Computational Argumentation Seminar

Basics of Scientific Presentation

Henning Wachsmuth
November 1, 2017

partly based on slides of Prof. Dr. Gregor Engels and Prof. Dr. Steffen Becker
Outline

- **Literature research**
 Types, quality, reading, acquisition, and organization

- **Oral presentations**
 Content, structure, style, talking, and timing

- **Written presentations**
 Content, structure, style, citations, and plagiarism
Literature research
Doing literature research

- **Literature research**
 - Fundamental task in science
 - Time-intensive and hard — but necessary
 - You are rarely the first to work on a problem
 If you are, what does that tell you?
 - Don‘t reinvent the wheel

- **Why literature research**
 Not all relevant for the seminar talk
 - Find out if your approach to a problem is new
 - Find alternative approaches or perspectives
 - Widen the scope of the problem
 - Obtain background information
 - Obtain evidence for your or other‘s claims
 ... and many other reasons
Selecting literature

- **Types of literature (and similar)**
 1. **Books.** Theory, basics, approved techniques
 2. **Scientific journal papers.** Completed research lines
 3. **Conference papers.** State-of-the-art research
 - In our field, major publication type
 4. **Workshop papers.** New ideas, ongoing research
 5. **Conference/Online tutorials.** Easy access to basics and techniques
 6. **Popular science magazines.** Easy access to research lines
 7. **Other websites.** Anything

- **What type to prefer**
 - Generally, literature should be peer-reviewed
 - Most literature of types 1–4 is peer-reviewed, but not all
 - Rule of thumb: books > journals > conferences > workshops
 > tutorials > magazines > websites > other
 - But, for example, top conferences > average journals
Assessing quality of literature

- **Conference and journal rankings**
 - Top tier ranked A+/A* or A; B still good
 - Unranked conferences/journals may be doubtful
 No ranking achieves complete coverage, though
 - One of the most reputable rankings is CORE
 core.edu.au/conference-portal

- **Number of citations**
 - Roughly indicate importance
 - Rather for *relative* comparisons within a topic
 - Notice: Newer papers naturally tend to have less citations
 - Good resource for citation numbers is Google Scholar scholar.google.de
 Journals also have so called impact factors derived from citation numbers

- **Disclaimer**
 - **Good and bad research appears at all places**
 - Often, only reading helps
Reading and finding literature

- **Reading papers efficiently**
 1. Read abstract, introduction, and conclusion
 2. Look at figures and tables
 3. Decide whether worth reading everything
 4. Read goal-driven
 Specify questions to be answered during reading

- **Finding the next paper**
 - Follow promising references at the end of a paper
 - Find promising papers citing a paper
 - Learn to identify the best search terms
 Rule of thumb: As specific as possible, but as abstract as needed

- **Getting started in the seminar**
 1. First read the literature that we provide
 2. Then find further literature
Acquiring literature

- **Obtaining papers**
 - Many papers freely available online
 - Others might be free from a university network
 ... although our university not the best in this regard 😊
 - If neither, maybe your advisors can help

- **Important sources**
 - **ACL Anthology** for computational linguistics papers aclanthology.coli.uni-saarland.de
 - **ACM Digital Library** for many important computer science papers dl.acm.org
 - **dblp** for any literature related to computer science dblp.dagstuhl.de
 - **Google Scholar** for any scientific literature scholar.google.de
 ... and general web search, of course

- **Accessing books**
 - Check if available in the library
 - Some accessable online, for example, on Google Books books.google.de

Purchasing books can make sense when of continuous importance for you
Organizing literature

- **Literature organization**
 - Maintain overview, start from the beginning
 - "Extra" effort will pay off

- **Create logical folder structure**
 - Build your own view of the field
 - Logically subdivide topics, but don't over-engineer
 For instance ./literature/computational-argumentation/argument-mining/ — but maybe not deeper

- **Rename all literature consistently**
 - Simplifies browsing and finding
 - We use <1stauthor><2digityear>-<full-title-lower-case-no-special-chars>.pdf
 For example: aijour17-unit-segmentation-of-argumentative-texts.pdf

- **Organizing meta-information**
 - Bibliographical information needed when citing literature
 - Store bibtex of literature whenever available
 Learn more on en.wikipedia.org/wiki/BibTeX; many pages such as dblp provide bibtex's
Oral presentations
Content of your talk

- **Scientific presentation is storytelling**
 - Plan what points to make and how to get there
 - Tell a coherent story with a central theme
 - Make it exciting, show importance
 - Don't be complete, be selective
 Holds for talks; different in articles (see below)
 - Avoid surprise: Clarify why you tell something

- **Science needs to be understood**
 - Adjust complexity to audience
 - Leave out formal things, unless needed
 Holds for talks; may be different in written articles (see below)
 - Be precise and clear
 - Introduce terms, use consistently
 - Figures and examples help

"Sometimes reality is too complex. Stories give it a form."

