

DeepLearning4j

DL4J Components

 Open Source DeepLearning Library
 CPU & GPU support
 Hadoop-Yarn & Spark integration
 Futre additions

DL4J Components

What is DeepLearning and which part of it is covered by DL4j? (Section 1)

 Open Source Deep Learning Library

 CPU & GPU support
 Hadoop-Yarn & Spark integration
 Futre additions

 Open Source Deep Learning Library

 CPU & GPU support
 Hadoop-Yarn & Spark integration

 Futre additions

DL4J Components

What is DeepLearning and which part of it is covered by DL4j? (Section 1)

What components are interfaced? (Section 2)

 Open Source Deep Learning Library

 CPU & GPU support
 Hadoop-Yarn & Spark integration

 Futre additions

DL4J Components

What is DeepLearning and which part of it is covered by DL4j? (Section 1)

How are the alogrithms distributed? (Section 3)

What components are interfaced? (Section 2)

 Open Source Deep Learning Library

 CPU & GPU support
 Hadoop-Yarn (MR) & Spark integration

 Futre additions

DL4J Components

What is DeepLearning and which part of it is covered by DL4j? (Section 1)

How are the alogrithms distributed? (Section 3)

What components are interfaced? (Section 2)

 Open Source Deep Learning Library

 CPU & GPU support
 Hadoop-Yarn (MR) & Spark integration

 Futre additions

DL4J Components

What is DeepLearning and which part of it is covered by DL4j? (Section 1)

How are the alogrithms distributed? (Section 3)

What components are interfaced? (Section 2)

Section 4 / The End.

 Open Source Deep Learning Library

 CPU & GPU support
 Hadoop-Yarn (MR) & Spark integration

 Futre additions

DL4J Components

What is DeepLearning and which part of it is covered by DL4j? (Section 1)

How are the alogrithms distributed? (Section 3)

What components are interfaced? (Section 2)

Section 4 / The End.

Lets first look at what actually Deep
Learning is

Generally: Deep Learning might be only an alternative term
for greater sized artificial neural networks?

Bigger Datasets are also required (scaling/performance
issues?)

DL4J offers the following Deep Neural Networks:

● Restricted Boltzmann Machines
● Convolutional Nets (Images)
● Recurrent nets/LSTMs
● Recursive Autoencoders
● Deep Belief Networks
● Recursive Neural Tensor (~Vector/Array) Networks
● Stacked Denoising Autoencoders

Data frame (/set) readers included for: MNIST, Labeled Faces in
the Wild (LFW), IRIS

And DL4J also supports pipelining / stacking of layers.

Deep Learning IN DeepLearning4J

Deep Artificial Neural Networks (DNNs)

More Info & Sources:
http://stats.stackexchange.com/questions/118199/what-
are-the-differences-between-sparse-coding-and-
autoencoder
ttp://stats.stackexchange.com/questions/114385/what-is-
the-difference-between-convolutional-neural-networks-
restricted-boltzma
https://www.youtube.com/watch?v=oRxgRHJztPI
https://www.youtube.com/watch?v=lekCh_i32iE

● Recurrent
connections in
Hippocampus
enable
sequential
memory and
different types
of time
depended
learning

Motivation: Recurrent Neural Networks

Uses For Recursive/Recurrent Neural Networks

Left: Socher et al. (2011) - Parsing Natural Scenes and Natural Languagewith Recursive Neural Networks (Google)
Top Middle: Hannun (2014) - Deep Speech: Scaling up end-to-endspeech recognition (Baidu)
Rest: Karpathy (2015) - The Unreasonable Effectiveness of Recurrent Neural Networks [link]
Further Readings: Gillick (2016) - Multilingual Language Processing From Bytes; Sak (2015) - Fast and Accurate Recurrent Neural
Network Acoustic Models for Speech Recognition; Marek et al (2015) - Large-Scale Language Classification (200 Languages, Twitter)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Example: Recurrent Neural Networks In DL4J

● High information content (direction of high variance extracted by
e.g. Denoising AE /)

● Low overlap of feature maps, so more feat can be extracted

Motivation: Sparsity & Extraction of Stimuly Statistics

Example: UnSupervised Learning In DL4j

The (human) visual sytem is hierarchically organized (each area
thereof consists of multiple neuron layers [I-VI] with different
types of connectivity.

Motivation: Convlutional Neural Networks

Top: Scannel (1993) - the connectional organization of the
cat visual cortex
Bottom Right: Fellemann & Van Essen (1991) - Distributed
Hierarchical Processing in the Primate Cerebral Cortex

The (human) visual sytem is hierarchically organized (each area
thereof consists of multiple neuron layers [I-VI] with different
types of connectivity.

Motivation: Convlutional Neural Networks

Top: Scannel (1993) - the connectional organization of the
cat visual cortex
Bottom Right: Fellemann & Van Essen (1991) - Distributed
Hierarchical Processing in the Primate Cerebral Cortex

Hierarchical Processing for Extraction of
different features (= Feature Maps) in the
Visual System

See next slide for how CNN do this ...

Motivation: Convlutional Neural Networks

TL: Betsch & König et al. (2004) -
The world from a cat’s perspective –
statistics of natural videos
BL: Roe et al. (2009) - Visual
System: Functional Architecture of
Area V2
C: Roe et al. (2012) - Toward a
Unified Theory of Visual Area V4
R: Patel (2014) - Topographic
organization in the brain:
searching for general principles

V1

V2
V4

LIP

Real Uses for Convlutional Neural Networks

Left: Socher et al. (2011) - Parsing Natural Scenes and Natural
Languagewith Recursive Neural Networks (Google)

Right: Szegedy (2014) - Going Deeper with Convolutions
(GoogLeNet/Inception for Image Classification & Detection)

Example: Convlutional Neural Networks In DL4J

CoMbination of differen DNNs

Can be done by stacking of different
layer types

Top: Vinyals (2015) - Show and Tell: A Neural Image
Caption Generator
Right: Sak (2015) – Convolutional, Long Short-Term
Memory, Fully Connected Deep Neural Networks

Example: Chaining Neural Networks In DL4J
Recurrent Network with Skip Connections

Multi Task Learning

Multiple Inputs and Merge Vertex

See: http://deeplearning4j.org/compgraph

 Open Source Deep Learning Library

 CPU & GPU support
 Hadoop-Yarn (MR) & Spark integration

 Futre additions

DL4J Components

What is DeepLearning and which part of it is covered by DL4j? (Section 1)

How are the alogrithms distributed? (Section 3)

What components are interfaced? (Section 2)

Section 4 / The End.

(Hadoop) and Spark Integration

?

(Hadoop) and Spark Integration

 Open Source Deep Learning Library

 CPU & GPU support
 Hadoop-Yarn (MR) & Spark integration

 Futre additions

DL4J Components

What is DeepLearning and which part of it is covered by DL4j? (Section 1)

How are the alogrithms distributed? (Section 3)

What components are interfaced? (Section 2)

Section 4 / The End.

● So far it is not – only the datasets and
interations are.

● Lets take a look at the source code to proof
this.

But how is this code distributed?

Distribution on MapReduce (now Decrapitated)

Startup Worker 1 Startup Worker 2
Master wairing for

worker update

Master receives
application

Worker 1 finishes
and sends Update

Worker 2 finishes
and sends Update

Worker 'waits' (asks)
for new updateAnsewers Request

Ansewers Request Worker 1 receives
update

Worker 2 receives
update

Worker 'waits' (asks)
for new update

Receives Update

Receives Update

Distribution on MapReduce (now Decrapitated)

Startup Worker 1 Startup Worker 2
Master wairing for

worker update

Master receives
application

Worker 1 finishes
and sends Update

Worker 2 finishes
and sends Update

Worker 'waits' (asks)
for new updateAnsewers Request

Ansewers Request Worker 1 receives
update

Worker 2 receives
update

Worker 'waits' (asks)
for new update

11

2

1

Receives Update

Receives Update

3

6

5a

5b

4

Worker main function after it has been first started:

The worker initializeses and computes something during the first iteration with
the given model on its data, the result is some kind of update.

Source Code (MR/YARN)

Distribution on MapReduce (now Decrapitated)

Startup Worker 1 Startup Worker 2
Master wairing for

worker update

Master receives
application

Worker 1 finishes
and sends Update

Worker 2 finishes
and sends Update

Worker 'waits' (asks)
for new updateAnsewers Request

Ansewers Request Worker 1 receives
update

Worker 2 receives
update

Worker 'waits' (asks)
for new update

11

2

1

Receives Update

Receives Update

3

6

5a

5b

4

The worker the worker then sends the update back to the master.

Worker main function after it has been first started:

We continue here
two slides later

Source Code (MR/YARN)

Distribution on MapReduce (now Decrapitated)

Startup Worker 1 Startup Worker 2
Master wairing for

worker update

Master receives
application

Worker 1 finishes
and sends Update

Worker 2 finishes
and sends Update

Worker 'waits' (asks)
for new updateAnsewers Request

Ansewers Request Worker 1 receives
update

Worker 2 receives
update

Worker 'waits' (asks)
for new update

11

2

1

Receives Update

Receives Update

3

6

5a

5b

4

Once the master receives an update from the worker and checks if all of the
workers have finished the iterated (that is sent updates). If so, it starts integrating
the immidiate results and updates the internal update count.

