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ABSTRACT

We introduce a new concept for improved interaction with complex
scenes: multi-frame rate rendering and display. Multi-frame rate ren-
dering produces a multi-frame rate display by optically or digitally
compositing the results of asynchronously running image generators.
Interactive parts of a scene are rendered at the highest possible frame
rates while the rest of the scene is rendered at regular frame rates.
The composition of image components generated with different up-
date rates may cause certain visual artifacts, which can be partially
overcome with our rendering techniques. The results of a user study
confirm that multi-frame rate rendering can significantly improve
the interaction performance while slight visual artifacts are either
not even recognized or gladly tolerated by users. Overall, digital
composition shows the most promising results, since it introduces
the least artifacts while requiring the transfer of frame buffer content
between different image generators.

Keywords: Multi-Frame Rate Rendering, Multi-Frame Rate Dis-
play, 3D Interaction, Projection-based Display Systems

Index Terms: [.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; 1.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques; 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism— Virtual
Reality

1 INTRODUCTION

The interactive and high-quality visualization of large models is
still a challenging problem even though the capabilities of graphics
processing units (GPU) have been dramatically improved over the
past years. Unfortunately the expectations on visual quality have
increased even more, which in general affects the interactivity of
applications or interaction quality. These two qualities seem to be at
opposite ends of a continuum. Visual quality is mainly dependent on
the scene complexity (e. g. the number of primitives), the rendering
method, the illumination and shading model, and the display resolu-
tion. While all of these factors might also improve the interaction
quality, they often lead to low frame rates when excellent visual qual-
ity is desired. Interaction quality heavily depends on immediately
incorporating user actions into the simulation and image generation
process which demands high frame rates.

Our multi-frame rate approach uses multiple image generators to
render interactive parts of a scene, e. g. menus, cursor, interaction-
related visualizations as well as scene objects currently manipulated
by the user, with the highest possible frame rates while the rest of
the scene is rendered at regular frame rates. The results of individual
image generators are optically or digitally combined into a multi-
frame rate image. The optical combination can be achieved by using
multiple projectors displaying completely overlapped images on the
same screen. Digital image composition requires either dedicated
hardware like the Lightning-2 system [Stoll et al. 2001] or HP’s
Sepia/Sepia-2 systems [Moll et al. 1999; Lombeyda et al. 2001] or
the exchange of color and depth information between different image
generators. Our approach for digital composition of asynchronously
generated images can be seen as an unconventional case of the Sort-
Last technique [Molnar et al. 1994], which commonly focuses on
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balancing workload between multiple image generators to improve
the overall frame rate. Instead we purposely generate a highly
unbalanced load for the image generators to improve the interactivity
and responsiveness of an application considerably.

Our approach is motivated by a number of observations made
with different application prototypes in the automotive as well as
in the oil and gas industry, where often highly complex scenes are
explored and manipulated on large projection-based displays:

— Scenes are mostly static and only small parts of the scene are
manipulated, like an oil well or an engine part.

— System control is quite often used, but menus, sliders, etc. are
difficult to manipulate at low frame rates.

— Head tracking is rarely used. Even if it is used head-tracked
users move around very little in most cases. Head tracking seems
to work quite well at low frame rates while selection, object
manipulation and system control become increasingly difficult.

— Navigation often involves only the coarse adjustment of view
point positions, which can be achieved at relatively low frame
rates.

Based on these observations we realized that object selection, object
manipulation, and system control require higher frame rates to work
reasonably well than navigation and head tracking for the described
scenarios. This insight is either completely ignored in current sys-
tems and thus interactivity is sacrificed or it is resolved by rendering
the whole scene with an appropriate frame rate by reducing visual
quality, e. g. by sending fewer polygons into the graphics pipeline.

We introduce the concept of multi-frame rate rendering to im-
prove the interaction for complex scenes while maintaining visual
quality. Multi-frame rate rendering introduces certain visual arti-
facts for some situations, which are caused by the different update
rates of scene parts. We discuss how different approaches deal
with this problem, when it occurs, and how it can be ameliorated.
Our user study confirms that users benefit from the improved in-
teraction quality while certain visual artifacts are either not even
recognized or gladly tolerated. Overall, digital composition shows
the most promising results, since it introduces the least artifacts at
the expense of transferring frame buffer content between different
image generators. With the recent ubiquitous availability of single
system multi-GPU configurations our approach becomes easy and ef-
ficient to implement. For some application types it may be favorable
over commonly used Sort-First-based load balancing approaches for
multi-GPU environments.

2 RELATED WORK

Bergman et al. [1986] present a mechanism for adaptively refin-
ing the image presentation to the viewer. They propose to initially
show the vertices only, followed by adding the edges between ver-
tices, which in turn is followed by flat shading, shadow generation,
Gouraud shading, Phong shading, and finally anti-aliasing. They
reason that as long as the viewer does not change parameters this
successive refinement provides a good combination of rendering
speed, user convenience, and image quality. They also suggest the
possibility of a golden thread, a single step that, repeated a few
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times, will generate a coarse image, and when repeated further will
result in incrementally higher quality images.

Bishop et al. [1994] propose a rendering technique that allows
smooth updates of an image from a scene. Instead of using a double-
buffered approach, where the new image is being generated while
the previous one is shown on the display, they propose pixel compu-
tation based on the most recent user input and immediately updating
the pixel on the display. The resulting images would converge to
a final high-quality display when user motion stops. During input
changes the image display may become blurry since intermediate
images contain pixels from different temporal samplings. Watson
et al. [2002] follow up on this work by introducing a visual error
metric, consisting of a spatial and a temporal error to control the
image refinement. The proposed techniques by Bishop et al. [1994]
and Watson et al. [2002] of updating single pixels on a display are
practically limited to ray tracing render systems only. It is also worth
noting that no display hardware currently exists capable of efficiently
updating single pixels, cf. [Ferwerda 2003], making frameless ren-
dering a more conceptual approach rather than a practical method.

Woolley et al. [2003] introduce the concept of interruptible ren-
dering. A single image-space error measure is used to unify spatial
error caused by rendering coarse representations and temporal error
caused by rendering delay. A progressively refined rendering of a
coarse image into the back buffer is used. During this process the
temporal error is monitored and once it exceeds the spatial error,
further refinement is stopped and the image is displayed. Their ren-
dering system uses LOD-based techniques combined with real-time
ray tracing.

Sher Zagier [1997] proposes the incorporation of known behavior
as well as limitations of the human visual system. Coupled with
camera input a personalized display could be created and combined
with a refined frameless rendering approach. Dumont et al. [2003]
present a perceptually-driven decision theory for interactive render-
ing and demonstrate the approach for various applications such as
diffuse texture caching, environment map prioritization and radiosity
mesh simplification.

All of the techniques mentioned so far strive for realistic image
generation in the presence of user interaction. They sacrifice image
quality in one way or another to preserve interactive response to
the user. Our goal is the preservation of the visual quality for a
given image generation process; we do not want to alter what the
application developer thinks is appropriate for the intended audience.
Instead we provide a means to allocate and manage a dedicated
resource for the interactive parts of a scene under the assumption
that it will exhibit less computational cost than rendering the whole
scene.

Our work on optical multi-frame rate image composition was
inspired by Majumder and Welch [2001]. They suggest the use of
completely overlapped projections from multiple projectors for cre-
ating interactive depth of field effects by optical blurring, for greater
parallelism and flexibility in rendering, and for generating higher-
fidelity imagery. Also separating lighting components or multi-pass
rendering is suggested. Multi-frame rate rendering and display also
makes use of the greater flexibility when using multiple overlapping
projectors, but primarily for improving user interactivity.

Another way of improving the overall rendering performance
is the use of parallelized graphics, e.g. [Humphreys et al. 2002;
Deering and Naegle 2002; Yang et al. 2002; Ogata et al. 2003;
Bethel et al. 2003]. Molnar et al. [1994] introduce a classification
scheme for reasoning about parallel rendering. It is based on where
the graphical primitives are distributed to a particular screen, frame
buffer, or image generator. This leads to the observation that ren-
dering can be viewed as a problem of sorting primitives to a given
screen, which was first noted by Sutherland et al. [1974]. This sort
may happen anywhere in the rendering pipeline: during geometry
processing (Sort-First), between geometry processing and rasteri-

zation (Sort-Middle), or during rasterization (Sort-Last). Sort-First
redistributes primitives before transformation into screen space. Sort-
Middle means redistributing screen-space transformed primitives.
Sort-Last is the redistribution of pixels, samples, or fragments. The
classification scheme allows for computational and communication
costs to be analyzed. These approaches focus mostly on advanced
load balancing strategies to improve the overall frame rate. This is in
contrast to our approach, because we only try to improve the frame
rate of the highly interactive parts of the scene.

3 OVERVIEW

‘We propose techniques which combine the output of several image
generators (IG) in an asynchronous way using the superposition of
video projectors to create an optical buffer or by digitally merging
the color buffers and depth buffers of several render clients. Each
IG runs at its own frame rate dependent on the workload, which
is typically quite unbalanced with our approach. The combination
of the output of multiple I1Gs leads to a multi-frame rate display or
multi-frame rate images. The underlying technique for assigning
data to the respective IGs and the image combination technique is
called multi-frame rate rendering.

Optical Buffer The superposition of images from multiple projec-
tors requires precise geometric and optical calibration as discussed
in [Raskar 2002; Majumder 2003]. The superimposed projectors
create an optical buffer as shown in figure 1.

Client

Figure 1: Optical superposition of two projectors creating an optical (output)
buffer.

Digital Buffer The alternative to optical superposition of multiple
images is digital composition. This can be achieved by using dedi-
cated hardware such as the Lightning-2 system [Stoll et al. 2001]
or the Sepia-2 system [Lombeyda et al. 2001]. Since these systems
are not widely available, the exchange of color and depth buffers
between IGs is often used—in our implementation as well. We
combine the output of asynchronously running IGs in a digital buffer
(cf. figure 2), which is a variation of the Sort-Last technique.

Client

Figure 2: Digital composition of color buffer and depth buffer from two render
nodes creating an digital (output) buffer.

Multi-Frame Rate Display We call the visual result of digitally
combined or optically superimposed outputs from multiple asyn-
chronously running 1Gs a multi-frame rate display. An individual
image at a certain instant in time is called a multi-frame rate image.

Scene Superposition We assume that a scene is represented as
a scene graph. Parts of the scene graph are distributed to different
clients and the resulting outputs are digitally or optically combined.
The sum of the parts of the scene graph results in the complete scene
graph and the combination of the outputs from the different IGs
results in the complete image. Figure 3 shows this process schemati-
cally. The partial scene graphs are rendered on their respective nodes
and the combination of the nodes’ outputs results in an image of the
complete scene graph with the different parts potentially rendered at
different instants in time.
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Figure 3: Scene superposition; the partial scene graphs (blue on the left and
red in the middle) form the final scene graph (on the right) for the interacting
user when rendered on a multi-frame rate display.

Graphics Cluster and Distributed Scene Graph To explain
the different multi-frame rate rendering techniques we need to in-
troduce some details of the hardware and software setup. The asyn-
chronous generation of multiple images in parallel requires the use
of multiple IGs. This can be achieved by using a single computer
with multiple IGs or a cluster setup with at least one IG in each
machine or a combination of both approaches. We use a cluster
setup with a single IG in each machine. The IGs are not required
to be synchronized in any way. For the generation of stereoscopic
multi-frame rate displays some synchronization between the IGs for
the left and right eye and of the overall video refresh is generally
necessary and can be achieved by hardware vendor specific means.

The minimal cluster setup used for our implementation consists
of a master node, a high frame rate client (fast client, FC), and a
low frame rate client (slow client, SC). The master node executes
an application based on a scene graph toolkit with cluster support
and communicates changes in the scene to the client nodes over the
network.

In our implementation the master node loads the complete scene
and distributes the resulting scene graph to all clients. Thus each
client holds the complete scene graph and we use the concept of
traversal masks to select a certain part of the scene graph for render-
ing on each individual client. The traversal mask concept consists
of two types of masks. Nodes in the scene graph have bit masks as-
signed, which we call node masks. Scene graph traversal processes,
such as the rendering process, have also bit masks assigned, which
are commonly called traversal masks. During traversal of the scene
graph the current node mask is evaluated against the traversal mask
using a bit-wise AND operation and if the result is zero, the sub graph
below the current node is not further considered. Each client has a
different traversal mask assigned for its rendering traversal as shown
in figure 4. The master node assigns different node masks to the
respective parts of the scene graph, such that these parts are rendered
only on the corresponding clients. These node mask changes as well
as any other changes inside the scene graph are communicated to
the clients using the cluster support of the scene graph toolkit. Note
that distributing the complete scene to all clients greatly simplifies
the process of switching parts of the scene graph on and off on
individual clients.

TravMask: 0x0010

0x0001/. 0x0010

TravMask: 0x0001

0x0001 0x0010

Figure 4: Traversal mask update on different cluster nodes. On the left only the
node mask of the left partial graph (in blue) is compatible with the traversal
mask; the partial graph on the right (in gray) is excluded from the traversal. On
the right the inverse situation for another cluster node is shown.

For the remainder of this paper we are mostly focusing on the
selection and spatial manipulation of single objects in the scene
graph. System control techniques will work in a similar way. Nav-
igation and head tracking will be discussed later. Object selection
and manipulation is only considered in the master application. A
user selecting an object in the scene would trigger a node mask
re-assignment on the manipulated node. The node mask change is
then communicated to all clients and thus the corresponding sub tree
will be rendered only on the client with a compatible traversal mask.

4 MuLTI-FRAME RATE RENDERING BY OPTICAL SUPERPO-
SITION

We developed two techniques for multi-frame rate rendering through
optical superposition: basic asynchronous rendering and LOD-based
depth testing. These techniques require the setup of a graphics
cluster consisting of at least three nodes as described before.

4.1 Basic Asynchronous Rendering

Figure 5 shows the actual setup of the rendering cluster consisting
of a master and two client nodes. The scene is distributed to both
clients from the master. SC and FC have different traversal masks
for their render traversal processes. Initially the nodes in the scene
have traversal masks so that they are only rendered by SC. If a part
of the scene is selected by the user on the master its node mask is
changed to a node mask that is compatible with the traversal mask of
the FC. This affects the actual scene content rendered by the clients.
The SC will exclude the selected part of the scene graph from its
traversal process while the FC will include this part. This way any
selected object is exclusively rendered at full frame rate on the FC.
The node mask is reversed at the end of the selection.

=2

Figure 5: Basic asynchronous rendering setup sketch. SC is the “slow client”
while FC is the “fast client.”

Figure 6 shows digital photographs taken from a multi-frame rate
display running in basic asynchronous rendering mode. Figure 6a
shows the final image produced by two fully overlapped projectors
while figures 6b and 6¢ show the images from the projectors attached
to SC and FC, respectively. Figure 6a clearly shows that no correct
depth relation can be resolved in the optical buffer leading to half-
transparency effects. This is discussed in more detail in section 6.

Figure 6: Basic asynchronous rendering and image composition in the optical
buffer. (a) Combined output of the overlapped projectors. (b) Projector showing
scene (SC). (c) Projector showing selection (FC).

4.2 LOD-Based Depth Testing

The goal for developing LOD-based depth testing was to avoid
the half-transparency effects exhibited in the basic asynchronous
rendering technique (section 4.1) and to generate correct depth rela-
tionships. The idea is that both clients, SC and F'C, render the whole
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scene, but the parts with incompatible node masks are rendered to
the depth buffer only. This allows the generation of correct depth
relationships for two optically blended images—as long as there is
no interaction. Figure 7 shows the schematic setup for LOD-based

depth testing.

Figure 7: LOD-based depth testing setup sketch. SC is the “slow client” while
FC is the “fast client”. The FC first renders a lower resolution representation of
the scene assigned to SC before rendering its own scene part. SC proceeds
inversely.

The scene graph is distributed by the master node to the client
nodes in the same way as for the basic asynchronous rendering
approach. The SC renders the currently selected object into the depth
buffer only and the rest of the scene with regular level-of-detail and
shading afterward. The FC renders the inverse configuration, i.e.
the rest of the scene is rendered into the depth buffer only and then
the selected object is rendered as usual. When an object is selected
its node mask is changed so that it will create depth values only on
the SC but will be rendered normally on the F'C. The FC renders
the parts of the scene graph with incompatible node masks, i.e.
the whole scene excluding the currently selected object, with low
level-of-detail to preserve high frame rates. In addition texturing
and shading is turned off for this part of the scene.

