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Lets first look at what actually Deep
Learning Is

Generally: Deep Learning might be only an alternative term
for greater sized artificial neural networks?

Bigger Datasets are also required (scaling/performance
issues?)



DEEP LEARNING IN DEEPLEARNING4)

DL4J offers the following Deep Neural Networks:

 Restricted Boltzmann Machines

Convolutional Nets (Images)
* Recurrent nets/LSTMs

* Recursive Autoencoders
 Deep Belief Networks

* Recursive Neural Tensor (~Vector/Array) Networks
« Stacked Denoising Autoencoders

Data frame (/set) readers included for: MNIST, Labeled Faces in
the Wild (LFW), IRIS

And DL4J also supports pipelining / stacking of layers.



DEEP ARTIFICIAL NEURAL NETWORKS (DNNS)

Supervised Learning

Approximate pre-defined lables by output of network
(e.g. classify faces as 1 and everything else as 0); can use output from
unsupervised learning (e.g. DBNs) for weight initialization

Appy the same layer
multiple times

Tries to copy natural

' . S ) s = Weeorey, 9 visual system (see
weere ) © next slides)
Gresso p | p o= [(Wleed +0)
W
o

Those networks have backwards connections
between their layers

one to one ane o many mary to ame many to many
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Special Case of RNNs, H —|F—‘ Hﬂ-ﬂ F—‘Hﬂ'ﬂ F—H_‘

recently popular t
0 [ j00  0oo 100
Semi-Supervised Learning combine both.

many to many

Reeinforcement Learning

Define a reward function and try to gain as
much reward as possible as a result of the chosen actions
(could be considered as somewhat supervised);

also here some work is currently in progress DNN implementing
this type of learning (some of those above can be adapted to do so)

Unsupervised Learning

Extract some features from the input without any predefined
targets (e.g. dimensions with high variance or spare feature
representations, such as lines/shapes/borders)
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Aims at a good stochastic
reconstruction of the input

Loe = ||[Wo(WTX) — X|?

2
Lo = |[WH—X]|; + Al|H||,
reconstruction term  sparsity term

More Info & Sources:
http://stats.stackexchange.com/questions/118199/what-
are-the-differences-between-sparse-coding-and-
autoencoder

ttp://stats.stackexchange.com/questions/114385/what-is-
the-difference-between-convolutional-neural-networks-
restricted-boltzma

https://www.youtube.com/watch?v=0RxgRHJztPI
https://www.youtube.com/watch?v=lekCh_i32iE



MOTIVATION: RECURRENT NEURAL NETWORKS
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Fig. 3. The numbers of connections from three different sources onto each CA3 cell

from three different sources in the rat.
After Rolls and Treves (1998), Treves and Rolls (1992),

* Recurrent
connections in
Hippocampus
enable
sequential
memory and
different types
of time
depended
learning




USES FOR RECURSIVE/RECURRENT NEURAL NETWORKS

Parsing Natural Scene Images
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Figure 1. lllustration of our recursive neural network ar-
chitecture which parses images and natural language sen-
tences. Segment features and word indices (orange) are
first mapped into semantic feature space (blue) and then
recursively merged by the same neural network until they
represent the entire image or sentence. Both mappings and
mergings are learned.

p. 5.

Proof. Omitted. (m]

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O fules. We
have to show that

Ooy = Ox(£)

Proof. This is an algebraic space with the composition of sheaves F on Xy 4, we
have

Ox(F) = {morphy xo, (G,F)}
where G defines an isomorphism F — F of O-modules. (m]
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?77. m]
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: XY a2 Ya3YaY xxY =2 X.
be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. |
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Left: Socher et al. (2011) - Parsing Natural Scenes and Natural Languagewith Recursive Neural Networks (Google)
Top Middle: Hannun (2014) - Deep Speech: Scaling up end-to-endspeech recognition (Baidu)

Rest: Karpathy (2015) - The Unreasonable Effectiveness of Recurrent Neural Networks [link]

Further Readings: Gillick (2016) - Multilingual Language Processing From Bytes; Sak (2015) - Fast and Accurate Recurrent Neural
Network Acoustic Models for Speech Recognition; Marek et al (2015) - Large-Scale Language Classification (200 Languages, Twitter)


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Y

EXA

AMPLE: RECURRENT NEURAL NETWORKS IN DL4)

.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC GRADIENT_DESCENT).iterations(1)
.learningRate(8.1)

.rmsDecay(©.95)

.seed(12345)

.regularization(true)

.12({@8.801)

welightInit({WeightInit.XAVIER)

.updater(Updater.RMSPROP)

Ldist()

.layer(@, new GravesLSTM.Builder().nIn(iter.inputColumns()).nOut(lstmLayerSize)
.activation("tanh").build())

.layer(1l, new GravesLSTM.Builder().nIn{lstmLayerSize).nOut({lstmLayerSize)
.activation("tanh™).build())

.layer(2, new RnnOutputlLayer.Builder(LossFunction.MCXENT).activation("softmax") CXENT + softmax for classif
.nIn{lstmLayerSize).nOut(nOut).build())

.backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttLength).tBPTTBackwardLength(tbpttLength)

.pretrain(false).backprop(true)

.build();

MultiLayerNetwork net = new MultilayerNetwork({conf);
net.init();
net.setlListeners{new ScorelterationlListener(1l));
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int miniBatchNumber = 8;
for({ int i=8; i<numEpochs; i++ ){
while{iter.hasNext({)){
DataSet ds = iter.next();
net.fit(ds);
if(++miniBatchNumber % generateSamplesEveryNMinibatches == 8){
System.out.println("-------------cmou--- "y

System.out.println{"Completed " minibatches of size " + miniBatchSize + "x" + examplelen
System.out.println{"Sampling characters from network given initialization \"" + (generationInitialization ==
String[] samples = sampleCharactersFromietwork{generationInitialization,net,iter,rng,nCharactersToSample,nSamp
for({ int j=8; j<samples.length; j++ ){

"+ miniBatchNumber +

System.out.println("----- Sample " + j + " ----- "y
System.out.println(samples[j]);
System.out.println();



MOTIVATION: SPARSITY & EXTRAGTION OF STIMULY STATISTICS

| Lateral ru‘\ / rLl
([DMCM)

* High information content (direction of high variance extracted by
e.g. Denoising AE /)

 Low overlap of feature maps, so more feat can be extracted



EXAMPLE: UNSUPERVISED LEARNING IN DL4)

log.info("Build model....");
MultilLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)

.gradientNormalization({GradientNormalization.ClipElementWiseAbsolutevValue)

.gradientNormalizationThreshold(1.&)

.iterations{iterations)

.momentum(8.5)

.momentumAfter(Collections.singletonMap(3, ©.9))

.optimizationAlgo(OptimizationAlgorithm. CONJUGATE_GRADIENT)

.list(4)

.layer(®, new AutoEncoder.Builder().nIn{numRows * numColumns).nOut{5688)
weightInit(WeightInit.XAVIER).lossFunction(LossFunction.RMSE_XENT)
.corruptionLevel(6.3)

Lbuild())
.layer(1l, new AutoEncoder.Builder().nIn{588).n0ut({258)
weightInit(WeightInit.XAVIER).lossFunction(LossFunction.RMSE_XENT)
.corruptionLevel(6.3)

Lbuild())

.layer(2, new AutoEncoder.Builder().nIn{258).n0ut{208)
weightInit(WeightInit.XAVIER).lossFunction(LossFunction.RMSE_XENT)
.corruptionLevel(8.3)

Lbuild())

.layer(3, new Outputlayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD).activation("softmax")

.nIn{288).n0ut{outputium).build())
.pretrain(true).backprop(false)
Lbuild();

MultiLayerNetwork model = new MultilLayerNetwork({conf);
model.init();

model.setlisteners{Collections.singletonlist({(IterationListener) new ScorelterationlListener(listenerFreq)));

log.info("Train model....");



MOTIVATION: CONVLUTIONAL NEURAL NETWORKS
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Top: Scannel (1993) - the connectional organization of the
cat visual cortex

Bottom Right: Fellemann & Van Essen (1991) - Distributed
Hierarchical Processing in the Primate Cerebral Cortex
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The (human) visual sytem is hierarchically organized (each area
thereof consists of multiple neuron layers [I-VI] with different
types of connectivity.



MOTIVATION: CONVLUTIONAL NEURAL NETWORKS
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Top: Scannel (1993) - the connectional organization of the
cat visual cortex
Bottom Right: Fellemann & Van Essen (1991) - Distributed
Hierarchical Processing in the Primate Cerebral Cortex %

The (human) visual sytem is hierarchically organized (each area
thereof consists of multiple neuron layers [I-VI] with different
types of connectivity.