Jean-Luc Godard

"Everything should be as simple as possible, but not simpler."

Basics of Scientific Presentation, Henning Wachsmuth
Figures

- Figures
 - Charts, diagrams, graphs, pictures, drawings, ...
 - Slides are visual
 - Rule of thumb: No slide without figure

- What to use figures for
 - Primary. Replace text; visually explain concepts, ...
 - Secondary. Support your message with pictures (as often done in this presentation)

- Formats
 - Vector graphics whenever possible
 - Others: Optimize sharpness, scale down smartly
 Never scale > 100%; 50% is better than 53% — why?

- Readability
 - Think of color blind people — contrast helps
 - Check readability of included text

"a picture is worth a 1000 words "

"unsharpness is the mistake that even lay persons see"
Structure of your slides

- **Overall structure of presentation**
 - **Title slide.** Title, authors, maybe date
 - **Outline slides.** Only for longer talks (as of ~20 slides)
 - **Content slides.** Your story
 - **Conclusion slide.** Take aways, future work
 - **References.** Only shown when asked for

- **Structure of content slides**
 - **Header.** Clear unique title
 Notice: Titles often not read by the audience
 - **Body.** Bullet points, figures, tables, etc.
 - **Footer.** Page number, title, presenter, progress?, no date!

- **Space for separation**
 - Leave space between different slide parts
 - Leave some space to slide borders
 Harder to read there + border sometimes clipped
Style of your slides

- **General slide style**
 - Vary slides to maintain attention
 - **Decide what to put on slide and what to say**
 - Animations only when useful, use consistently
 Avoid playful ones, unless they match your message
 - Clarify what is from you and what from others
 Also see notes on citations below

- **Text style**
 - No full sentences, rather key phrases
 - Avoid grammar and spelling errors
 - AIA & AUA
 Always introduce acronyms & Avoid unnecessary acronyms

- **Amount of text**
 - Some say 7x7 — maximum 7 bullet points per slide, 7 words per point
 - I’d rather say 3x3 — 3 top-level points with 3 sub-points
Fonts

- **Fonts**
 - Sans-serif fonts (Arial, Helvetica, ...) much more readable on slides
 - I use *serif* fonts (Times, Garamond, ...) only for example texts

- **Font size**
 - This text is written in 26 pt — for titles and stressing
 - This text is written in 24 pt
 - This text is written in 21 pt
 - This text is written in 18 pt — minimum for text that should be read
 - This text is written in 16 pt
 - This text is written in 14 pt
 - This text is written in 12 pt — minimum for extra information that may be skipped
 - This text is written in 10 pt
 - This text is written in 8 pt
 - This text is written in 6 pt — maybe for texts that should on purpose not be readable

- **Font colors**
 - Use colors consistently
 - **Not too colorful**
Talking and timing

- Giving a talk
 - Look at audience, speak to everybody
 - No pre-phrased sentences
 - Match words on slides, but complement them
 - Don’t be too formal, but be serious, avoid slang
 Jokes may be nice if you know how to use them

- Timing
 - Use your time, but stick with time limit
 - Expect ≥ 2 minutes per content slide
 - Rule of thumb: Audience can read slide twice
 - Leave time for questions and discussion

- Practice your complete talk
 - How much time do you need?
 - Does your story work?
 - Can you explain everything well?
Written presentations
Content of articles

- **Most hints on talks also hold for articles**
 - Science is storytelling
 - Seminar: No scientific break-through expected
 - Science needs to be understood

- **Articles more complete**
 - Tell the whole story, avoid gaps in argumentation
 - But: Include only relevant content
 - Don’t expect too much prior knowledge
 - But: No details on knowledge that can be presupposed

- **Articles should be sound**
 - Need to be precise more than in talks
 - Use logical arguments, from broad context to deep details
 - Formalize concepts if needed/helpful
Structure of articles

- **High-level structure**
 - Title and author information
 - Abstract
 - Usually 4–7 sections
 - References
 - Appendices

- **Section structure**
 - Often numbered subsections (2.1, 2.2, ...)
 - If any, subsubsections unnumbered
 - Always have text before sub+sections

- **Section headings**
 - Conventional: First is "Introduction", last is "Conclusion"
 - Other sections topic-specific
 - Some semi-conventional content sections exist, but not really suitable for seminar articles
 - Short misleading headings worse than long clear ones
Abstract

- A concise high-level summary of the paper
- Usually 5–10 sentences

My view of a good abstract
- Motivation and context (1 sentence)
- Problem and why not solved (1–2 sentences)
- Question addressed in the paper (1 sentence)
- Approach in general, some details (2–3 sentences)
- Evaluation, results, conclusion (1–3 sentences)

For seminar articles, may differ a bit though

My former professor’s view
- What is the problem? Why is it a problem?
- What is the solution? Why is it a solution for the problem?

