
Getting Started with Hadoop

May 28, 2018

Michael Völske, Shahbaz Syed

Web Technology & Information Systems
Bauhaus-Universität Weimar

1 © webis 2018

What is Hadoop

q Started in 2004 by Yahoo

q Open-Source implementation of Google MapReduce, Google Filesystem
and Google BigTable

q Apache Software Foundation top level project

q Written in Java

2 © webis 2018

What is Hadoop

q Scale out, not up!

– 4000+ nodes, 100PB+ data
– cheap commodity hardware instead of supercomputers
– fault-tolerance, redundancy

q Bring the program to the data

– storage and data processing on the same node
– local processing (network is the bottleneck)

q Working sequentially instead of random-access

– optimized for large datasets

q Hide system-level details

– User doesn’t need to know what code runs on which machine

3 © webis 2018

What is Hadoop

[http://hortonworks.com/hadoop/yarn/]
4 © webis 2018

http://hortonworks.com/hadoop/yarn/

HDFS – Distributed File System
HDFS Overview

q Designed for storing large files

q Files are split in blocks

q Integrity: Blocks are checksummed

q Redundancy: Each block stored on multiple machines

q Optimized for sequentially reading whole blocks

q Daemon processes:

– NameNode: Central registry of block locations
– DataNode: Block storage on each node

5 © webis 2018

HDFS – Distributed File System
Reading Files

6 © webis 2018

A Virtual Hadoop Cluster
Typical Cluster Network Layout

public network

user

cluster network

SSH Gateway

HDFS
Datanode

HDFS
Datanode

HDFS
Datanode

HDFS
Namenode

YARN
ResourceManager

YARN
NodeManager

YARN
NodeManager

YARN
NodeManager

7 © webis 2018

A Virtual Hadoop Cluster
Simplification: simulate only relevant processes

public network

user

cluster network

SSH Gateway

HDFS
Datanode

HDFS
Datanode

HDFS
Datanode

HDFS
Namenode

YARN
ResourceManager

YARN
NodeManager

YARN
NodeManager

YARN
NodeManager

8 © webis 2018

Docker tutorial

. Introduction to Docker
q Why Docker?
q Container vs Virtual Machine
q Images & Containers
q Docker workflow
q Dockerfile

9 © webis 2018

Why Docker?

Docker provides lightweight containerization of applications.

q Containerization : Use of Linux containers to deploy applications

q Container : Self-contained, lightweight environment

q Run applications with exactly the same behavior on all platforms

q (Un)Install packages/applications without convoluting the host system

q Highly suitable for developing scalable, micro-services based applications
(e.g. Netflix)

10 © webis 2018

Container vs Virtual Machine

q A container runs natively on Linux and shares the kernel of the host
machine with other containers. (minimal memory consumption)

q A VM runs a full blown guest OS with virtual access to host resources.
(extra memory allocated than needed)

[Container vs VM]

11 © webis 2018

https://docs.docker.com/get-started/

Images & Containers

Analogy => {Image : Containers} = {Class : Objects}

A Docker Image

q is an immutable snapshot of a filesystem
q contains basic kernel & runtime needed for building larger systems (e.g

base ubuntu image)
q is built using Dockerfile (a recipe to build an environment from scratch)

A Docker Container

q is a temporary filesystem on top of a base Image
q saves all installations as a stack of layers
q discards all layers when stopped and removed
q consists of its own network stack (private address) to communicate with the

host
q has options to start, stop, restart, kill, pause, unpause

12 © webis 2018

Docker workflow

[local workflow]

Run in terminal: docker run --rm hello-world13 © webis 2018

https://cristinanegrean.github.io/2017/06/29/dockerized-data-microservice-application

Docker workflow

Run in Terminal: docker run --rm -it ubuntu:16.04 bash

q Try creating some files, then exit the container and start it again
q No persistence by default. How to address this?

14 © webis 2018

Docker workflow

Run in Terminal: docker run --rm -it ubuntu:16.04 bash

q Try creating some files, then exit the container and start it again
q No persistence by default. How to address this?

Run in Terminal:
docker run --rm -it

-v ./workspace:/my-folder ubuntu:16.04 bash

q Mounting persistent volumes to work around this.

15 © webis 2018

Docker workflow

Run in Terminal: docker run --rm -it ubuntu:16.04 bash

q Try creating some files, then exit the container and start it again
q No persistence by default. How to address this?

Run in Terminal:
docker run --rm -it

-v ./workspace:/my-folder ubuntu:16.04 bash

q Mounting persistent volumes to work around this.

q Persistence for system changes: build a new image!

16 © webis 2018

Docker workflow

Run in terminal: docker build -t test-image .

docker run --rm -it test-image bash
17 © webis 2018

Dockerfile

A script which contains a collection of commands(docker and Linux) that will be
executed sequentially in the docker environment for building a new docker
image.

q FROM : Name/Path of the base image for building a new image; must be the
first command in the Dockerfile

q RUN : used to execute a command during the build process of the image
q ADD : copy a file from host machine into a new docker image (or a URL)
q ENV : define an environment variable (e.g. JAVA_HOME)
q USER : specify the user which will be used to run any subsequent RUN

instructions
. . .

18 © webis 2018

Building Our Virtual Cluster
Step 1: SSH Gateway

public network

user

SSH Gateway

19 © webis 2018

Building Our Virtual Cluster
Step 1: SSH Gateway

q Review Dockerfile.gateway

q Run in terminal: docker-compose up --build

q Connect to the SSH Gateway ssh -p 10022 tutorial@localhost

20 © webis 2018

Building Our Virtual Cluster
Step 1: SSH Gateway

public network

user

SSH Gateway

21 © webis 2018

Building Our Virtual Cluster
Step 2: HDFS Distributed File System

public network

user

cluster network

SSH Gateway

HDFS
Datanode

HDFS
Datanode

HDFS
Datanode

HDFS
Namenode

22 © webis 2018

Building Our Virtual Cluster
Step 2: HDFS Distributed File System

q Add namenode to virtual cluster
q Format the namenode:

1. docker-compose run --rm namenode bash

2. hdfs namenode -format

q Add datanodes to virtual cluster
q Re-start the virtual cluster:

1. docker-compose down

2. docker-compose up

q Set up proxy access to HDFS web UI
q Review configuration files
q Basic HDFS commands + web UI

http://namenode:50070

23 © webis 2018

http://namenode:50070

Building Our Virtual Cluster
SSH configurations

For ssh-client in Linux & macOs :
ssh -p 10022 -D 12345 tutorial@localhost

For Windows using Putty:

24 © webis 2018

Building Our Virtual Cluster
SSH configurations

FoxyProxy configuration in the browser

25 © webis 2018

Building Our Virtual Cluster
SSH configurations

If you’re running “Docker Toolbox” (e.g. on Windows versions earlier than 10), you
need an additional step:

q Open “Oracle VirtualBox”

q Select “Settings” for the Docker virtual machine

q Select “Network” → “Advanced” → “Port Forwarding”

q Create a new port forwarding rule (top right button)

q For the new rule, change both “Host port” and “Guest port” to 10022 (leave
the other fields as they are)

26 © webis 2018

Building Our Virtual Cluster
Basic HDFS Commands

When logged into the gateway node, you can now run the following commands:

List files hadoop fs -ls NAME

Remove directory hadoop fs -rmdir NAME

Remove file hadoop fs -rm NAME

Copy from local FS to HDFS hadoop fs -put LOCAL REMOTE

Create a HDFS home directory for your user for later:

hadoop fs -mkdir -p /user/tutorial

27 © webis 2018

Building Our Virtual Cluster
Step 2: HDFS Distributed File System

public network

user

cluster network

SSH Gateway

HDFS
Datanode

HDFS
Datanode

HDFS
Datanode

HDFS
Namenode

28 © webis 2018

Building Our Virtual Cluster
Step 3: YARN Distributed Processing Framework

public network

user

cluster network

SSH Gateway

HDFS
Datanode

HDFS
Datanode

HDFS
Datanode

HDFS
Namenode

YARN
ResourceManager

YARN
NodeManager

YARN
NodeManager

YARN
NodeManager

29 © webis 2018

Building Our Virtual Cluster
Step 3: YARN Distributed Processing Framework

q Add YARN processes to virtual cluster
q Review configuration files
q Explore ResourceManager Web UI:

http://resourcemanager:8088

q Continue with MapReduce...

30 © webis 2018

http://resourcemanager:8088

MapReduce

Problem

q Collecting data is easy and cheap
q Evaluating data is difficult

Solution

q Divide and Conquer
q Parallel Processing

31 © webis 2018

MapReduce

MapReduce Steps

1. Map Each worker applies the map() function to the local data and
writes the output to temporary storage. Each output record gets a key.

2. Shuffle Worker nodes redistribute data based on the output keys: all
records with the same key go to the same worker node.

3. Reduce Workers apply the reduce() function to each group, per key, in
parallel.

The user specifies the map() and reduce() functions

32 © webis 2018

MapReduce
Example: Counting Words

Mary had a
little lamb

its fleece was
white as snow

and everywhere
that Mary went

the lamb was
sure to go

33 © webis 2018

MapReduce
Example: Counting Words

Mary had a
little lamb

its fleece was
white as snow

and everywhere
that Mary went

the lamb was
sure to go

Map() Map() Map() Map()

Mary 1
had 1
a 1
little 1
lamb 1

its 1
fleece 1
was 1
white 1
as 1
snow 1

and 1
everywhere 1
that 1
Mary 1
went 1

the 1
lamb 1
was 1
sure 1
to 1
go 1

34 © webis 2018

MapReduce
Example: Counting Words

Mary had a
little lamb

its fleece was
white as snow

and everywhere
that Mary went

the lamb was
sure to go

Map() Map() Map() Map()

Mary 1
had 1
a 1
little 1
lamb 1

its 1
fleece 1
was 1
white 1
as 1
snow 1

and 1
everywhere 1
that 1
Mary 1
went 1

the 1
lamb 1
was 1
sure 1
to 1
go 1

Reduce() Reduce()

a 1
as 1
lamb 2
little 1
....

Mary 2
was 2
went 1
....

Shuffle

35 © webis 2018

MapReduce
Data Representation with Key-Value Pairs

Map Step:

Map(k1,v1) → list(k2,v2)

Sorting and Shuffling:

All pairs with the same key are grouped together; one group per key.

Reduce Step:

Reduce(k2, list(v2)) → list(v3)

36 © webis 2018

MapReduce
MapReduce on YARN

37 © webis 2018

MapReduce
MapReduce on YARN

Recap: Components of the YARN Framework

q ResourceManager Single instance per cluster, controls container
allocation

q NodeManager Runs on each cluster node, provides containers to
applications

Components of a YARN MapReduce Job

q ApplicationMaster Controls execution on the cluster (one for each YARN
application)

q Mapper Processes input data

q Reducer Processes (sorted) Mapper output

Each of the above runs in a YARN Container

38 © webis 2018

MapReduce
MapReduce on YARN

Basic process:

1. Client application requests a container for the ApplicationMaster
2. ApplicationMaster runs on the cluster, requests further containers for

Mappers and Reducers
3. Mappers execute user-provided map() function on their part of the input

data
4. The shuffle() phase is started to distribute map output to reducers
5. Reducers execute user-provided reduce() function on their group of map

output
6. Final result is stored in HDFS

See also: [Anatomy of a MapReduce Job]

39 © webis 2018

http://ercoppa.github.io/HadoopInternals/AnatomyMapReduceJob.html

MapReduce Examples
Quasi-Monte-Carlo Estimation of π

Idea:

0 1
0

1

Area = 1

Area = π / 4

q The area of a circle segment inside the unit square is π
4

40 © webis 2018

MapReduce Examples
Quasi-Monte-Carlo Estimation of π

Idea:

0 1
0

1

Area = 1

Area = π / 4

Mapper1: (3, 1)

Mapper2: (2, 2)

Mapper3: (4, 0)

q The area of a circle segment inside the unit square is π
4

q Each mapper generates some random points inside the square, and counts
how many fall inside/outside the circle segment.

41 © webis 2018

MapReduce Examples
Quasi-Monte-Carlo Estimation of π

Idea:

0 1
0

1

Area = 1

Area = π / 4

Mapper1: (3, 1)

Mapper2: (2, 2)

Mapper3: (4, 0)

π ≈ 4* (4+4+4)
(3+2+4)

Reducer:

q The area of a circle segment inside the unit square is π
4

q Each mapper generates some random points inside the square, and counts
how many fall inside/outside the circle segment.

q The reducer sums up points inside and points total, to compute our estimate
of π.

42 © webis 2018

MapReduce Examples
Monte-Carlo Estimation of π

This is already included as an example program in Hadoop!

Connect to the gateway node and run:
cd /opt/hadoop-*/share/hadoop/mapreduce

then:
hadoop jar hadoop-mapreduce-examples-*.jar pi 4 1000000

The output should look like this:
Number of Maps = 4

Samples per Map = 1000000

Wrote input for Map #0

...

Job Finished in 13.74 seconds

Estimated value of Pi is 3.14160400000000000000

43 © webis 2018

MapReduce Examples
Parallellizing Shell Scripts with Hadop Streaming

Let’s say we want to know which of the words “you” and “thou” occurs more
frequently in Shakespeare’s works.

We can answer our question with simple Linux shell script. First some basics.

Download the file shakespeare.txt to the workspace directory of your
gateway node.

Then, connect to the gateway node.

