Eatability’: ’eatable’, ’Points’: ’no’, ’Size’: ’large’}]

(a) Implement a function conditional_entropy(examples, attribute, target) where
examples is a list of dictionaries like above, and attribute and target are strings. The
function should return H(target | attribute). Refer to the lecture notes for the computation of
H , and remember that log2(0) needs to be treated specially.

Verify a few test cases: for instance, conditional_entropy(mushrooms, ’Color’,
’Eatability’) should return 0.4.

(b) Develop a class ID3Node which holds all the information related to one node in a decision tree,
including: which attribute is tested by the node; the node label; the children in the decision tree, and
which attribute value corresponds to which child. Your class should have at least the following two
methods:

• create_edge(self, attribute_value, child), where child is another ID3Node, and
attribute_value is the corresponding value of the attribute tested by self.

• classify(self, example) where example is a single dictionary like those in the list above,
and the return value is is one of the possible values of the target attribute.

Note: refer to the documentation if you are new to object-oriented programming with Python.

(c) Implement the function id3(examples, attributes, target) that builds a decision tree
according to the algorithm from the lecture and returns the root node. The parameter examples is a
list of dictionaries as above, attributes is a set of strings with the names of the predictors, and
target is a string with the name of the response variable.

(d) Implement the function misclassification_rate(tree, examples, target), where
tree is the root node of a decision tree, and the other parameters defined as above. Verify that a tree
trained using your id3 function on all five mushroom examples achieves a misclassification rate of
zero when tested on the same examples.

(e) Implement the function cross_validate_id3(examples, target, k) which splits the
examples into k similarly-sized random subsets, and then trains and evaluates k decision trees
using the k-fold cross-validation procedure. Your function should print out the misclassification rate
for each fold, and report the average cross-validated misclassification rate at the end.

(f) Download the car evaluation data set from the UC Irvine Machine Learning Repository. Read the
data set description, then convert the CSV data to our list-of-dictionaries format. Train and evaluate
ID3 decision trees with 5-fold cross-validation, and compute the average misclassification rate.

3 c©Stein/Völske/Chen 2017

http://www.uni-weimar.de/medien/webis/teaching/lecturenotes/machine-learning/unit-en-decision-trees-algorithms.pdf#algorithm-id3
http://www.uni-weimar.de/medien/webis/teaching/lecturenotes/machine-learning/unit-en-decision-trees-algorithms.pdf#mushroom-drawing
http://www.uni-weimar.de/medien/webis/teaching/lecturenotes/machine-learning/unit-en-decision-trees-algorithms.pdf#mushroom-drawing
http://www.uni-weimar.de/medien/webis/teaching/lecturenotes/machine-learning/unit-en-decision-trees-impurity.pdf#definition-information-gain
https://docs.python.org/3/tutorial/classes.html#a-first-look-at-classes
http://www.uni-weimar.de/medien/webis/teaching/lecturenotes/machine-learning/unit-en-performance-measures.pdf
https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/machine-learning-databases/car/car.names
https://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data