Notice that this view is NOT in conflict with mine
Sections

- **Introduction**
 - The abstract in more detail
 - *Tell the whole story, from context to conclusion*
 - High-level, understandable for computer scientists

- **Content sections**
 - The introduction in more detail
 - *Elaborate on related work, concepts, models, data, approaches, experiments, and results*
 - More technical, for researchers from the area

- **Conclusion**
 - The introduction in less detail
 - *Summarize story in retrospective, give outlook*
 - Semi-technical
Style of articles

- **Scientific writing style**
 - Write clearly, unambiguously, and concise
 - **Don’t make things complex**
 (common misunderstanding)
 - Use impersonal or “we“ form

- **Some guidelines**
 - Avoid pronouns with unclear references
 - Use explicit discourse markers, such as ”because“
 - Blurring is non-scientific, such as ”It could be...“
 - **English sentences are short, one statement per sentence**
 - Again: Avoid grammar and spelling errors

Seminar: Too many of them will negatively affect your grade

- **Article format in the seminar**
 - Provided template predefines layout and its usage
 - 8 two-column pages of content, 1–2 pages of references
Tables, figures, terms, and footnotes

- **Tables and figures**
 - Explain in text and in caption
 - In papers, just number increasingly
 - Figure 1, 2, ... Table 1, 2, ...
 - (NOT: Figure 2.1, 2.2, ...)
 - Tables: Horizontal lines suffice
 - No included font larger than article font

- **Technical terms**
 - Introduce where needed, don’t overformalize
 - Use well-defined terms, AIA & AUA
 - Don’t use synonyms for terms
 - Reader is misled to check whether intentional differences exist

- **Footnotes**
 - Only for secondary information
 - Reduce readability, should be an exception
 - Don’t cite literature using footnotes

Figure 1: (a) Example text with five argument units, taken from the Arg-Microtexts corpus introduced in Section 3. (b) Graph visualization of the sequential and hierarchical overall argumentation of the text.

Alternatives by modeling the stance of each unit towards its parent in the associated tree. This stance can be derived in all corpora. All other unit and relation types from the specific models are ignored, since there is no clear mapping between them.

3 Alternatively, the stance towards the main claim could be modeled. We decided against this alternative to avoid possibly wrong reinterpretations, e.g., it is unclear whether a unit that attacks its parent always supports a unit attacked by the parent.
Citation

- **Citation**
 - In-text reference to a bibliographic source
 - We use ACL-style: **Author names + year**
 Other communities use numbers ([1], [2], ...) or acronyms ([ACW17], ...)

- **What to cite**
 - Any reuse, paraphrase, summary, and translation of text from another source
 Also have to cite yourself if you use your own sources
 - Rule of thumb: **Always clarify what is from you and what from others**
 - Better one citation too much than one too less
 Can also ask your advisors in cases of doubt

- **How to cite**
 - **Direct reuse.** Put in quotes (possibly shorten with [...]), give source
 Example: Unit segmentation is "[...] the splitting of a text into argumentative segments" (Ajjour et al., 2017).
 - **Other citations.** Give source close-by
 Example: As Ajjour et al. (2017) points out, segmentation is the first task of an argument mining pipeline.
 - **Large text portions.** Give source once in the beginning
 Example: In the following paragraph, we summarize the segmentation approach of Ajjour et al. (2017).
References

- **List of references**
 - Bibliographical information at end of paper
 - Exactly those references cited in the text
 - References should be complete and consistent

- **Needed meta-information**
 - **All literature.** Author, year, title
 - **Conferences/Workshops.** Proceedings, pages
 - **Journals.** Journal name, issue, number, pages
 - **Books.** Edition if any, publisher
 - **Only online.** Give URL with access date
 - **Other meta-information optional**

- **Bibtex**
 - LaTeX handles references automatically using bibtex

Plagiarism

- **Plagiarism**
 - To sell another’s ideas or expressions as one’s own
 See en.wikipedia.org/wiki/Plagiarism
 - On purpose or due to lack of giving sources
 - Plagiarism *not* a trivial offense
 In some countries considered as crime
 - **Proper citing avoids all plagiarism issues**

- **Consequences in the seminar**
 - Major cases lead to the denial of being graded
 - Minor cases can still negatively affect your grade

- **Webis and plagiarism**
 - Webis does research on plagiarism detection
 - See our tool picapica www.picapica.org
Sum up
Take aways

- Literature research
 - Fundamental part of scientific work
 - Literature varies in quality and suitability
 - Find, read, and organize literature efficiently

- Oral and written presentation
 - Science is storytelling, needs to be understood
 - Several best practices for content, structure, and style
 - Proper citation is a must
 - Practice oral and written presentation early

- For the seminar
 - Consider hints in this presentation
 - Notice that some are subjective, much is missing
 - Develop your own way of presenting
Several slides reuse content from:

Examples are taken from:
