' T PETUUM

' PETUUM

a New Platform for Distributed Machine Learning on Big Data
»

.
- Seminar on Big Data Architectures for Machine Learning and Data Mining -

Bauhaus-Universitat Weimar Viorel Morari, 115629

»
»
utline
»
. o System Design
* why bwild a new * internals -
framework?! schematic view
¢ scalability * scheduler, workers

| 2

" . Components
Introduction
* the need & ApproaCh % .
s current problems * key concepts problems

Performance

* Comparison with
different platforms

Example

* program structure

. * data-parallelism solutions proposed * simple implementation

* model-parallelism

example

T PETUUM

Machine Learning is becoming a primary mechanism for extracting information from data.
Need ML methods to scale beyond single machine.

Flickr, Instagram and Facebook = 10s of billions of images.

Highly inefficient to use such big data sequentially in a batch fashion in a typical iterative
ML algorithm

Despite rapid development of many new ML models and algorithms aiming at scalable
application, adoption of these technologies remains generally unseen in the wider data
mining, NLP, vision, and other application communities.

Difficult migration from an academic implementation (small desktop PCs, small lab
clusters) to a big, less predictable platform (cloud or a corporate cluster) prevents ML
models and algorithms from being widely applied.

T PETUUM

otivation

. * Find a systematic way to efficiently apply a wide spectrum of advanced ML
% programs to industrial scale problems, using Big Models (up to 100s of billions
of parameters) on Big Data (up to terabytes or petabytes).

 Modern parallelization strategies employ fine-grained operations but it remains
difficult to find a universal platform applicable to a wide range of ML programs
at scale.

Problems with other platforms

 Hadoop :
o simplicity of MapReduce -2 difficult to exploit ML properties (error tolerance)
o performance on many ML programs has been surpassed by alternatives.

e Spark:
o does not offer fine-grained scheduling of computation and communication for fast
and correct execution of advanced ML algorithms.

‘ PCTUUNMN

otivation

10

10

10

Number of Model Parameters

7

10

12

11

10

5

5

@ Petuum (LDA)

Fig. 1: The scale of Big ML efforts in recent literature. A key goal of Petuum is to enable larger

Peacock (LDA)]
! * LI & Smola J
Petuum (MF) 4 F&‘EJNTP?} (LDA) '
’l Petuum A o A
/ A (CNN)
Spark (MF)
T‘ Google
Microsoft &—— DistBelief E
Adam (CNN) (CNN)]
Google
@ PLDA (LDA)
? =
GraphlLab —— .
(MF) YahoolLDA Caffe
(LDA) (CNN)
[|
10° 10° 10
Number of Cores

LDA - Topic Model

MF - Matrix Factorization

CNN - Convolutional Neural
Network

*GPU cores

LDA - 20m unique words and 10k

1 topics (220b sparse parameters) on
1 a cluster with total 256 cores and
1 1TB memory.

{ MF - 20m-by-20k matrix and rank
1 400 (8b parameters) on a cluster

with total 128 cores and 1TB

1 memory.

CNN - 1b parameters on a cluster
with total 1024 CPU cores and

. 2TB memory. GPUs not required!
105 y q

ML models to be run on fewer resources, even relative to highly-specialized implementations.

PCTUUNMN

' C ohponents &mpproach

s * Formalized ML algorithms as iterative-convergent programs:
) o stochastic gradient descent
. o MCMC for determining point estimates in latent variable models
o coordinate descent, variational methods for graphical methods
o proximal optimization for structured sparsity problems, and others
* Found out the shared properties across all algorithms.
. » Key lies in the recognition of a clear dichotomy(division) b/w DATA and MODEL
e This inspired bimodal approach to parallelism: data parallel and modal parallel distribution
and execution of a big ML program over cluster of machines.

- PCTUUNMN

- C omponents & pproach

This approach exploits unique statistical nature of ML algorithms, mainly three properties:
* Error tolerange — iterative-convergent algorithms are robust against limited errors in intermediate

calcutations.

e Dynamic structural dependency — changing correlation strengths between model parameters critical to

efficient parallelization.

