
Apache Mahout
Scalable machine learning and data mining

Image

https://issues.apache.org/jira/browse/MAHOUT-335
https://issues.apache.org/jira/browse/MAHOUT-335

Origin of Mahout

Origin of Mahout

● Primary goal is creating scalable and efficient machine learning algorithms

Origin of Mahout

● Primary goal is creating scalable and efficient machine learning algorithms

● Ng et al.'s paper "Map-Reduce for Machine Learning on Multicore" was the

driving force

Paper

http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/
http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/

Origin of Mahout

● Primary goal is creating scalable and efficient machine learning algorithms

● Ng et al.'s paper "Map-Reduce for Machine Learning on Multicore" was the

driving force

● Developed as a ‘driver’ for Hadoop

Paper

http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/
http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/

Origin of Mahout

● Primary goal is creating scalable and efficient machine learning algorithms

● Ng et al.'s paper "Map-Reduce for Machine Learning on Multicore" was the

driving force

● Developed as a ‘driver’ for Hadoop

● The latest release (Samsara),has shifted away from MapReduce

Paper

http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/
http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/

Origin of Mahout

● Primary goal is creating scalable and efficient machine learning algorithms

● Ng et al.'s paper "Map-Reduce for Machine Learning on Multicore" was the

driving force

● Developed as a ‘driver’ for Hadoop

● The latest release (Samsara),has shifted away from MapReduce

● Evolved from being a collection of algorithms, to a scala based programming

environment
Paper

http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/
http://www.andrewng.org/portfolio/map-reduce-for-machine-learning-on-multicore/

Hadoop MapReduce vs Mahout on Spark

Hadoop MapReduce vs Mahout on Spark
MapReduce Mahout Samsara

Hadoop MapReduce vs Mahout on Spark

● Real time streaming operations unsupported ● In-memory storage makes streaming possible

MapReduce Mahout Samsara

Hadoop MapReduce vs Mahout on Spark

● Real time streaming operations unsupported

● Currently available algorithms :

● In-memory storage makes streaming possible

● Currently available algorithms :

Item based filtering, Matrix Factorization

*Most algorithms have been deprecated

Distributed BLAS, User & Item based

filtering,Naive Bayes Classifier, SVD, PCA,

RowSimilarity Job

MapReduce Mahout Samsara

Hadoop MapReduce vs Mahout on Spark

● Real time streaming operations unsupported

● Currently available algorithms :

● Strong security measures exist

● In-memory storage makes streaming possible

● Currently available algorithms :

● Security is still in its infancy

Item based filtering, Matrix Factorization

*Most algorithms have been deprecated

Distributed BLAS, User & Item based

filtering,Naive Bayes Classifier, SVD, PCA,

RowSimilarity Job

MapReduce Mahout Samsara

Hadoop MapReduce vs Mahout on Spark

● Real time streaming operations unsupported

● Currently available algorithms :

● Strong security measures exist

● Java is the primary choice

● In-memory storage makes streaming possible

● Currently available algorithms :

● Security is still in its infancy

● Scala, Java

Item based filtering, Matrix Factorization

*Most algorithms have been deprecated

Distributed BLAS, User & Item based

filtering,Naive Bayes Classifier, SVD, PCA,

RowSimilarity Job

MapReduce Mahout Samsara

Algorithms in Mahout

Algorithms in Mahout

● Algorithms are usually classified into 3 categories

○ Collaborative Filtering - Item Recommendation used in ecommerce (Amazon)

Algorithms in Mahout

● Algorithms are usually classified into 3 categories

○ Collaborative Filtering - Item Recommendation used in ecommerce (Amazon)

○ Clustering - K means clustering

Algorithms in Mahout

● Algorithms are usually classified into 3 categories

○ Collaborative Filtering - Item Recommendation used in ecommerce (Amazon)

○ Clustering - K means clustering

○ Categorization/Classification - Naive Bayes, Logistic Regression

Algorithms in Mahout

● Algorithms are usually classified into 3 categories

○ Collaborative Filtering - Item Recommendation used in ecommerce (Amazon)

○ Clustering - K means clustering

○ Categorization/Classification - Naive Bayes, Logistic Regression

● Dimensionality reduction algorithms are also provided by the Mahout Math-

Scala Core library (SVD, Distributed RowMatrix)

Algorithms in Mahout

● Algorithms are usually classified into 3 categories

○ Collaborative Filtering - Item Recommendation used in ecommerce (Amazon)

○ Clustering - K means clustering

○ Categorization/Classification - Naive Bayes, Logistic Regression

● Dimensionality reduction algorithms are also provided by the Mahout Math-

Scala Core library (SVD, Distributed RowMatrix)