MOTIVATION: CONVLUTIONAL NEURAL NETWORKS
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Figure 4 Feature maps (ocularity, orientation, and color) within V1 and V2 of macaque monkey. (a) Ocular dominance (OD) map (left
eye minus right eye). V1-V2 border (indicated by dotted line in (a)=(c)). (b) Orientation map (horizontal minus vertical; HV). V2 orientation
domains are as much as several times larger than those of V1. (c) Color (Col) map (red—green luminance grating minus luminance
grating) reveals V2 thin stripes and V1 blobs. Note that locations of color activations in V2 (dark bars) are complementary to locations of
oriented domains in V2 (compare (b):and (&), Scals bar.=Lmm.Eromby HD and Roe AW (2007) Functional organization of color
domains in V1 and V2 of macaque monkey revealed by optical imaging. Cerebral Cortex (doi: 10.1093/cercor/bhm081).

Figure 5. Examples of Transformations in V4
(A) Color: color constancy (eft) and lightness constancy (righ
(B) Shape: curvature, sparse coding of curvature

{C) Depth: binocular correspondence, size constancy.

(D) Motion: motion contrast-defined shape

Hierarchical Processing for Extraction of
different features (= Feature Maps) in the
Visual System

See next slide for how CNN do this ...

V4

Attention

TRENDS in Cogrntive Sciences

Figure 3. Possibilities for lateral intraparietal area |LIP} topographic aorganizatian.
[A] Separate maps for attention and saccades. (Bl Overlapping attention and
saccade maps.

TL: Betsch & Konig et al. (2004) -
The world from a cat’s perspective —
statistics of natural videos

BL: Roe et al. (2009) - Visual
System: Functional Architecture of
Area V2

C: Roe et al. (2012) - Toward a
Unified Theory of Visual Area V4

R: Patel (2014) - Topographic
organization in the brain:
searching for general principles



Extracts feature maps

foreg: Qeular Dominance (not true in this case as

just one input image from one eye is
shown and included in the receptive field)

3 Weight vectors Edges

One for each feature map in the

next layer (num = 3 = depth of conv

layer 1); each has as many values as

their receptive field is big (here 4);

the weight values for each neuron o

from the same feature map are the %65

same (same color = same value); <

The backpropagation is adapted
accordingly.

Extracts feature maps

foreg.: - ! .
8 Position Invariant 3D objects
-0,2

Highly Salient Stimuli
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@
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Op0X0

Greyscale One-Lense
(=Eye) Image Input

More
With values between 0 Convolution 1
and 255 (arbitrily ReLU and !
chosen for vis g O Sub li
putposes) (sampring
Subsampling Step 1, Steps 1
Often 2x2, we do the O Whereby during
same here (usually convultion
. smaller than the different feature
Convolutional Stsjp 1, convolution before; maps can be .
Often 5x5_ (:2_5) p.IXE|S where we just do the combined to new Classrflee:! Output .
Zilre;igt(“—’i)ﬂi:'i ":eesre average of the output E @ feature maps Fully Connected 'll'herr again p.used into a
oth\;r thar; re,ctang\es Iy (optional RelU Step 1) E E values of the previous ) Z'- ANN for s(zlsfir::leoursr:;]iirgé
could be arcieved by % g Adds unlinerity to the S layer (thus adding EE Classnfncatmn, outprt to target
fixi tai ight -5 processing and can speed E"- 2 already some ®wsF E.g using Softmax .
Ixing certain weights - - . w B positional invariance; L distance (=error for
(or even that can be S g up training; Relu’s — R but not really) " backpropagation)
learned) T (Rectified Linear Units) are V) %
5 - - non overlapping 3
& Neurons whose firing - -
> receptive fields

(=output) value is
max(input value; 0)