* Non-uniform convergence — No. of steps required for a parameter to converge can be highly skewed across

parameters.
@ (b)
o /XS' / X1' noisy
" X7 \ <\ X3 \ gradient

S A Sl T "; O S ——
X f, L) ek
Ne A T N\~ gradient

X4 //1

\)(10 = Large update /
. €= message '

Small update I\
message
Converged \

" variables :

Fig. 2: Key properties of ML
algorithms:

(a) Non-uniform convergence;

(b) Error-tolerant convergence;

(c) Dependency structures amongst
variables.

T PETUUM

- C ohponents &mpproach

Iterative«Convergent ML Algorithm: Given data D and loss L (i.e., fitness function such as like-
IiBood), a typical ML problem can be grounded as executing the following update equation

¥ iteratively, until the model state (i.e., parameters and/or latent variables)
A reaches some stopping criteria:

:lxl) = F(-:{l‘t—l).Ac(:lu—l;.‘D).)

The upda.te function AL() (which improves the loss L) performs computation on data D and
mod@l| state A, and outputs intermediate results to be aggregated by F().

- C omponents & pproach

Fig. 3: Petuum Data-Parallelism Fig. 4: Petuum Model-Parallelism

HE= - ®N = == @ w<:'> e
D, <% :?‘ ® A D % f:>® > S, €8

A= AlA L
Ds = => |
& =2 ACD - S8
Additive Updates Concatenating updates Alt-1)
A V‘_\ AY = FA*Y A A= {AP} A" =F(A*"1,A model parameters not
= . e
* the data D is partitioned and assigned to e thedataAis partltloned and assigned to workers;
* computational workers; * unlike data-parallelism each update function A() also
* we assume that the function A() can be applied to takes a scheduling function Sp“() which restricts A()
each of these data subsets independently to operate on a subset of the model A
* A() are aggregated via summation * the model parameters are not independent
*« Each parallel worker contributes equally e each parallel worker contributes equally

. T PETUULM

yétem design

Petuum Goal: allow users to easily implement data-parallel and

model-parallel. ML algorithms!

Worker Worker PS server PS server Scheduler
Data Data Model Model Scheduling
Partition Partition Partition Partition Data
Consistency Consistency Dependency/
kP ooas Lr g ooue Controller Controller Priority Mgr.
PS |[sSched || Ps | Sched Sched Sched | 4 1t PS
Client | Client || Client | Client Client Client ’ Client
</ J L 7 ‘[= - A
L paramg,tgr,,ex,,cha?fe, channel
a4 4 U
| scheduling control channel l
' Network Layer

Fig. 5: Petuum scheduler, workers, parameter servers.

Parameter Server (PS):

* enables data-parallelism, by providing users with
global read/write access to model parameters

* three functions: PS.get (), PS.inc (), PS.put ()

Scheduler:

* enables model-parallelism, by allowing users to
control which model parameters are updated by
worker machines

* scheduling function schedule () - outputs a set
of parameters for each worker

Workers:

* receives parameters to be updated from
schedule (), and then runs parallel update

functions push () __—
T PETUUM

yéte,m design

PCTUUMN

BOSEN

* parameter server for data-
. pagallel Big Data Al & ML

* uses a consistency model,
which allows asynchronous-
like performance and bulk

5 synchronous execution, yet

goes not sacrifice ML
algorithm correctness

STRADS

scheduler for model-parallel
High Speed Al & ML
performs fine-grained
scheduling of ML update
operations

prioritizing computation on the
parts of the ML program that
need it most

avoiding unsafe parallel
operations that could hurt
performance

POSEIDON

distributed GPU deep
learning framework based
on Caffe and supported by
Bosen

enjoys speedups from the
communication and
bandwidth management
features of Bosen

PCTUUNMN

A.RN compatibility
. %YARN HEADYK

Problem:
* many industrial and academic clusters run Hadoop - MapReduce + YARN + HDFS
* however, programs that are written for stand-alone clusters are not compatible
& with YARN/HDFS, and vice versa, applications written for YARN/HDEFS are not
compatible with stand alone clusters.
Solution:
e providing common libraries that work on either Hadoop or non-Hadoop clusters
: o YARN launcher that will deploy any Petuum application (including user-
written ones) onto a Hadoop cluster
o a data access library for HDFS access, which allows users to write generic file
stream code that works on both HDFS files the local filesystem.

