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Origin of Mahout

● Primary goal is creating scalable and efficient machine learning algorithms

● Ng et al.'s paper "Map-Reduce for Machine Learning on Multicore" was the 

driving force

● Developed as a ‘driver’ for Hadoop

● The latest release (Samsara),has shifted away from MapReduce

● Evolved from being a collection of algorithms, to a scala based programming 

environment
Paper
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Hadoop MapReduce vs Mahout on Spark

● Real time streaming operations unsupported

● Currently available algorithms :

● Strong security measures exist

● Java is the primary choice

● In-memory storage makes streaming possible

● Currently available algorithms :

● Security is still in its infancy

● Scala, Java

Item based filtering, Matrix Factorization 

*Most algorithms have been deprecated

Distributed BLAS, User & Item based 

filtering,Naive Bayes Classifier, SVD, PCA,

RowSimilarity Job

MapReduce Mahout Samsara
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Algorithms in Mahout 

● Algorithms are usually classified into 3 categories

○ Collaborative Filtering - Item Recommendation used in ecommerce (Amazon)

○ Clustering - K means clustering 

○ Categorization/Classification - Naive Bayes, Logistic Regression 

● Dimensionality reduction algorithms are also provided by the Mahout Math-

Scala Core library (SVD, Distributed RowMatrix)

● We shall try to implement a variant of Collaborative Filtering algorithm - 

Recommendation Engine  



Installation of Mahout and Spark

● Install Java, git, maven, ssh

● Install Scala

● Install Spark

● Install Mahout

● Add JAVA_HOME, SCALA_HOME, SPARK_HOME,MAHOUT_HOME values to 

the path



Installation of Mahout and Spark

● Download Mahout and extract 

● Enter the folder , use mvn -DskipTests=True clean install
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Installation of Mahout and Spark

.bashrc file should contain the following paths

#exporting JAVA, MAHOUT, SCALA and SPARK home values

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64

export MAHOUT_HOME=/home/username/mahout

export SCALA_HOME=/usr/local/src/scala

export SPARK_HOME=/home/username/spark-1.6.1

export MASTER=spark://username-VirtualBox:7077

PATH=$JAVA_HOME/bin:$PATH

PATH=$MAHOUT_HOME/bin:$PATH

PATH=$SCALA_HOME/bin:$PATH

PATH=$SPARK_HOME/bin:$PATH

export PATH



Installation of Mahout and Spark



In-Core Algebra 

● In-core means In-memory which effectively refers to a shift from MapReduce 

paradigm

● Two basic interfaces for in-core algebra are Matrix, Vector (Tensor types)

● Vector Implementations

○ DenseVector, RandomAccessSparseVector,SequentialAccessSparseVector

● Matrix Implementations

○ DenseMatrix, SparseRowMatrix, SparseMatrix, DiagonalMatrix



Distributed Row Matrix
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Distributed Row Matrix

Index the matrix by rows
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Distributed Row Matrix

Blocks of the matrix can also be used as index to be distributed
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Mahout’s  interactive Spark shell

● Mahout is a scala DSL, which implicitly is optimized for Spark

● Lets, look at an example for performing Linear regression



Linear Regression
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Linear Regression

● Our goal is to find an estimate of ß in the equation y= ßx + c , where y is the target matrix , x is the 

feature matrix, ß is the parameter, c is noise, which explains the data very well

● ß  can be estimated using least squares method  which minimizes the sum of residual squares between 

the true target variable and the prediction of the target variable 

Image
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Recommendation Engine

● An application of Collaborative filtering aspect of Machine learning

● Can be based on 3 models

○ UserSimilarity

○ ItemSimilarity

○ Model based

● Key components provided by Mahout for building recommendations are :

○ DataModel, UserSimilarity, ItemSimilarity, Recommender



High level view of a Recommendation Engine
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Under the hood - Item Recommendation

● Given a set of items someone is known to like, recommend a new set of items 

which are similar to them

● Two items can be regarded as similar if two different people like both of them

Algorithm
for every item i that u has no preference for yet
  for every item j that u has a preference for
    compute a similarity s between i and j
    add u‘s preference for j, weighted by s, to a running average
return top items, ranked by weighted average

– Owen, S., Anil, R., Dunning T., and Friedman E. 2010.



Under the hood - Item Recommendation

● Item similarity can be measured by Matrix multiplication operations

● Multiply item-item similarity matrix, with item-user vector

Image

ItemSim UserPref
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spark-itemsimilarity

● Spark counterpart of Mapreduce itemsimilarity

● Takes in elements of user interactions(userid, itemid, value), and outputs 

indicator matrices by comparing user-user interactions

● Indicator matrix is an item-item matrix where values are log-likelihood ratio 

strengths 

● Extends co-occurrence to cross-co-occurrence by allowing multi-model 

interactions



Conclusion

● Apache Mahout fully utilizes the Spark framework to move away from the 

fallbacks of MapReduce

● It also supports other backend frameworks such as H2o, Flink



Thank you