44 © webis 2018

MapReduce Examples
Some Shell Scripting Basics

cat FILE — outputs contents of FILE
A | B — the output of command A becomes input of command B
grep PATTERN — outputs all input lines containing PATTERN

45 © webis 2018

MapReduce Examples
Some Shell Scripting Basics

cat FILE — outputs contents of FILE
A | B — the output of command A becomes input of command B
grep PATTERN — outputs all input lines containing PATTERN

Example:
cat shakespeare.txt | grep ’ you ’

46 © webis 2018

MapReduce Examples
Some Shell Scripting Basics

cat FILE — outputs contents of FILE
A | B — the output of command A becomes input of command B
grep PATTERN — outputs all input lines containing PATTERN

Example:
cat shakespeare.txt | grep ’ you ’

grep -o PATTERN — outputs only the matching part of each input line.
\| — inside the PATTERN, marks an alternative (“or”)

47 © webis 2018

MapReduce Examples
Some Shell Scripting Basics

cat FILE — outputs contents of FILE
A | B — the output of command A becomes input of command B
grep PATTERN — outputs all input lines containing PATTERN

Example:
cat shakespeare.txt | grep ’ you ’

grep -o PATTERN — outputs only the matching part of each input line.
\| — inside the PATTERN, marks an alternative (“or”)

Example:
cat shakespeare.txt | grep -o ’ you \| thou ’

48 © webis 2018

MapReduce Examples
Some Shell Scripting Basics

cat FILE — outputs contents of FILE
A | B — the output of command A becomes input of command B
grep PATTERN — outputs all input lines containing PATTERN

Example:
cat shakespeare.txt | grep ’ you ’

grep -o PATTERN — outputs only the matching part of each input line.
\| — inside the PATTERN, marks an alternative (“or”)

Example:
cat shakespeare.txt | grep -o ’ you \| thou ’

sort — sorts the input alphabetically
uniq -c — counts consecutive identical lines in the input

49 © webis 2018

MapReduce Examples
Some Shell Scripting Basics

cat FILE — outputs contents of FILE
A | B — the output of command A becomes input of command B
grep PATTERN — outputs all input lines containing PATTERN

Example:
cat shakespeare.txt | grep ’ you ’

grep -o PATTERN — outputs only the matching part of each input line.
\| — inside the PATTERN, marks an alternative (“or”)

Example:
cat shakespeare.txt | grep -o ’ you \| thou ’

sort — sorts the input alphabetically
uniq -c — counts consecutive identical lines in the input

So, finally: [full explanation]

cat shakespeare.txt | grep -o ’ you \| thou ’ | sort | uniq -c

50 © webis 2018

https://explainshell.com/explain?cmd=cat+shakespeare.txt+%7C+grep+-o+%27+you+%5C%5C%7C+thou+%27+%7C+sort+%7C+uniq+-c

MapReduce Examples
Parallellizing Shell Scripts with Hadop Streaming

We have our answer, but we only used one machine. Hadoop Streaming lets us
easily parallelize such shell scripts over the entire cluster!

51 © webis 2018

MapReduce Examples
Parallellizing Shell Scripts with Hadop Streaming

We have our answer, but we only used one machine. Hadoop Streaming lets us
easily parallelize such shell scripts over the entire cluster!

1. Put the input file in HDFS:
hadoop fs -put shakespeare.txt shakespeare-hdfs.txt

2. Go to the directory with the Hadoop Streaming Jar file:
cd /opt/hadoop-*/share/hadoop/tools/lib

3. Run our shellscript as a Streaming job:
hadoop jar hadoop-streaming-*.jar \

-input shakespeare-hdfs.txt \

-output my-word-counts \

-mapper "grep -o ’ you \| thou ’" \

-reducer "uniq -c"

Notes: \ means “continue the previous line”; Hadoop already does the sorting for us.

52 © webis 2018

MapReduce Examples
Parallellizing Shell Scripts with Hadop Streaming

Let’s look at the results:

hadoop fs -ls my-word-counts

Found 2 items
-rw-r-r- 3 tutorial tutorial 0 2018-04-21 13:41 my-word-counts/_SUCCESS

-rw-r-r- 3 tutorial tutorial 31 2018-04-21 13:41 my-word-counts/part-00000

hadoop fs -cat my-word-counts/part-00000

4159 thou
8704 you

53 © webis 2018

Working with the Real Cluster
Betaweb Cluster Network Layout

public network

user

cluster network

SSH Gateway

webis17.medien.uni-weimar.de
141.54.159.7

betaweb020.medien.uni-weimar.de
141.54.132.20

betaweb001
141.54.132.1

betaweb130
141.54.132.130

HDFS
Datanode

HDFS
Datanode

HDFS
Namenode

YARN
ResourceManager

YARN
NodeManager

YARN
NodeManager

54 © webis 2018

Working with the Real Cluster
Things to Know

Gateway host webis17.medien.uni-weimar.de

Gateway login (your university username)
Gateway password (check your email)

ResourceManager UI http://betaweb020.medien.uni-weimar.de:8088

HDFS UI http://betaweb020.medien.uni-weimar.de:50070

Python Notebook UI https://webis17.medien.uni-weimar.de:8000

55 © webis 2018

http://betaweb020.medien.uni-weimar.de:8088
http://betaweb020.medien.uni-weimar.de:50070
https://webis17.medien.uni-weimar.de:8000