-> single input values; no
weigths
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EXAMPLE: CONVLUTIONAL NEURAL NETWORKS IN DL4J

log.info("Build model....");
MultilLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations{iterations)
.regularization(true).12(e.80885)
.learningRate(8.1)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC GRADIENT_DESCENT)
.updater(Updater.ADAGRAD)
.list(6)
.layer(®, new ConvolutionLayer.Builder(5, 5)
.nIn{nChannels)
.stride(1, 1)
.nout(286)
welghtInit({WeightInit.XAVIER)
.activation("relu")
Lbuild())
.layer(l, new SubsamplinglLayer.Builder(SubsamplinglLayer.PoolingType.MaX, new int[]{2, 2})
Lbuild())
.layer(2, new ConvolutionLayer.Builder(5, 5)
.nIn{2@&)
.nout({5@)
.stride(2,2)
.weightInit(WeightInit.XAVIER)
.activation("relu")
.build())
.layer(3, new Subsamplinglayer.Builder({Subsamplinglayer.PoolingType.MaX, new int[]{2, 2})
Lbuild())
.layer(4, new Denselayer.Builder().activation("relu™)
.weightInit(WeightInit.XAVIER)
.nout(2ee).build())
.layer(5, new OutputlLayer.Builder{LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nout (outputhum)
.weightInit(WeightInit.XAVIER)
.activation("softmax")
.build())
.backprop(true).pretrain(false);
new ConvolutionLayerSetup(builder,28,28,1);



COMBINATION OF DIFFEREN DNNS

Can be done by stacking of different
layer types

. Languaze | |A group of people
Deep CNN  Generating| |Shopping at an

] RNMN outdoor market.
e @ There are many
vegetables at the

fruit stand.

Figure 1. NIC, our model, is based end-lo-end on a neural net-
work consisting of a vision CNN followed by a language gener-
ating RNN. It generates complete sentences in natural language
from an input image, as shown on the example above.

Top: Vinyals (2015) - Show and Tell: A Neural Image
Caption Generator

Right: Sak (2015) — Convolutional, Long Short-Term
Memory, Fully Connected Deep Neural Networks
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EXAMPLE: CHAINING NEURAL NETWORKS IN DL4)

Recurrent Network with Skip Connections

ComputationGraphConfiguration conf = new MNeuralNetConfiguration.Builder()
.learningRate(@.81)
@ .graphBuilder()
.addInputs("input™) //can use any label for this
.addLayer("L1", new GravesLSTM.Builder().nIn(5).n0ut(5).build(), "input™)

output

o .addLayer("L2" ,new RnnOutputlayer.Builder().nIn(5+5).n0ut(5).build(}, "input™, "L1")
.setOutputs("L2™) //We need to specify the network outputs and their order
Lbuild();

input

ComputationGraph net = new ComputationGraph(conf);

net.init();

Multiple Inputs and Merge Vertex

ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()

@ .learningRate(8.81)
.graphBuilder()
.addInputs("inputl”, “"input2™)
.addLayer("L1", new Denselayer.Builder().nIn(3).nOut(4).build(), "inputl™)
.addLayer("L2", new Denselayer.Builder().nIn(3).nOut(4).build(), "input2™)

.addVertex("merge”, new MergeVertex(), "L1", "L2")
addLayer("out™, new OutputLayer.Builder().nIn(4+4).n0ut(3).build(), "merge™)

o @ .setOutputs(“out™)

.build();

input1 input2

Multi Task Learning

ComputationGraphConfiguration conf = new MNeuralNetConfiguration.Builder()

.learningRate(8.81)

.graphBuilder()

.addInputs("input™)

@ @ .addLayer("L1", new Denselayer.Builder().nIn(3).nOut(4).build(), "input™)

.addLayer("outl", new Outputlayer.Builder()

.lossFunction(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
o nIn{4).n0ut(3).build(), "L1")

.addLayer("out2", new Outputlayer.Builder()
.lossFunction(LossFunctions.LossFunction.MSE)
.nIn{4).n0ut(2).build(), "L1")

.setOutputs (Moutl"”, "out2™)

build(); See: http://deeplearning4j.org/compgraph

input1



DL4J COMPONENTS

= Open Source Deep Learning Library

What is DeeplLearning and which part of it is covered by DL4j? (Section 1)

= CPU & GPU support
= Hadoop-Yarn (MR) & Spark integration

What components are interfaced? (Section 2)

How are the alogrithms distributed? (Section 3)

= Futre additions

Section 4 / The End.



(HADOOP) AND SPARK INTEGRATION
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DL4J COMPONENTS

= Open Source Deep Learning Library

What is DeeplLearning and which part of it is covered by DL4j? (Section 1)

= CPU & GPU support
= Hadoop-Yarn (MR) & Spark integration

What components are interfaced? (Section 2)

How are the alogrithms distributed? (Section 3)

= Futre additions

Section 4 / The End.



BUT HOW IS THIS CODE DISTRIBUTED?

e So far it is not — only the datasets and
Interations are.

» Lets take a look at the source code to proof
this.



DISTRIBUTION ON MAPREDUGE (NOW DECRAPITATED)
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SOURCE CODE (MR/YARN)

Worker main function after it has been first started:

currentState = WorkerState.STARTED;

int countTotal = 0}

int countCurrent = 03

int currentlIteration = 0;
int lastUpdate = 0}

computable.setRecordReader (recordParser) ;
for (currentlIteration = 0; currentIteration < workerConf.getIterations(); currentIteration++) {
LOG.debug( + (currentIteration +1) + + workerConf.getIterations());

synchronized (currentState) {
currentState = WorkerState.RUNNING;

}

long mWorkerStart = Svstem.currentTimeMillis();
T workerUpdate = computable.compute();

mWorkerExecutions++;
mWorkerTime += (System.currentTimeMillis() - mWorkerStart);

The worker initializeses and computes something during the first iteration with
the given model on its data, the result is some kind of update.
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SOURCE CODE (MR/YARN)

Worker main function after it has been first started:

try {
synchronized (currentState) {
ByteBuffer bytes = workerUpdate.toBytes():
bytes.rewind();

LOG.info( )3

currentState = WorkerState.UPDATE;

if (!masterService.update(workerId, bytes))
LOG.warn( )3

mUpdates++;
}
} catch (AvroRemoteException ex) {
LOG.error ( , ex);
return —-1;

}

e We continue here

two slides later

int nextUpdate;

The worker the worker then sends the update back to the master.
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SOURCE CODE (MR/YARN)

synchronized (workersState) {
workersUpdate.put(workerId, update);
workersState.put(workerId, WorkerState.UPDATE) ;

if (workersUpdate.size() == expectedUpdates.get()) {
LOG.info( )
Thread updateThread = new Thread(new Runnable() {
@Override

public void run() {
long startTime, endTime;

Just fullfilled if all workers
Are done with the current iteration

startTime = System.currentTimeMillis();

T result = computable.compute(workersUpdate.values(),
masterUpdates.values());

endTime = System.currentTimeMillis();

LOG.info( + (endTime - startTime) + )3
expectedUpdates.set(workersCompleted.getCount());

Once the master receives an update from the worker and checks if all of the
workers have finished the iterated (that is sent updates). If so, it starts integrating
the immidiate results and updates the internal update count.
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SOURCE CODE (MR/YARN)

Worker after having sent an update (within its main function)

int nextUpdate;

try {
|1thl|u|ate = waitOnMaster Jp([-‘nte(ldstu;ulate), \

} catch (TnlerluplerlFxtepl ion ex) { Loop Wlth
LOG.warn (" rrupt > waiting aster”, ex); Timer inside

return -1;
} catch (!\vrGRCmoteExcept'lon ex) {

LOG.error (" iIN err while wait ) updates f ster", ex):
return -1;
}
{ e to get an updat Gets data for
try { . .
ByteBuffer b = masterService.fetch(workerId, nextUpdate); / next iteration

b.rewind();

T masterUpdate = updateable.newlInstance();
masterUpdate. fromBytes(b):
computable.update(masterUpdate);

The worker goes over to wait for a next update ...



SOURCE CODE (MR/YARN)

Worker after having sent an update (waitonmasterupdate)

private int waitOnMasterUpdate(int lastUpdate) throws InterruptedException,
AvroRemoteException {
int nextUpdate = 0;
long waitStarted = System.currentTimeMillis();
long waitingFor = 03

while ((nextUpdate = masterService
.waiting(workerId, lastUpdate, waitingFor)) < 0) {

synchronized (currentState) {
currentState = WorkerState.WAITING;

}

Thread.sleep(updateSleepTime):
waitingFor = System.currentTimeMillis() - waitStarted;

LOG.info( + lastUpdate + + waitingFor +

mWaits++;

}
mWaitTime += waitingFor;

return nextUpdate;
1

... and it continutes to send periodical wait requests to the master service until it
receivs a positive number as next update number.
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SOURCE CODE (MR/YARN)

