
On-the-fly Indexing of Large 
Document Collections

Robert Scholz

Ekaterina Fuchkina



Outline

 Index review 
 TFIDF

 Dataset structure

 Two different approaches

 Approach 1

 Approach 2
 UI

 Possible improvements



General concept

Term List of documents ids 
and TFIDF value

people 13 1.57 17 1.23

maintain 15 1.83 29 1.56

Data
XML English Wikipedia 

Dump (12 488 908)

Inverted Index Search

Index Query

Result



<Page>

Dataset structure

<Page>

<title>

<ns>

<id>

<text>

<revision>

<redirect>

Namespace: indicates type of page (e.g. 0 –
main type, 2 – user pages. etc.)

Is this page actually just redirecting to some other? Then exclude it from 
indexing.

MediaWiki's internal article ID

<Page>

<Page>

…

…



TFIDF

TF (Term Frequency) of “people” is (3/100) = 0.03

Document Collection
10 million

Some document
100 words

Word “people” appears 3 
times

In this document

However term “people” appears only in 1000 documents out of 10 million

IDF (Inverse Document Frequency) is log(10000000/1000) = 4

Then, TF*IDF = 0.03 * 4 = 0.12



Two different approaches

• Approach 1: quick and 
handmade

• Approach 2: using built-in 
functions



Approach 1

• cd C:\tmp\spark161hd26

• bin\pyspark --packages com.databricks:spark-xml_2.10:0.3.3

• Copy and paste the rest, see comments for intermediate output



Approach 2

• Usage of pyspark.ml library
• spark.mllib contains the original API built on top of RDDs.

• spark.ml provides higher-level API built on top of DataFrames for constructing 
ML pipelines.

• Methods: HashingTF, IDF, StopWordsRemover

• UI: Django + Spark



Two different approaches

Approach 1: quick and 
handmade

Approach 2: using built-in
functions

Index build-time 13s / 3h 11 s / 25m

Query time 7 s 11 s

Query Autism in Afghanistan Autism in Afghanistan

Output 2 articles 2 articles



Two different approaches

Approach 1: quick and 
handmade

Approach 2: using built-in
functions

+ more flexible (save 
position of term, 
context) 

+ fast development

+ compatibility with other 
library abilities



Possible improvements

• Preprocess XML source (avoid error of malformed nodes)

• N-grams (use other abilities ML library)

• Performance optimization
• Use in-built hashes (spark scala)

• More sophisticated querying process

• Store the index



Thank you


