
Apache Flink

with Material from Andreas Kunft -TU Berlin / DIMA; dataArtisans slides

Fuchkina Ekaterina

What is Apache Flink
Massive parallel data flow engine with unified batch-and stream-

processing

System Stack

F
li
n

k
M

L

M
a

c
h

in
e

 L
e

a
rn

in
g

G
e

ll
y

G
ra

p
h

 P
ro

v
e

s
s
in

g

T
a

b
le

R
e

la
ti
o

n
a

l

C
E

P

E
v
e

n
t
P

ro
c
e

s
s
in

g

T
a

b
le

R
e
la

ti
o
n
a
l

DataStream API DataSet API

Runtime
Distributed streaming Dataflow

Local
Single JVM

Cluster
YARN

Cloud

APIs &

Libraries

Core

Deploy

The case for Flink
 Performance and ease of use

 Exploits in-memory processing and pipelining, language-

embedded logical APIs

 Unified batch and real streaming

 Batch and Stream APIs on top of a streaming engine

 A runtime that "just works" without tuning

 Custom memory management inside the JVM

 Predictable and dependable execution

 Bird’s-eye view of what runs and how, and what failed and why

Built-in(native) vs. driver-based looping

Non-native iterations Non-native streaming

Built-in(native) vs. driver-based looping

Applications

DataSet

Gelly

DataStr

eam

FlinkML

Stream

processing

Batch

processing

Machine
Learning

Graph
Analysis

Basic API Concept

Source
Data

Stream
Operation

Data

Stream
Sink

Source
Data

Set
Operation

Data

Set
Sink

Flink program writing:

1) Bootstrap sources 2) Apply operations 3) Output to sink

Machine learning library: FlinkML

Machine
Learning

 Recently started effort

 Currently available algorithms

 Classification

 Logistic Regression

 Clustering

 Recommendation (ALS)

K-Means

Graph Analysis library: Gelly

 Large-scale graph processing API

 Iterative Graph Processing

 Currently available algorithms

 Single Source Shortest Paths

 Weakly Connected Components

 Community Detection

 Page Rank

 Label Propagation

Graph Partitioning

SSSP

Single Source Shortest Paths

Vertex-centric

https://github.com/apache/flink/blob/master/flink-libraries/flink-gelly-examples/src/main/java/org/apache/flink/graph/examples/PregelSSSP.java

Messaging FunctionVertexUpdateFunction

Single Source Shortest Paths

S

A

B

D

A

B

C

D

A

B

0

∞

∞

∞

3

5
∞

∞

∞

∞

∞

∞

∞

5 ∞

3

∞ ∞ ∞

∞ ∞

A

B

C

D

3

5

∞

∞

Messaging Vertex Update

Single Source Shortest Paths

A

B

D

B

C

D

B
3

5

∞

1

∞

5

∞

∞

4

8 7 ∞

8

B

C

D

4

7

8

С

C

D

5

2

3

Messaging Vertex Update

Single Source Shortest Paths

B

D

C

D

4

8

C

7

8

6 9

7

C

D

6

7

C

D

2

3

1

Messaging Vertex Update

Single Source Shortest Paths

Single Source Shortest Paths

Vertex-centric

VertexUpdateFunction: defines how a vertex will update its value based on the received messages

Single Source Shortest Paths

Vertex-centric

Messaging Function: defines what messages a vertex sends out for the next superstep

Architecture Overview

Client

Job Manager

Task

Manager

Task

Manager

Task

Manager

 Optimize

 Construct job graph

 Pass job graph to manager
 Retrieve job results

 Parallelization:

Create Execution Graph

 Scheduling:

Assign tasks to task managers

 State:
Supervise the execution

 Operations are split up into

tasks

 Each parallel instance of an

operation runs in a separate
tasks slot

1) Client

2) Master (Job Manager)

3) Worker (Task Manager)