MasterService.waiting function (on master, triggered remotely by worker)

@Override
public int waiting(WorkerId workerId, int lastUpdate, long waiting)
throws AvroRemoteException {

synchronized (workersState) {
workersState.put(workerId, WorkerState.WAITING);

LOG.info( +
+ Utils.getWorkerId(workerId) +
+ workersState.get(workerId) + + lastUpdate
+ + currentUpdateld
+ + waiting);

}

if (MasterState.UPDATING == masterState && lastUpdate == currentUpdateld)
return -1;

return currentUpdateld;

Only interesting if there
Is a new update

The master service registeres the worker as waiting and gives back the current
update Id.
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SOURCE CODE (MR/YARN)

@Override
public ByteBuffer fetch(WorkerId workerId, int updateld)
throws AvroRemoteException {

LOG.info(
+ + Utils.getWorkerId(workerId)
+ + updateld);

synchronized (workersState) {
workersState.put(workerId, WorkerState.RUNNING) ;

}

ByteButter bytes = masterUpdates.get(updateld).toBytes();
bytes.rewind() ;

return bytes;

} “\\\\\\\\\\\\\
Goes back to worker

main function

If there is a new update, it fetches some kind of data (most probably related to
the model parameters such as weights) from the master server for the current
update.



DISTRIBUTION ON SPARK

Create a Job

v

Run lteration (on all
workers)
y

Finish

Similiar to Mapreduce/Yarn, only that do not have to configure the worker
separately.



SOURCE CODE (FOR SPARK)

Within a spark job for training a dataset on a multilayer (neural) network. - on master

public MultilLayerNetwork fitDataSet(JavaRDD<DataSet> rdd) {
int iterations = conf.getConf(0).getNumIterations();
log.info("Running distributed training: (averaging each iteration = " + averageEachlIteration +
iterations + "), (num partions = " + rdd.partitions().size() + ")");
if(laveragekachIteration) {
J/Do multiple iterations and average once at the end
runlteration(rdd);
1 else {
J/Temporarily set numlterations 1. Control numlterations externall here so we can average b
for (NeuralNetConfiguration conf : this.conf.getConfs()) {
conf.setNumIterations(1);

}

J/Run learning, and average at each iteration
for(int i = @h i < dterations; i++) {
runlteration(rdd);

//Reset number of iterations in config
if(iterations > 1 ){
for(NeuralNetConfiguration conf : this.conf.getConfs()) {
conf.setNumlterations(iterations);

}

The master service registeres the worker as waiting and gives back the current
update Id.



Source Code (Spark Integration)

Run an iteration ... (1)

protected void runIteration(JavaRDD<DataSet> rdd) {

int maxRep = 03

long maxSm = 03

int paramsLength = network.numParams(false);

log.info("Broadcasting initial parameters of length " + paramslLength);

INDArray valToBroadcast = neLwork.palams(':'nr);| ]

this.params = sc.broadcast(valToBroadcast) % SeemS like we are

Updater updater = network.getUpdater(); Spreading some params

if(updater == null) { ' '
network.setUpdater (UpdaterCreator.getUpdater (network)); and an updater tO the
log.warn("Unable to propagate null updater"); workers.
updater = network.getUpdater();

1

this.updater = sc.broadcast(updater):

boolean accumGrad sc.getConf().getBoolean(ACCUM_GRADIENT, false);
if(accumGrad) {
arning via averaging oradients

JavaRDDulupLEBQGradiénL;UﬁdaLer, ScoreReport>> results = rdd.mapPartitions(new GradientAccumF

JavaRDWHDn“ reculteGradient = results.map(new GradientFromTupleFunction());
Llog.info("Rs RDD? ... averaging results now.");

GradientAdder—a = trew uraurentAdder (paramslLength);
resultsGradient.foreach(a);




RDD's?