● We shall try to implement a variant of Collaborative Filtering algorithm -

Recommendation Engine

Installation of Mahout and Spark

● Install Java, git, maven, ssh

● Install Scala

● Install Spark

● Install Mahout

● Add JAVA_HOME, SCALA_HOME, SPARK_HOME,MAHOUT_HOME values to

the path

Installation of Mahout and Spark

● Download Mahout and extract

● Enter the folder , use mvn -DskipTests=True clean install

http://mahout.apache.org/
http://mahout.apache.org/

Installation of Mahout and Spark

.bashrc file should contain the following paths

#exporting JAVA, MAHOUT, SCALA and SPARK home values

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64

export MAHOUT_HOME=/home/username/mahout

export SCALA_HOME=/usr/local/src/scala

export SPARK_HOME=/home/username/spark-1.6.1

export MASTER=spark://username-VirtualBox:7077

PATH=$JAVA_HOME/bin:$PATH

PATH=$MAHOUT_HOME/bin:$PATH

PATH=$SCALA_HOME/bin:$PATH

PATH=$SPARK_HOME/bin:$PATH

export PATH

Installation of Mahout and Spark

In-Core Algebra

● In-core means In-memory which effectively refers to a shift from MapReduce

paradigm

● Two basic interfaces for in-core algebra are Matrix, Vector (Tensor types)

● Vector Implementations

○ DenseVector, RandomAccessSparseVector,SequentialAccessSparseVector

● Matrix Implementations

○ DenseMatrix, SparseRowMatrix, SparseMatrix, DiagonalMatrix

Distributed Row Matrix

Image

http://www.itshared.org/2015/04/apache-mahout-samsara-quick-start.html
http://www.itshared.org/2015/04/apache-mahout-samsara-quick-start.html

Distributed Row Matrix

Index the matrix by rows

Image

http://www.itshared.org/2015/04/apache-mahout-samsara-quick-start.html
http://www.itshared.org/2015/04/apache-mahout-samsara-quick-start.html

Distributed Row Matrix

Blocks of the matrix can also be used as index to be distributed

Image

http://www.itshared.org/2015/04/apache-mahout-samsara-quick-start.html
http://www.itshared.org/2015/04/apache-mahout-samsara-quick-start.html

Mahout’s interactive Spark shell

● Mahout is a scala DSL, which implicitly is optimized for Spark

● Lets, look at an example for performing Linear regression

Linear Regression

Image

http://www.biostathandbook.com/linearregression.html
http://www.biostathandbook.com/linearregression.html

Linear Regression

● Our goal is to find an estimate of ß in the equation y= ßx + c , where y is the target matrix , x is the

feature matrix, ß is the parameter, c is noise, which explains the data very well

● ß can be estimated using least squares method which minimizes the sum of residual squares between

the true target variable and the prediction of the target variable

Image

We need to solve

http://www.biostathandbook.com/linearregression.html
http://www.biostathandbook.com/linearregression.html

Recommendation Engine

Recommendation Engine

● An application of Collaborative filtering aspect of Machine learning

Recommendation Engine

● An application of Collaborative filtering aspect of Machine learning

● Can be based on 3 models

○ UserSimilarity

○ ItemSimilarity

○ Model based

Recommendation Engine

● An application of Collaborative filtering aspect of Machine learning

● Can be based on 3 models

○ UserSimilarity

○ ItemSimilarity

○ Model based

● Key components provided by Mahout for building recommendations are :

○ DataModel, UserSimilarity, ItemSimilarity, Recommender

High level view of a Recommendation Engine

Image

http://www.tutorialspoint.com/mahout/mahout_recommendation.htm
http://www.tutorialspoint.com/mahout/mahout_recommendation.htm

Image

https://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
https://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html

Under the hood - Item Recommendation

● Given a set of items someone is known to like, recommend a new set of items

which are similar to them

Under the hood - Item Recommendation

● Given a set of items someone is known to like, recommend a new set of items

which are similar to them

● Two items can be regarded as similar if two different people like both of them

Under the hood - Item Recommendation

● Given a set of items someone is known to like, recommend a new set of items

which are similar to them

● Two items can be regarded as similar if two different people like both of them

Algorithm
for every item i that u has no preference for yet
 for every item j that u has a preference for
 compute a similarity s between i and j
 add u‘s preference for j, weighted by s, to a running average
return top items, ranked by weighted average

– Owen, S., Anil, R., Dunning T., and Friedman E. 2010.

Under the hood - Item Recommendation

● Item similarity can be measured by Matrix multiplication operations

● Multiply item-item similarity matrix, with item-user vector

Image

ItemSim UserPref

https://krisjack.wordpress.com/2012/04/14/under-the-bonnet-of-mahouts-item-based-recommender/
https://krisjack.wordpress.com/2012/04/14/under-the-bonnet-of-mahouts-item-based-recommender/

spark-itemsimilarity

spark-itemsimilarity

● Spark counterpart of Mapreduce itemsimilarity

spark-itemsimilarity

● Spark counterpart of Mapreduce itemsimilarity

● Takes in elements of user interactions(userid, itemid, value), and outputs

indicator matrices by comparing user-user interactions

spark-itemsimilarity

● Spark counterpart of Mapreduce itemsimilarity

● Takes in elements of user interactions(userid, itemid, value), and outputs

indicator matrices by comparing user-user interactions

● Indicator matrix is an item-item matrix where values are log-likelihood ratio

strengths

spark-itemsimilarity

● Spark counterpart of Mapreduce itemsimilarity

● Takes in elements of user interactions(userid, itemid, value), and outputs

indicator matrices by comparing user-user interactions

● Indicator matrix is an item-item matrix where values are log-likelihood ratio

strengths

● Extends co-occurrence to cross-co-occurrence by allowing multi-model

interactions

Conclusion

● Apache Mahout fully utilizes the Spark framework to move away from the

fallbacks of MapReduce

● It also supports other backend frameworks such as H2o, Flink

Thank you