Installation Flink-1.0.2, Hadoop 2.7

 wget http://ftp.fau.de/apache/flink/flink-1.0.2/flink-1.0.2-bin-

hadoop27-scala_2.11.tgz

 tar xf flink-1.0.2-bin-hadoop27-scala_2.11.tgz

F
li
n

k
M

L

M
a

c
h

in
e

 L
e

a
rn

in
g

G
e

ll
y

G
ra

p
h

 P
ro

v
e

s
s
in

g

T
a

b
le

R
e

la
ti
o

n
a

l

C
E

P

E
v
e

n
t
P

ro
c
e

s
s
in

g

T
a

b
le

R
e
la

ti
o
n
a
l

DataStream API DataStream API

Runtime
Distributed streaming Dataflow

Local
Single JVM

Cluster
YARN

Cloud

APIs &

Libraries

Core

Deploy

Ways to Run a Flink Program

Local Execution

 Starts local Flink cluster

 All processes run in the same JVM

 Behaves just like a regular Cluster

 Very useful for developing

and debugging

Job Manager

Task

Manager

Task

Manager

Task

Manager

Task

Manager

JVM

Wordcount: Program

Source
env.readCsvFile(...)

env.readFile(...)

env.readHadoopFile(...)

env.readSequenceFile(...)

env.readTextFile(...)

Sink
dataStream.print()

dataStream.writeAsText(...)

dataStream.writeAsCsv(...)

*JSONParser

Collection-based

Others:

SocketInputFormat

KafkaInputFormat

Databases

Creation of Flink Project
 Create empty Maven project

(IntelliJ IDEA)

 Add Flink dependencies

 Change Manifest to specify

Main Class

 Build to JAR

Local Execution: WordCount
 bin/start-local.sh

 bin/flink run examples/batch/WordCount.jar

Running

FlatMap x3

Reduce x3

DataSink x3

FlatMap

Reduce -> DataSink -> Finish

She sells sea shells on the sea shore;
The shells that she sells are sea shells I'm sure.
So if she sells sea shells on the sea shore,
I'm sure that the shells are sea shore shells

Local Execution: Result

are 2
i 2
if 1
m 2
on 2
sea 6
sells 3

she 3
shells 6
shore 3
so 1
sure 2
that 2
the 4

Job Manager Web interface
 http://master:8081

 Shows overall system

status

 Job execution details

 Task Manager resource

utilization

 Allow submit new job by

form

Cluster. YARN Execution

 Multi-user scenario

 Resource sharing

 Uses YARN containers

to run a Flink cluster

 Easy to setup

Resource Manager

YARN Cluster

Client

Node Manager

Job Manager

Node Manager

Task

Manager

Node Manager

Task

Manager

Node Manager

Other

Application

Cluster. YARN Execution

 scp -r master:/home/hadoop-admin/flink-1.0.2 .

 nano conf/flink-conf.yaml

 edit line >> jobmanager.rpc.address: 10.42.23.101

Copy configuration on workers

Configure flink

Setup path to Hadoop
 export HADOOP_CONF_DIR='/opt/hadoop/etc/hadoop'

Run Yarn session with 2 TaskManagers with 1GB of memory each
 bin/yarn-session.sh -n 2 -tm 1024

https://ci.apache.org/projects/flink/flink-docs-release-0.10/quickstart/setup_quickstart.html

https://ci.apache.org/projects/flink/flink-docs-release-0.8/yarn_setup.html

Cluster. YARN Execution

 bin/flink run –p 2 -m yarn-cluster -yn 2 -yjm 1024 -ytm 1024

examples/batch/WordCount.jar

Run example

https://ci.apache.org/projects/flink/flink-docs-master/apis/cli.html

Cluster. YARN Execution
Assigning jobs to Task Managers

Cluster. YARN Execution
Running

FlatMap x3

Reduce x6

DataSink x6

FlatMap

Reduce x2
DataSink x2 -> Finish

Cluster. YARN Execution

Flink vs. Spark: Batch

Flink vs. Spark: Streaming

Flink vs. Spark: Batch

Thank you

