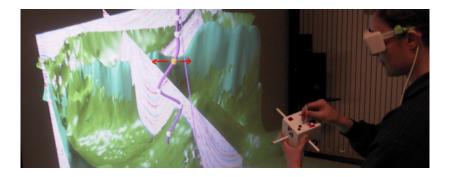
# Multi-Frame Rate Rendering and Display


Jan P. Springer<sup>1</sup> Stephan Beck<sup>1</sup> Felix Weiszig<sup>1</sup> Dirk Reiners<sup>2</sup> Bernd Froehlich<sup>1</sup>

<sup>1</sup> Bauhaus-Universität Weimar <sup>2</sup> University of Louisiana at Lafayette

Bauhaus-Universität Weimar

IEEE VR 2007, 2007/03/14

# **Observations for Complex Applications**

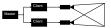


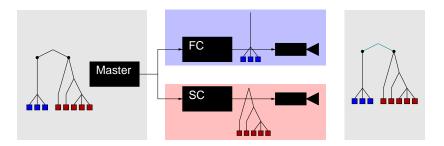
#### High frame rates:

- Object manipulation
- System control

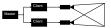
#### Low(er) frame rates:

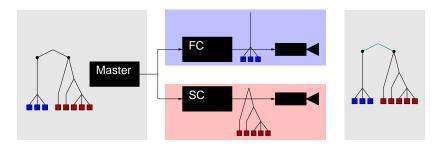
- Head tracking
- Navigation


# Multi-Frame Rate Rendering and Display

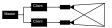

#### Asynchronous rendering

- ► Distribute scene to two clients (graphics cards / computers)
- Fast client will render:
  - manipulated/active objects
  - system control
- Slow client will render:
  - rest of the scene


#### Results combined into multi-frame rate display


- Optical superposition
- Digital composition



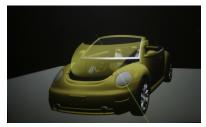



Inspired by Majumder and Welch, *Compter Graphics Optique: Optical Superposition of Projected Computer Graphics*, IPT-EGVE 2001





Inspired by Majumder and Welch, *Compter Graphics Optique: Optical Superposition of Projected Computer Graphics*, IPT - EGVE 2001

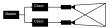





Slow client (SC)



Fast client (FC)




Optically combined image on display

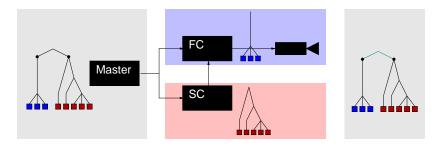
Bauhaus-Universität Weimar

IEEE VR 2007, 2007/03/14

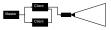
5/23 《 □ ▷ 《 □ ▷ 《 三 ▷ 《 三 ▷ 《 근 ♡ < ♡

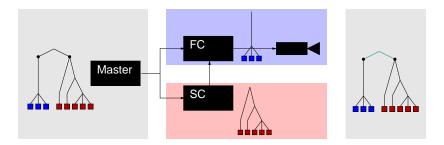





#### Properties and issues

- + Easy to implement
- + Fast interaction and object manipulation
- No occlusion between objects on fast and slow client
- Half transparency for overlapping objects from FC and SC
- Popping artifacts during selection and deselection of objects
- Requires 2  $\times$  number of projectors

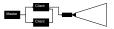







Inspired by Sort-Last parallel graphics

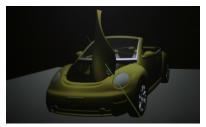





#### Inspired by Sort-Last parallel graphics

Bauhaus-Universität Weimar

IEEE VR 2007, 2007/03/14

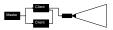


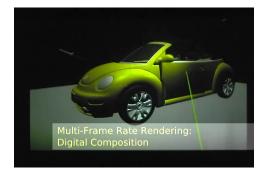


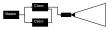

Slow client









Digitally composited image on display


Bauhaus-Universität Weimar

IEEE VR 2007, 2007/03/14

9/23 《 □ ▷ 《 □ ▷ 《 三 ▷ 《 三 ▷ 《 근 ♡ < ♡







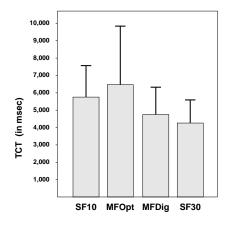
Properties and issues

- $+\,$  Fast interaction and object manipulation
- $+\,$  Perfect occlusion between objects on fast and slow client
- Implementation more difficult
  - ► Transfer of depth/color buffer from SC to FC
  - ► Transfer of view transform from SC to FC
- $-\,$  Popping artifacts during selection and deselection of objects
- $-\,$  Increased latency for images generated by SC
- Network limits update rates of SC

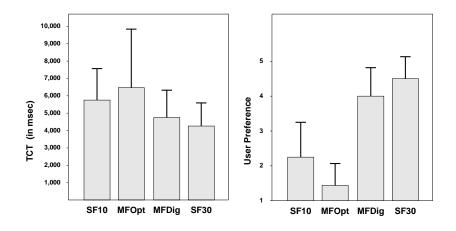
# User Study

#### Hypothesis

Digital or optical multi-frame rate method improves interaction performance with respect to single-frame rate method at low frame rates