’ PCTUUNMN

. erformance

Matrix Factorization: Convergence time vs Model size
Platforms vs Petuum - -] - - !
. UD_-Petuum ot moool N [.
6 W« 59\l GraphLab : ; :
— .) [ISpark (exclude init) IS i ORI R NS B
: 2 3 £ 5001 gpark (with iniy | 1 2500 - B :
a2 £ E © 400 e | 12000k e e
" £ : £ ; | :
S ’ E é § %D f i :
E 2 = x = 2 200F i o] e 41000} . - . AR i
' 1B s 3 € 2 3 S I | ;
. s > £ w o £ O oo 5 IT: - _ EOGJ"_-; : o : i e
& o i 9 : L L g k5 223 25|
a o '] - ,FI_‘ T B s See e o
0 - 20 40 80 160 320 1000 2000
LDA Matrix Fact. REII’Ik Rank
»
Fig. 6: Petuumyrelative speedup vs Fig. 7: Matrix Factorization convergence time: Petuum vs GraphLab vs
popular platforms (larger is better). Spark. Petuum is fastest and the most memory-efficient, and is the only
Across ML programs, Petuum is at least platform that could handle Big MF models with rank K > 1000 on the
« 2-10 times faster than popular given hardware budget.

implementatjons. T PETUUM

Xxample

¢ Petuum Program Structure

schedule() {
/f This ie the (optiomal) scheduling function
#/f It i executed on the scheduler machines
&_local = PF3.getiA) // Perameter server read
F8.inc(A,change) // Can write to F3 here if neaded
/{ Choose varisbles for push() and return
gvars = my_scheduling(DATA,A_local)
Teturn SYars

¥

/{ Data-Parallel Distance Metric Learning

| schedule() { // E=mpty, do nothing }

puship = worker_id(), svars = schedule()) {
// This is the parallel update function
A/ It is executed on each of P worker machines
A_locel = PE.get(A) // Parameter server read
/f Perform computation and send return values to pulll)
A/ Or just write directly to PS
changel = my_updatel (DATA,p,A_local)
change? = my_update? (DATA,p,A_locel)
F8.inc(A,changel) // Parameter server increment
return change2

¥

pullisvars = gchedule(), updates = (push(1), ..., push(F}}) {
/f Thie ie the [optional) eggregation function
/It is executed on the scheduler machines
#A_locel = PR.get(A) // Parameter server read
{f Aggregate updates from push(l..F) end write to P8
my_aggregate (A_local updates)
F8.put (A, chenge) // Parameter server overwrite

Fig. 8: Petuum Program Structure

push () {
L_local = PE.get(L) // Bounded-async read from param server
change = 0
for c=1..C // Minibatch size C

(x,y) = draw_similar_pair(DATA)

| (a,b) = draw_dissimilar_pair(DATA)

| change += DeltalL({L_local,x,y.a.b) // SGD from Eq 7
PS.inc(L,change/C) // Add gradient to param serwver

hy

pull() { // Empty, do nothing }

Fig. 9: Petuum DML data-parallel pseudocode

T PETUUM

eferences

e [PETUUM A New Platform for Distributed Machine Learning on Big Data Eric] P. Xing, Qirong Ho
Wei Dzzi, Jin Kyu Kim Jinliang Wei, Seunghak Lee Xun Zheng, Pengtao Xie Abhimanu Kumar,
Yaoliang Yu. IEEE Transactions on Big Data, June 2015

. ht.tps://gith.ub.com/petuum

* http://www.simplilearn.com/how-facebook-is-using-big-data-article

' hank Y ou !