Just fullfilled if all workers
Are done with the current iteration

Source Code (MR/YARN)

Distribution on MapReduce (now Decrapitated)

Startup Worker 1 Startup Worker 2
Master wairing for

worker update

Master receives
application

Worker 1 finishes
and sends Update

Worker 2 finishes
and sends Update

Worker 'waits' (asks)
for new updateAnsewers Request

Ansewers Request Worker 1 receives
update

Worker 2 receives
update

Worker 'waits' (asks)
for new update

11

2

1

Receives Update

Receives Update

3

6

5a

5b

4

Worker after having sent an update (within its main function)

The worker goes over to wait for a next update ...

Gets data for
next iteration

Loop with
Timer inside

Source Code (MR/YARN)

Worker after having sent an update (waitonmasterupdate)

... and it continutes to send periodical wait requests to the master service until it
receivs a positive number as next update number.

Source Code (MR/YARN)

Distribution on MapReduce (now Decrapitated)

Startup Worker 1 Startup Worker 2
Master wairing for

worker update

Master receives
application

Worker 1 finishes
and sends Update

Worker 2 finishes
and sends Update

Worker 'waits' (asks)
for new updateAnsewers Request

Ansewers Request Worker 1 receives
update

Worker 2 receives
update

Worker 'waits' (asks)
for new update

11

2

1

Receives Update

Receives Update

3

6

5a

5b

4

The master service registeres the worker as waiting and gives back the current
update Id.

MasterService.waiting function (on master, triggered remotely by worker)

Only interesting if there
Is a new update

Source Code (MR/YARN)

Distribution on MapReduce (now Decrapitated)

Startup Worker 1 Startup Worker 2
Master wairing for

worker update

Master receives
application

Worker 1 finishes
and sends Update

Worker 2 finishes
and sends Update

Worker 'waits' (asks)
for new updateAnsewers Request

Ansewers Request Worker 1 receives
update

Worker 2 receives
update

Worker 'waits' (asks)
for new update

11

2

1

Receives Update

Receives Update

3

6

5a

5b

4

If there is a new update, it fetches some kind of data (most probably related to
the model parameters such as weights) from the master server for the current
update.

Goes back to worker
main function

Source Code (MR/YARN)

Distribution on Spark

Similiar to Mapreduce/Yarn, only that do not have to configure the worker
separately.

Create a Job

Run Iteration (on all
workers)

Finish

The master service registeres the worker as waiting and gives back the current
update Id.

Within a spark job for training a dataset on a multilayer (neural) network. - on master

Source Code (For Spark)

Source Code (Spark Integration)
Run an iteration ... (1)

Seems like we are
spreading some params
and an 'updater' to the
workers.

RDD?

RDD's?
We know them already! - Quick lookback:

Source Code (Spark Integration)
Run an iteration ... (2)

... and do even more parallel stuff. In the end integrate the results (from all
workers) – that is, we also have to wait here until each worker has finished.

Iterative Reduce

Iterative Reduce (2)

● Does this even make sense if we need to wait
always for the completion of all worker nodes?

 Open Source Deep Learning Library

 CPU & GPU support
 Hadoop-Yarn (MR) & Spark integration

 Futre additions

DL4J Components

What is DeepLearning and which part of it is covered by DL4j? (Section 1)

How are the alogrithms distributed? (Section 3)

What components are interfaced? (Section 2)

Section 4 / The End.

● Google DistBelief + Apache Horn

Outlook

GooGle Dist Belief

Figure 1: An example of model parallelism in DistBelief. A five layer deep
neural network with local connectivity is shown here, partitioned across
four machines (blue rectangles). Only those nodes with edges that cross
partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges
crossing a partition boundary, its state is only sent to the machine on the
other side of that boundary once. Within each partition, computation for
individual nodes will the parallelized across all available CPU cores.

Figure 2: Left: Downpour
SGD. Model replicas
asynchronously fetch
parameters w and push
gradients ∆w to the
parameter server. Right:
Sandblaster L-BFGS. A
single ‘coordinator’ sends
small messages to replicas
and the parameter server to
orchestrate batch
optimization.

Dean (2012) - Large Scale Distributed
Deep Networks

2012, DistBelief by Jeff Dean (Google)

Taken from a Presentation by윤진석

윤진석

Taken from a Presentation by윤진석

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56