#### Experiment Setup

- ▶ Basic 3 DOF docking task, head tracked, 16 participants
- Render methods:
  - ▶ single-frame rate @ 10 Hz (SF<sub>10</sub>)
  - multi-frame rate w/ optical superposition @  $10/30 \text{ Hz} (MF_{opt})$
  - multi-frame rate w/ digital composition @ 10/30 Hz (MF<sub>dig</sub>)
  - single-frame rate @ 30 Hz (SF<sub>30</sub>)
- Measure task completion times (TCT)
- ► Determine user preference (scale from 1 to 5)


# Experiment Setup



### Results



### Results



# Discussion: Artifacts

- Popping at selection
- Popping at deselection
- Transparency
- ► Manipulation effecting the whole scene (e.g. moving a light source)

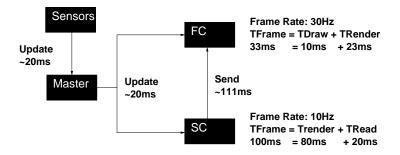
# Discussion: End-to-End Latency

- Optical superposition
  No additional latency
- Digital composition

 $T_{Read\ Color/Depth\ on\ SC}\ +\ T_{Send\ over\ Network}\ +\ T_{Draw\ Color/Depth\ on\ FC}$ 

## End-to-End Latency: Graphics

|      |          | $1280\times1024$ |     | 1600 	imes 1200 |      |
|------|----------|------------------|-----|-----------------|------|
|      |          | MB/s             | ms  | MB/s            | ms   |
| Read | BGRA_EXT | 997              | 5.3 | 939             | 8.4  |
|      | DEPTH    | 565              | 9.3 | 733             | 10.8 |
| Draw | BGRA_EXT | 2081             | 2.5 | 2166            | 3.6  |
|      | DEPTH    | 1213             | 4.3 | 1372            | 5.7  |


- ▶ nVidia GeForce 8800 GTX, driver rev. 97.46
- ► Note: selecting the "right" color format makes a difference

### End-to-End Latency: Network

| Resolution<br>64 Bit Color/Depth | Packet Size<br>in MBytes | Transfer Time<br>in ms |
|----------------------------------|--------------------------|------------------------|
| $1024 \times 768$ @ 15 Hz        | 6                        | 66                     |
| $1280 \times 1024$ @ 9 Hz        | 10                       | 111                    |
| $1600 \times 1200$ @ 6 Hz        | 15                       | 166                    |

Assuming 90 Mbytes/s bandwidth

# End-to-End Latency: Example



- Resolution:  $1280 \times 1024$
- Compression may not decrease network latency see Roth and Reiners, Sorted Pipeline Image Composition, EGPGV06

# Summary

- Multi-frame rate rendering
  - Improves object manipulation and system control
  - Does not improve navigation
  - Works with stereo and head tracking

#### Optical superposition

- Composition artifacts (half-transparency, popping)
- Precise manipulation very difficult
- Useful for system control and foreground elements

#### Digital composition

- Few artifacts most can be fixed
- Artifacts may not be noticed
- ▶ Requires very fast network (e.g. 10 GBit)
- User study confirms performance almost as good as rendering everything fast





IEEE VR 2007, 2007/03/14

# Summary

- Multi-frame rate rendering
  - Improves object manipulation and system control
  - Does not improve navigation
  - Works with stereo and head tracking
- Optical superposition
  - Composition artifacts (half-transparency, popping)
  - Precise manipulation very difficult
  - Useful for system control and foreground elements

#### Digital composition

- Few artifacts most can be fixed
- Artifacts may not be noticed
- Requires very fast network (e.g. 10 GBit)
- User study confirms performance almost as good as rendering everything fast





IEEE VR 2007, 2007/03/14

# Summary

- Multi-frame rate rendering
  - Improves object manipulation and system control
  - Does not improve navigation
  - Works with stereo and head tracking
- Optical superposition
  - Composition artifacts (half-transparency, popping)
  - Precise manipulation very difficult
  - Useful for system control and foreground elements
- Digital composition
  - Few artifacts most can be fixed
  - Artifacts may not be noticed
  - ▶ Requires very fast network (e.g. 10 GBit)
  - User study confirms performance almost as good as rendering everything fast





# Future Work

- Refine digital composition approach
  - ► Transfer screen rectangle of selected object for non-tracked scenarios
  - Implement popping artifact fixes
  - Transparency artifact solution for special cases (e.g. volume rendering)
  - Evaluate on multi-GPU system
- Further user studies
  - Lowest limit for head tracking update rates?
  - Which frame rate ratios for SC and FC work well?
- Combine with other parallel rendering strategies
  - ► Resource (re-)allocation/balancing

# Thank you for your attention.



# IPT-EGVE 2007

Weimar, Germany

- Submission deadline: March 31, 2007
- ► Conference: July 15-18, 2007



## http://www.uni-weimar.de/medien/vr/ipt-egve

Bauhaus-Universität Weimar

IEEE VR 2007, 2007/03/14