Figure 8 shows digital photographs taken from a multi-frame
rate display running in LOD-based depth testing mode. Figure 8a
shows the combined view before any selection, i.e. the image is
generated solely by the SC. Figure 8b shows the part rendered by
the SC after selection occurred; a black shape can be seen, from
rendering into the depth buffer only, where the formerly selected
object was located. Figure 8c shows the image from the FC at the
same instant as figure 8b; only the selected object is visible but partly
covered by the depth values of an object located nearer to the viewer
(and thus rendered by the SC). Finally figure 8d shows the optical
superposition of both figure 8b and 8c.

(a) Before selection. (b) Depth map of selection in scene

from LOD.

(c) Selection occluded by other object. (d) Combined view.

Figure 8: LOD-based depth testing and image composition in the optical buffer.
(b) shows the projection from SC while (c) shows the part projected by FC; (a)
and (d) show the combined view of both projectors.

5 MuLTI-FRAME RATE RENDERING BY DIGITAL COMPOSI-
TION

We also developed a technique for multi-frame rate rendering
through digital composition using frame buffer exchange. With
this approach only the fast client displays the final image. The
clients share a common viewing setup such that the resulting images
can be digitally merged without perspective inconsistencies. As a
consequence head tracking is also limited to the frame rate of the
slow client.

The digital composition approach transfers the slow client’s depth
and color buffers to the fast client. The FC initializes its depth
and color buffer with this pre-rendered information followed by
rendering the currently selected objects. This approach can be seen
as a variation of the Sort-Last approach [Molnar et al. 1994], which
gathers images of a subset of the scene using an image composition
node or a dedicated hardware compositor. Traditional Sort-Last has
to wait until all the images arrive, so the slowest rendering node
determines the frame rate. Instead we do not wait for the slow
client. We always render at the frame rate of the F'C and incorporate
new color and depth information from the slow client as it becomes
available. The schematic setup is shown in figure 9.
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Figure 9: Frame buffer exchange setup sketch. SC is a “slow client” while FC is
a “fast client”. Only FC is connected to a projection device and responsible for
generating the image. SC is responsible for updating periodically the depth and
color information of its associated FC.

Digital compositing introduces frame buffer transfer overhead to
the rendering process. After the SC has rendered the parts of the
scene graph with a compatible node mask, the generated color and
depth buffers are read back into main memory and send through
the network to the corresponding FC. Upon arrival of a new frame
buffer at the FC these depth and color buffers are transferred into
the graphics subsystem. Any objects assigned to FC are rendered
afterward. Because the depth buffer from SC was already applied
objects rendered by FC will be correctly occluded if the SC does
not render animated objects. SC’s depth and color buffers will be
re-used each frame on the FC until updated versions from the SC
arrive. Note that the SC does not need to render and send frame
buffers in a fixed cycle. It is sufficient to perform this process only
when changes in the scene graph occur or the view transformation is
updated, e. g. because of navigation or head tracking.

Figure 10 shows digital photographs taken from a multi-frame
rate display running in frame buffer exchange mode. Figures 10a
and 10c show the scene as perceived by the user with an object
selected in figure 10a. Figures 10b and 10d show the same scene
with the color buffer content from the SC converted to gray scale
for emphasis. Note that the formerly selected object in figure 10b is
shown in gray scale in figure 10d because of object deselection.

6 RENDERING ARTIFACTS

Multi-frame rendering introduces various artifacts due to the asyn-
chronous combination of images from different image generators.
For spatial object manipulation tasks these artifacts mostly appear
during selection of an object and while an object is moving or inter-
penetrating other objects. The suggested multi-frame rate rendering
techniques deal in different ways with these problems.

Basic asynchronous rendering in combination with optical
superposition is the most simple way to drive a multi-frame rate
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(a) Object selected. (b)

(c) Object deselected. (d)

Figure 10: Frame buffer exchange image composition. (a) and (c) show an
selected and deselected object, respectively, as perceived by the user; (b) and
(d) show the same process with the contents from the SC post-processed to
gray scale and the contents rendered by the FC in color.

display. As explained in section 4.1 the overhead only consists of the
one-time distribution of the scene graph and the occasional update
of node mask values for a small number of scene graph nodes.

