Search Algorithms January 5, 2015

Lab Class S:V

By January 8th, 2015 solutions for the following exercises have to be submitted: 1, 3, 4, 5, 6

Exercise 1: Optimistic heuristics

Given the 8-puzzle problem. Let the true cost of each state A be the minimum number of moves necessary to reach the goal state from A. Example:

1	2	3	[
4		6	4
7	8	5	′
	Α		

(a) The heuristic cost function \widehat{C}_1 estimates the cost of A as the number of positions for which the tile on that position in A is not equal to the tile on that position in the goal state. In the example above, $\widehat{C}_1(A)=2$ (1 for the central and bottom right positions each). Is \widehat{C}_1 optimistic?

goal

- (b) The heuristic cost function \widehat{C}_2 estimates the cost of A as the sum of the Manhattan (city block) distances between the position of each of the 8 tiles in A and its position in the goal state. In the example above, $\widehat{C}_2(A) = 2$ (tile 5 has to be moved up by 1 and left by 1). Is \widehat{C}_2 optimistic?
- (c) Does $\widehat{C}_1(A) \geq \widehat{C}_2(A)$ or $\widehat{C}_1(A) \leq \widehat{C}_2(A)$ hold for all valid states A?

Exercise 2: Locally finite graphs

- (a) What does it mean that a graph is locally finite?
- (b) Give an example of a search space where the graph is not locally finite.
- (c) Can you still perform search on a graph if it is locally infinite?

Exercise 3: Uniform cost search on infinite graphs

Given a locally finite graphs with an infinite number of nodes and edge costs from the domain of natural numbers $(1, 2, \ldots)$. Does uniform cost search always terminate with a solution if one exists? Explain your answer.

Exercise 4: Optimum solution in OR-graphs

Given a locally finite OR-graph with several solutions and positive edge costs. Can an optimal solution always be found?

Exercise 5 : Cost measures

Given an OR-graph G and the cost function

$$C_{P(\gamma)}(n_k) = \sum_{i=k}^{m-1} \frac{c(n_i, n_{i+1})}{m-i}$$

Where n_{i+1} is the successor of n_i in the solution path $P(\gamma)$ and n_m is the goal node encountered when following this path. Is $C_{P(\gamma)}$ recursive?

© Kiesel/Völske 2014

Exercise 6: Cost functions in problem reduction search

In game theory, the optimal cost for a node n in a two-player game with perfect information is often described by a cost function of the following form:

$$C^*(n) = \left\{ \begin{array}{ll} 0, 2, 1 & n \text{ is a leaf and represents a win, a loss, a draw} \\ \max_i(C^*(n_i)) & n \text{ represents the second player's turn (AND-node)} \\ \min_i(C^*(n_i)) & n \text{ represents the first player's turn (OR-node)} \end{array} \right.$$

where n_i are the successors of node n. Consider the following modified version of the game Tic-Tac-Toe:

- The game is played on a k-by-k board.
- Players take turns placing one mark (a cross for player 1 and a circle for player 2) on an empty space on the board.
- The first player to place k own marks in a row horizontally or vertically (not diagonally) wins.
- (a) Devise a suitable encoding and operators for the search space given by this game.
- (b) Write a program that takes the parameter k as input, and identifies a winning strategy for the first player if one exists. Use either GBF or GBF^* as your control strategy, and employ the cost function C^* given above.
- (c) Instead of winning the game, your goal is to force a draw (i.e., a situation where no player can place k marks in a row). Design an alternative cost measure for this situation.
- (d) Use your program to compute an optimal strategy (one for each cost measure) for the first player using the parameter settings k=2 and k=4.

2 © Kiesel/Völske 2014