We know them already! - Quick lookback:
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2 KeyValue » Keyvalue AN ™ HeyValue futu.re use. The key wvalue pairs
Hey:Value = feyivalue AT i Hey'value depicted here could be any
_ Hey:Value = Key:Value . it Hey:Value serializable object.
& Key:Value B KeyValue T HeyiValue
m Partition 3 Partition 3 4, Partition 3
= '___: Heyvalue s PBayValue \ o HeyNalue
= Hey:Nalue *  Key:Value E I KeyValue
o5 Key:Value = KeyValue =1 1 KeyNalue
~ A HeyValue = KeyNalue 1 HayNalue




Source Code (Spark Integration)

Run an iteration ... (2)

GradientAdder a = new GradientAdder (paramslLength);
resultsGradient.foreach(a);
INDArray accumulatedGradient = a.getAccumulator().value();
boolean divideGrad = sc.getConf().getBoolean(DIVIDE_ACCUM_GRADIENT,false);
if(divideGrad) {
maxRep = results.partitions().size();
accumulatedGradient.divi(maxRep);
}
log.info("Accumulated parameters");
log.info("Summed gradients.");
network.setParameters(network.params(false).addi(accumulatedGradient)):
log.info("Set parameters");
JavaDoubleRDD scores = results.mapToDouble(new ScoreMappingG());
lastScore = scores.mean();
if (!initDone) {
JavaDoubleRDD sm = results.mapToDouble(new SMappingG());
maxSm = sm.mean().longValue();

}

log.info("Processing updaters");

JavaRDD<Updater> resultsUpdater = results.map(new UpdaterFromGradientTupleFunction()):
UpdaterAggregator aggregator = resultsUpdater.aggregate(

resultsUpdater.first().getAggregator(false),
... and do even more parallel stuff. In the end integrate the results (from all
workers) — that is, we also have to wait here until each worker has finished.
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lterative Reduce (2)

* Does this even make sense if we need to wait
always for the completion of all worker nodes?

9 Stan Kladko, Co-Founder of GalacticExchange, a VC-backed Deep Learning
I ¥ startup

No.
Spark is significantly inefficient for deep learning and is not so easy to learn.

Implementing Deep Learning algorithms with Spark is awkward. So vou get neither
simplicity nor performance.

The best way to do Deep Learning is to use a GPU enabled library such as Theano.

Then if you want to build a cluster, use simple old-fashioned tools such as
Torque/OpenMPI.



DL4J COMPONENTS

= Open Source Deep Learning Library

What is DeeplLearning and which part of it is covered by DL4j? (Section 1)

= CPU & GPU support
= Hadoop-Yarn (MR) & Spark integration

What components are interfaced? (Section 2)

How are the alogrithms distributed? (Section 3)

= Futre additions

Section 4/ The End.



QUTLOOK

» Google DistBelief + Apache Horn

Deeplearning4j] Roadmap

These priorities have been set by what the Skymind has seen demand for among
clients and open-source community members. Contributors are welcome to add
features whose priority they deem to be higher.

High priority:

o CUDA rewrite for ND4J (under way)

¢ CPU optimizations (C++ backend)

¢ Hyperparameter optimization (underway, basics done: Arbiter)

.

e Sparse support for ND4J

¢ Performance tests for network training vs. other platforms (and where
necessary: optimizations)

* Performance tests for Spark vs. local (ditto)

¢ Building examples at scale

Medium priority:

¢ OpenCL for ND4J
e CTC RNN (for speech etc.)



GOOGLE DIST BELIEF e 1) EISE S D aep Networks

Figure 1: An example of model parallelism in DistBelief. A five layer deep
neural network with local connectivity is shown here, partitioned across
four machines (blue rectangles). Only those nodes with edges that cross
partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges
crossing a partition boundary, its state is only sent to the machine on the
other side of that boundary once. Within each partition, computation for
individual nodes will the parallelized across all available CPU cores.

Machine |
T dulydely

Machine 3
$ aulyoe|,

, Figure 2: Left: Downpour
Parameter Server W = W - AW Parameter Server :
Coordimtor SGD. Model replicas

[ ][ | ][ ] (small messages) asynchronously fetch

parameters w and push
\\ \\ gradients Aw to the
parameter server. Right:

Model [:][:] Model Sandblaster L-BFGS. A
Replicas C]C] Replicas E]C] C][:] [:]E] single ‘coordinator’ sends

small messages to replicas
Data and the parameter server to
Shards Data orchestrate batch

optimization.




2012, DistBelief by Jeff Dean (Google)

2013, Caffe by Yangqing jia (UC Berkeley)
2014, Deeplearning4J by Adam Gibson
2014, DeepDist by Dirk Neumann (Facebook)

Taken from a Presentation by & & &



Apache Horn

a Large-scale Deep Learning

Taken from a Presentation by & & &
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