The main artifact for this technique is caused by the fact that
there is no depth relationship computed between the slow and fast
client’s objects and the respective images are simply projected on
top of each other. Thus occlusion of objects is not properly resolved
and objects from SC and F'C displayed on top of each other appear
translucent.

Another effect is the visual perception of popping artifacts. When
a user selects an object it takes one frame of the SC to update its
node mask and the changes to be actually considered by the render
traversal afterward. The associated F'C also needs only one frame
to update the node mask of the respective node(s) in its scene graph
copy but this happens much faster. Therefore while SC is still
displaying an image with the selected object included FC will also
show the selected object. This double appearance in the optical
buffer creates a double bright object, which is perceivable by the
user. Depending on the difference of actual frame rates between
SC and FC this results in a short flashing on the display for small
differences in frame rates up to a prolonged local brightness increase
for larger differences in frame rates. The inverse effect happens in
the case of object deselection. Here, while F'C already removed the
object SC needs more time for the update, which results in a time
period where the deselected object is not displayed at all.

Figure 11: LOD-based depth testing artifact due to frame rate differences
being too large between SC and FC. The shadow-like outline (marked-up) is the
depth map of the object in the SC not yet updated to the final object position.

LOD-based depth testing in combination with optical superpo-
sition was primarily developed to avoid half-transparencies. This
is traded for a dragging depth shadow if the frame rates differ sub-
stantially between FC and SC. In figure 11 a detail from a digital
photograph of a multi-frame rate display running in LOD-based
depth testing mode is shown where the difference in frame rates
is large enough, resulting in a delayed dragging of the depth mask
for a selected object in the depth buffer of the SC (marked outline
in figure 11). This shape boundary discrepancy is resolved when
user interaction is stopped or becomes very slow, which enables
fine grained positioning with correct depth relations while coarser
interaction patterns will exhibit a dragging depth shadow.

Even though LOD-based depth testing solves the half-
transparency problem to some degree the popping artifacts as dis-
cussed for the basic asynchronous rendering method still remain.

Digital composition as a rendering method for a multi-frame
rate display appears to be most promising. It completely avoids half-
transparencies in comparison to optical superpositioning techniques.
This comes at a price though, since it requires a more sophisti-
cated software and hardware infrastructure. The combination of
SC and FC need to be able to exchange data of a low-latency high-
bandwidth nature through a peer-to-peer connection. The (assumed)
cluster distribution mechanism of the scene graph is almost always
inappropriate for such client-to-client transfers.

The low-latency high-bandwidth data transfer will also restrict the
maximum achievable update rate. Assuming a frame buffer resolu-
tion of 1280 1024, a 32 bit color buffer, and a 24 bit depth buffer one
frame buffer update would amount to roughly nine megabytes of data.
Using a dedicated gigabit network a bandwidth of 90 megabytes per
second can be realized in practice. Thus, sending frame buffer up-
dates from SC to F'C would let us achieve a change rate of ten frame
buffers per second on the FC for newly arrived updates from the SC.
This would determine the frame rate at which a user could navigate
using head tracking. Thus the network bandwidth is the limiting
factor since reading and writing color and depth buffers is around
four times faster than the network transfer itself on current graphics
hardware; if only taking into account writing of the buffers on the
FC the network transfer is slower by an order of magnitude!

Finally, the data transfer mechanism also influences user interac-
tion. The selection process is coupled to the frame buffer exchange
rate between SC and FC, while the object manipulation will run at
full frame rate on the F'C once the selected object appeared. The
need to create a frame buffer update on the SC, sending it over the
network, and applying it on the F'C may create a temporarily incon-
sistent display, if the user already started moving the selected object.
This is due to the fact, that the selected object is still contained
in the old frame buffer from the SC, but also rendered by the FC.
Only when an updated frame buffer from the SC arrives this double
rendering artifact will be resolved. This is the corresponding effect
to the flashing or popping in the optical superposition of images.

