Search Algorithms January 23, 2015

Lab Class S:VI

By February 4th, 2015 solutions for the following exercises have to be submitted: 1, 2, 3, 5, 7,

Exercise 1: Heuristics

Let n be a node in a search space graph that is explored by A^* using heuristic h.

- (a) When can the value of h(n) change during A*-search?
- (b) When can the value of g(n) change during A*-search?
- (c) When can the value of g(n) change during A*-search with admissible h?
- (d) When can the value of g(n) change during A*-search with monotone h?

Exercise 2: Admissibility

In the lecture, we have proven that the algorithm A^* is admissible when using an admissible heuristic. Does this also apply to the algorithm Z?

Justify your answer.

Exercise 3: Monotonicity

Consider the search problem of finding the shortest sequence of knight moves between two given squares on a chessboard, as discussed in the lecture. Let h be a heuristic that estimates the number of moves remaining for a given board square represented by node n.

$$h(n) = \frac{d_M(n, \gamma)}{3}$$

where $d_M(n_1, n_2)$ is the Manhattan distance between the board squares corresponding to nodes n_1 and n_2 .

- (a) Define the term "monotonicity" in the context of heuristic cost estimation functions.
- (b) Show that h is both admissible and monotone.
- (c) For the same search problem, find a heuristic that is admissible, but not monotone.

Exercise 4: Reopening

Consider the following search space graph:

Add edge cost values and h-values for the nodes, such that the number of reopenings done by algorithm A^* is exponential in k.

Exercise 5: Relaxed Models

Consider the general approach to weighted node evaluation, where $f_w(n) = (1 - w) \cdot g(n) + w \cdot h(n)$. Under which conditions does it make sense to use a weighting where w is close to 1, disregarding the current path cost g?

Exercise 6: Relaxed Models

The algorithm A_{ε}^* uses two heuristic functions h and h_F . What is the advantage of using $h \neq h_F$?

Exercise 7: Implementing DWA* Search

Consider the 8-puzzle problem. Your task is to reach the goal state γ with as few moves as possible.

- (a) Consider the case that γ would not be reachable from a start state. Would DWA* expand the same number of nodes as A* until it fails?
- (b) Consider the case N=1, $\epsilon\approx 1$ and $h\approx h^*$. Would you expect that DWA* performs more, less, or the same amount of node expansions as A*?
- (c) Consider the case $N \to \infty$, $\epsilon \approx 1$ and $h \approx h^*$. Would you expect that DWA* performs more, less, or the same amount of node expansions as A*?
- (d) Implement a DWA* search for the 8-Puzzle problem using h_2 , the sum of the Manhattan distances from each of the 8 tiles to its position in the goal state. What changes do you need to make to your A* implementation? You can also use the A* example implementation from the lecture's web page as a base.
- (e) Run your implementation with $N \in \{5, 10, 15, \dots, 50\}$ and $\epsilon \in \{\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2\}$. Use s as the start and γ as the goal state. Show the number of node expansions performed by DWA* for each of the 50 pairs of N and ϵ . You can use a table or graphs.
- (f) For the same parameters as above, show the number of moves of the solution found by DWA*, $g(\gamma)$, for each pair of N and ϵ .
- (g) For what parameter setting does DWA* terminate with an optimal solution with the smallest amount of node expansions? How many node expansions are these?
- (h) For what parameter setting does DWA* terminate with a solution with the smallest amount of node expansions? How many node expansions are these?

2 © Kiesel/Völske 2015