On-the-fly Indexing of Large
Document Collections

Robert Scholz

Ekaterina Fuchkina

Outline

= |ndex review
= TFIDF

= Dataset structure
= Two different approaches
= Approach 1

= Approach 2
= Ul

" Possible improvements

General concept

Data
XML English Wikipedia
Dump (12 488 908

ntid>588365741</parentid>
<timestamp>2014-01-02703:19:342</timestamp>

d>7527773</1d>
ibutor>

>this belongs here since it explains the main discussions which influenced the

organizations mentioned afterwards in this section</commer
“text xmlispace="preserve”>((Redirect|Anarchist|the fictional character|Anarchist
(comics)))

{{Redirect|Anaxchists))
{{pp-move-indef))
{{Anarchism sidebar}}

‘' 'Anarchism’''' is a [[political philosophy]] that [[statel y|stateless
societies]] often defined as [[self-governance|self-governed]] voluntary institutions,slt;ref
>squot ;ANARCHISM, a social philosophy that rejects authoritarian government and maintains
that voluntary institutions are best suited to express man's natural social tendencies.squot;
George Woodcock. "Anarchismiquot; at The Encyclopedia of Philosophyslt;/refigt;slt;ref
>squot;In a society developed on these lines, the voluntary associations which already now
begin to cover all the fields of human activity would take a still greater extension 3o as to
substitute themselves for the state in all its functions.squot; [

http://www. theanaxchistlibraxy.oxg/HTML/Petx Kropotkin _ Anaxrchism _from the Encyclopaedia Britan|
nica.html Peter Kropotkin. squot;Anarchismiquot; from the Encyclopamdia Britannica)slt;/ref
5gt;&1t;refsgt; squot;Anarchism. squot; The Shorter Routledge Encyclopedia of Philosophy. 2005.
P. 14 squot;Anarchism is the view that a society without the state, or government, is both
possible and desirable.squot;slt;/refsgt;slt;refsgt;Sheehan, Sean. Anarchism, London: Reaktion
Books Ltd., 2004. p. 85:lt;/refsgt; but that several authors have defined as more specific

| = = e e e e - q

[IR ——

P e e e e T T

Inverted Index

List of documents ids
and TFIDF value

people - 1.57 - 1.23
maintain - 1.83 - 1.56

Term

b e ===

Index Query

\ /

Result

Dataset structure

Namespace: indicates type of page (e.g. 0 —
main type, 2 — user pages. etc.)

id MediaWiki's internal article ID

Is this page actually just redirecting to some other? Then exclude it from
indexing.

redirect

revision

TFIDF

N — — N
S— — Word “people” appears 3
E N times
— In this document
Document Collection Some document
10 million 100 words

TF (Term Frequency) of “people” is (3/100) = 0.03

However term “people” appears only in 1000 documents out of 10 million
IDF (Inverse Document Frequency) is log(10000000/1000) = 4

Then, TF*IDF=0.03 *4=0.12

Two different approaches

* Approach 1: quick and * Approach 2: using built-in
handmade functions

Approach 1

e cd C:\tmp\spark161hd26
* bin\pyspark --packages com.databricks:spark-xml 2.10:0.3.3
* Copy and paste the rest, see comments for intermediate output

count how often each term occurs in a given document

tecnt = pageTokens?Z.reduceByKey(operator.add)

tent.take (2)

¥ out: [(('when®, 25), 2), (('afghanisktan', 13), 1)1 as in (('word', doc_id),
acc _count of word in this doc)

¥ find the mgx number of ggourenges of a single term in a document

max n occ t per d = tent.map(lambda x : (x[0][1],x[1])) .reduceByKey(lambda a,b : max(a,b))
max n occ t per d.take(5)

fout: [(35, 1), (10, 1), (12, 5), (13, 1), (14, 1)1

#¥hemxnoce = sg.broadcast (max n occ t per d.collectAsMap())

vvv = tcnt.map (lambda x: (x[01[11,(x[0]1[0],%[11)))
vvv.take (2)

Approach 2

e Usage of pyspark.ml library
 spark.mllib contains the original API built on top of RDDs.
* spark.ml provides higher-level APl built on top of DataFrames for constructing

ML pipelines.
* Methods: HashingTF, IDF, StopWordsRemover
e Ul: Django + Spark

Two different approaches

Approach 1: quick and

Approach 2: using built-in

handmade functions
Index build-time | 13s/3h 11s/25m
Query time|7s 11s
Query Autism in Afghanistan Autism in Afghanistan

Output

2 articles

2 articles

Two different approaches

Approach 1: quick and
handmade

Approach 2: using built-in
functions

+ more flexible (save
position of term,
context)

+ fast development

+ compatibility with other
library abilities

Possible improvements

* Preprocess XML source (avoid error of malformed nodes)
* N-grams (use other abilities ML library)

* Performance optimization
e Use in-built hashes (spark scala)

* More sophisticated querying process

e Store the index

Thank you