7 IMPLEMENTATION

Since the introduction of a distributed graphics API by Maclntyre
and Feiner [1998] several approaches have been realized and pre-
sented to the research community, e. g. [Hesina et al. 1999; Tram-
berend 1999; VoB3 et al. 2002; Naef et al. 2003]. Our implementa-
tions are based on OpenSG [Reiners 2002] which is a very sophis-
ticated scene graph API providing inherent support for concurrent
scene graph traversal and distributed graphics applications.
OpenSG uses a multi-aspect mechanism to support multi-
threaded graphics applications by minimizing lock delays. Con-
ventional OpenSG applications consist of a set of server programs
and a client program. The server programs are started on their re-
spective nodes. The client program configures the display setup of
each server allowing for tiled walls as well as composition schemes.
Changes to the scene graph on the client program are communicated
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on a frame by frame basis and the frame boundaries of all participat-
ing programs are locked to a network barrier by default. To achieve
our asynchronous render management we employ a local per client
thread scheme where each client employs a thread that listens to
the changes from the network and another thread that is responsible
solely for rendering. Changes from the network are applied to one
aspect of the local scene graph copy which are merged at the end
of the render thread’s frame. The frame buffer exchange technique
(section 5) uses the regular gigabit network connection between SC
and FC for sending frame buffer updates. In our implementations all
participating clients are decoupled from the frame rate of any other
client. Note that in this nomenclature an OpenSG server is a slow
or fast client, while the OpenSG client is our master application.

We experimented with our techniques on our passive stereo projec-
tion setups. Each projector was connected to a PC running an AMD
Athlon 64 3000+ processor, 2 GB main memory, and an nVidia
FX 3400 PCle-based graphics board. A third PC, using the same
configuration, was assigned to run the master application responsible
for device input and scene graph event distribution. All PCs were
connected by a switched gigabit network.

8 USER STUDY AND DISCUSSION

Our hypothesis is that the improved interaction performance using
our multi-frame rate rendering techniques facilitates common selec-
tion and object manipulation tasks in virtual environments. While
there are many parameters that can be studied with our setup, we
focused on a head-tracked 3D docking task running at 10 Hz on the
SC and at 30 Hz on the FC. We compared the basic optical super-
positioning approach (MFp) and our digital compositing technique
(MFy;g) to the conventional single-frame rate rendering (SFyg) of
the whole scene at 10 Hz on a single graphics card. The SFy( sce-
nario served as our lower baseline. Since we perform the interaction
at 30 Hz, while head tracking and rendering the rest of the scene
happens at 10 Hz, the upper baseline is provided by conventional
single-frame rate rendering at 30 Hz (SF3(). The optical superposi-
tion technique supporting LOD-based depth testing was excluded
from the study since the fast object manipulation during a dock-
ing task would strongly pronounce the artifacts of this technique.
We selected a scene that could be rendered at 30 Hz on a single
graphics card and limited the frame rate for the different techniques
appropriately.

8.1 User Study

We recruited sixteen volunteers for our study, who were all daily
users of computer technology and most of them had worked with 3D
graphics before. All participants had stereo vision capabilities and
could interact with stereoscopically displayed objects which were
positioned in front of the screen.

Our 3D docking task required participants to select a small ball-
shaped object (3 cm diameter) from a randomly selected location
on one side of the screen and move it to the other side, where the
object had to be dropped off in a ring-shaped target location as can
be seen in figure 12 and 13. The pick-up and drop-off location were
randomly chosen from a set of predefined positions such that their
distance was always equal. In addition the ball-shaped object at
the pick-up location was occluded when viewed from the center
position in front of the screen to enforce the use of head tracking.
Selection required some head movement toward the appropriate
side of the screen, followed by further head movement toward the
drop-off location. The task was performed with an optically tracked
input device using a ray-casting metaphor and required three degrees
of freedom. The orientation of the manipulated object was not
considered. The displayed image was restricted to 1080x440 pixels
for all tests to allow a conservative 10 Hz network transfer rate for
the frame buffer updates in the MFy;; method. We used passive
stereo and linear polarization.

Figure 12: Setup used during the user study.

All the participants performed the docking task with each of the
techniques. The order of techniques (SFjg, MFopt, MFg;g, and SF3()
was balanced across participants using a Latin Square design. The
task was explained to each participant followed by a practice run
with each of the four techniques in the same order as the subsequent
trials. A trial was started by pointing at a start button in the middle
of the screen and pressing a button on the input device. The trial was
finished once the ball-shaped object was dropped off at the target
location. See figure 13 for screenshots from the running application.
The required precision was 1.5 cm, which was half the diameter of
the manipulated ball-shaped object. Each participant performed 15
trials with each method. At the end of each method participants
filled out a written questionnaire asking about problems with each
method. After the participants were finished with all the techniques
they reported about their preference with respect to each rendering
technique on a one to five scale.

