
PETUUM
a New Platform for Distributed Machine Learning on Big Data

- Seminar on Big Data Architectures for Machine Learning and Data Mining -

Viorel Morari, 115629

utline

Introduction
• the need
• current problems

Motivation
• why build a new

framework?!
• scalability

Components
& Approach
• key concepts
• data-parallelism
• model-parallelism

System Design
• internals -

schematic view
• scheduler, workers

YARN compatibility
• problems &

solutions proposed

Example

Performance
• Comparison with

different platforms

• program structure
• simple implementation

example

ntroduction

• Machine Learning is becoming a primary mechanism for extracting information from data.
• Need ML methods to scale beyond single machine.
• Flickr, Instagram and Facebook  10s of billions of images.
• Highly inefficient to use such big data sequentially in a batch fashion in a typical iterative

ML algorithm
• Despite rapid development of many new ML models and algorithms aiming at scalable

application, adoption of these technologies remains generally unseen in the wider data
mining, NLP, vision, and other application communities.

• Difficult migration from an academic implementation (small desktop PCs, small lab
clusters) to a big, less predictable platform (cloud or a corporate cluster) prevents ML
models and algorithms from being widely applied.

otivation

• Find a systematic way to efficiently apply a wide spectrum of advanced ML
programs to industrial scale problems, using Big Models (up to 100s of billions
of parameters) on Big Data (up to terabytes or petabytes).

• Modern parallelization strategies employ fine-grained operations but it remains
difficult to find a universal platform applicable to a wide range of ML programs
at scale.

Problems with other platforms

• Hadoop :

o simplicity of MapReduce difficult to exploit ML properties (error tolerance)

o performance on many ML programs has been surpassed by alternatives.

• Spark :

o does not offer fine-grained scheduling of computation and communication for fast
and correct execution of advanced ML algorithms.

LDA - 20m unique words and 10k
topics (220b sparse parameters) on
a cluster with total 256 cores and
1TB memory.

MF - 20m-by-20k matrix and rank
400 (8b parameters) on a cluster
with total 128 cores and 1TB
memory.

CNN - 1b parameters on a cluster
with total 1024 CPU cores and
2TB memory. GPUs not required!

Fig. 1: The scale of Big ML efforts in recent literature. A key goal of Petuum is to enable larger
ML models to be run on fewer resources, even relative to highly-specialized implementations.

otivation

omponents & pproach

• Formalized ML algorithms as iterative-convergent programs:
o stochastic gradient descent
o MCMC for determining point estimates in latent variable models
o coordinate descent, variational methods for graphical methods
o proximal optimization for structured sparsity problems, and others

• Found out the shared properties across all algorithms.
• Key lies in the recognition of a clear dichotomy(division) b/w DATA and MODEL
• This inspired bimodal approach to parallelism: data parallel and modal parallel distribution

and execution of a big ML program over cluster of machines.

This approach exploits unique statistical nature of ML algorithms, mainly three properties:
• Error tolerance – iterative-convergent algorithms are robust against limited errors in intermediate

calculations.
• Dynamic structural dependency – changing correlation strengths between model parameters critical to

efficient parallelization.
• Non-uniform convergence – No. of steps required for a parameter to converge can be highly skewed across

parameters.

Fig. 2: Key properties of ML
algorithms:
(a) Non-uniform convergence;
(b) Error-tolerant convergence;
(c) Dependency structures amongst
variables.

omponents & pproach

Iterative-Convergent ML Algorithm: Given data D and loss L (i.e., fitness function such as like-
lihood), a typical ML problem can be grounded as executing the following update equation
iteratively, until the model state (i.e., parameters and/or latent variables)
A reaches some stopping criteria:

The update function ΔL() (which improves the loss L) performs computation on data D and
model state A, and outputs intermediate results to be aggregated by F().

omponents & pproach

• the data D is partitioned and assigned to
computational workers;

• we assume that the function Δ() can be applied to
each of these data subsets independently

• Δ() are aggregated via summation
• Each parallel worker contributes equally

• the data A is partitioned and assigned to workers;
• unlike data-parallelism each update function Δ() also

takes a scheduling function Sp
t-1() which restricts Δ()

to operate on a subset of the model A
• the model parameters are not independent
• each parallel worker contributes equally

omponents & pproach
Fig. 3: Petuum Data-Parallelism Fig. 4: Petuum Model-Parallelism

ystem design

Fig. 5: Petuum scheduler, workers, parameter servers.

Petuum Goal: allow users to easily implement data-parallel and
model-parallel ML algorithms!

Parameter Server (PS):
• enables data-parallelism, by providing users with

global read/write access to model parameters
• three functions: PS.get(),PS.inc(),PS.put()
Scheduler:
• enables model-parallelism, by allowing users to

control which model parameters are updated by
worker machines

• scheduling function schedule()- outputs a set
of parameters for each worker

Workers:
• receives parameters to be updated from

schedule(), and then runs parallel update
functions push()

ystem design

STRADSBÖSEN POSEIDON

• parameter server for data-
parallel Big Data AI & ML

• uses a consistency model,
which allows asynchronous-
like performance and bulk
synchronous execution, yet
does not sacrifice ML
algorithm correctness

• scheduler for model-parallel
High Speed AI & ML

• performs fine-grained
scheduling of ML update
operations

• prioritizing computation on the
parts of the ML program that
need it most

• avoiding unsafe parallel
operations that could hurt
performance

• distributed GPU deep
learning framework based
on Caffe and supported by
Bösen

• enjoys speedups from the
communication and
bandwidth management
features of Bösen

ARN compatibility

Problem:
• many industrial and academic clusters run HadoopMapReduce + YARN + HDFS
• however, programs that are written for stand-alone clusters are not compatible

with YARN/HDFS, and vice versa, applications written for YARN/HDFS are not
compatible with stand alone clusters.

Solution:
• providing common libraries that work on either Hadoop or non-Hadoop clusters

o YARN launcher that will deploy any Petuum application (including user-
written ones) onto a Hadoop cluster

o a data access library for HDFS access, which allows users to write generic file
stream code that works on both HDFS files the local filesystem.

erformance

Fig. 6: Petuum relative speedup vs
popular platforms (larger is better).
Across ML programs, Petuum is at least
2-10 times faster than popular
implementations.

Fig. 7: Matrix Factorization convergence time: Petuum vs GraphLab vs
Spark. Petuum is fastest and the most memory-efficient, and is the only
platform that could handle Big MF models with rank K ≥ 1000 on the
given hardware budget.

Fig. 8: Petuum Program Structure

Fig. 9: Petuum DML data-parallel pseudocode

xample

eferences

• [PETUUM A New Platform for Distributed Machine Learning on Big Data Eric] P. Xing, Qirong Ho
Wei Dai, Jin Kyu Kim Jinliang Wei, Seunghak Lee Xun Zheng, Pengtao Xie Abhimanu Kumar,
Yaoliang Yu. IEEE Transactions on Big Data, June 2015

• https://github.com/petuum

• http://www.simplilearn.com/how-facebook-is-using-big-data-article

hank ou !

