By February 4th, 2015 solutions for the following exercises have to be submitted: 1, 2, 3, 5, 7.

Exercise 1 : Heuristics
Let \(n \) be a node in a search space graph that is explored by \(A^* \) using heuristic \(h \).

(a) When can the value of \(h(n) \) change during \(A^* \)-search?
(b) When can the value of \(g(n) \) change during \(A^* \)-search?
(c) When can the value of \(g(n) \) change during \(A^* \)-search with admissible \(h \)?
(d) When can the value of \(g(n) \) change during \(A^* \)-search with monotone \(h \)?

Exercise 2 : Admissibility
In the lecture, we have proven that the algorithm \(A^* \) is admissible when using an admissible heuristic. Does this also apply to the algorithm \(Z \)?
Justify your answer.

Exercise 3 : Monotonicity
Consider the search problem of finding the shortest sequence of knight moves between two given squares on a chessboard, as discussed in the lecture. Let \(h \) be a heuristic that estimates the number of moves remaining for a given board square represented by node \(n \).

\[
h(n) = \frac{d_M(n, \gamma)}{3}
\]
where \(d_M(n_1, n_2) \) is the Manhattan distance between the board squares corresponding to nodes \(n_1 \) and \(n_2 \).

(a) Define the term “monotonicity” in the context of heuristic cost estimation functions.
(b) Show that \(h \) is both admissible and monotone.
(c) For the same search problem, find a heuristic that is admissible, but not monotone.

Exercise 4 : Reopening
Consider the following search space graph:

Add edge cost values and \(h \)-values for the nodes, such that the number of reopenings done by algorithm \(A^* \) is exponential in \(k \).
Exercise 5 : Relaxed Models

Consider the general approach to weighted node evaluation, where \(f_w(n) = (1 - w) \cdot g(n) + w \cdot h(n) \). Under which conditions does it make sense to use a weighting where \(w \) is close to 1, disregarding the current path cost \(g \)?

Exercise 6 : Relaxed Models

The algorithm \(A^*_\varepsilon \) uses two heuristic functions \(h \) and \(h_F \). What is the advantage of using \(h \neq h_F \)?

Exercise 7 : Implementing DWA* Search

Consider the 8-puzzle problem. Your task is to reach the goal state \(\gamma \) with as few moves as possible.

\[
\begin{array}{ccc}
6 & 4 & 7 \\
8 & 5 & \\
3 & 2 & 1 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \\
\end{array}
\]

(s) Consider the case that \(\gamma \) would not be reachable from a start state. Would DWA* expand the same number of nodes as A* until it fails?

(b) Consider the case \(N = 1, \varepsilon \approx 1 \) and \(h \approx h^* \). Would you expect that DWA* performs more, less, or the same amount of node expansions as A*?

(c) Consider the case \(N \to \infty, \varepsilon \approx 1 \) and \(h \approx h^* \). Would you expect that DWA* performs more, less, or the same amount of node expansions as A*?

(d) Implement a DWA* search for the 8-Puzzle problem using \(h_2 \), the sum of the Manhattan distances from each of the 8 tiles to its position in the goal state. What changes do you need to make to your A* implementation? You can also use the A* example implementation from the lecture’s web page as a base.

(e) Run your implementation with \(N \in \{5, 10, 15, \ldots, 50\} \) and \(\varepsilon \in \{\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2\} \). Use s as the start and \(\gamma \) as the goal state. Show the number of node expansions performed by DWA* for each of the 50 pairs of \(N \) and \(\varepsilon \). You can use a table or graphs.

(f) For the same parameters as above, show the number of moves of the solution found by DWA*, \(g(\gamma) \), for each pair of \(N \) and \(\varepsilon \).

(g) For what parameter setting does DWA* terminate with an optimal solution with the smallest amount of node expansions? How many node expansions are these?

(h) For what parameter setting does DWA* terminate with a solution with the smallest amount of node expansions? How many node expansions are these?