Figure 13: Screenshots of the application prototype used in the user study;
Upper image shows the start of a trial and the lower image trial finish.

The task completion times (TCT) were entered in a 4x 1 analysis
of variance for repeated measures with the within-factors rendering
techniques (SFjg, MFopt, MFgig, and SF3() as well as the between-
factor order of techniques. The order of the techniques did not
produce a main effect nor did it interact with the technique indicating
that there was no transfer between the techniques probably due to
the simplicity of the chosen task and the extended practice runs.

The performance of the four techniques differed significantly
F3 188 = 10.01, p < .001. Docking with SFjq took 5.75 seconds
(standard error se = .26), while MF,; produced even longer TCTs
of 6.47 seconds (se = .49). The shortest TCTs were obtained with
SF30 4.26 seconds (se = .19) followed by our MF;, technique with
4.75 seconds (se = .23). Figure 14 shows these results. Post-hoc
comparisons revealed that all techniques differed from each other
(p < .05) except the pair SFjy and MFop as well as the pair MFg;,
and SF3( did not produce significant differences. User preference
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ratings (cf. figure 14b) of the techniques differed significantly as well
F3 60 = 16.91,p < 0.05. Post-hoc comparisons showed the same
results as for the TCTs. Thus the subjective measures are exactly
coincident with the results of the performance measures.
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Figure 14: User study results. (a) Task completion times (mean values and
standard deviation, in milliseconds) for single-frame rate rendering at 10 Hz
(SF10) and 30 Hz (SF30) as well as multi-frame rate rendering using optical
superposition (MFopt) and digital composition (MFgjq) at a frame-rate ratio
10/30 Hz for SC and FC, respectively; (b) User preference for the methods
tested (mean values and standard deviation, from 1 = dislike to 5 = prefer).

TCT (in msec)
User Preference
©

8.2 Discussion

In summary our digital image composition approach MF;, performs
significantly better than simply rendering at 10 Hz frame rate (SF).
Even more the MFg;, TCTs and the user preferences are almost at
the level of rendering the whole scene at 30 Hz (SF3p), which shows
the potential of this approach. At first sight the performance of our
optical superposition technique MFp,: seems to be disappointing,
since it is the overall slowest technique and the participants also did
not like the technique. Further investigation of the questionnaires
revealed that the depth perception during selection and drop-off of
the manipulated object was problematic. This is most likely due to
the two conflicting depth cues: occlusion and stereopsis. The simple
optical superposition does not provide any occlusion information.
This information was particularly important during the selection
process, since we used a selection ray of only 1.5 meters length.
The end of the ray had to pierce the ball-shaped object, which was
difficult to judge just from the stereoscopic parallax. Thus the basic
optical superposition technique is not well suited for these types of
tasks, where objects intersect and precise manipulation is required.
However it is very easy to implement.

Multi-frame rate techniques trade rendering artifacts for interac-
tion performance. A particular selection artifact occurs since the
slow client needs to remove the selected object from its frame buffer,
which happens with a delay depending only on the frame rate of
the SC. The selected object is just activated on the FC and can
be manipulated right away. However, while the SC has not yet up-
dated its frame buffer (and sent to the FC) the selected object is
still contained in the SC and F'C renderings. This results in differ-
ent visual artifacts for the multi-frame rate rendering techniques as
described in section 6. For dropping off objects a similar artifact
occurs. However, the participants of our study did not mention these
artifacts in the questionnaire indicating that they are not very promi-
nent at 10 Hz. If the SC and the F'C would sync their swap buffer
operations every N frames and their video signals accordingly, the
visual artifacts could be even avoided at the expense of introducing
selection lag. In addition the hardware and software overhead to
guarantee a swap-locked and video-synced system is also consid-
erable. Another option would be the use of shadow objects on the
fast client as they are suggested for distributed VR systems [Benford
and Mariani 1993]. In combination with the synchronized systems

scenario shadow objects would generate a controlled transition from
SC to FC.

Multi-frame rate techniques using the digital composition method
introduce extra lag into an application. Color buffer and depth buffer
contents at the SC needs to be read back from the graphics board
into host memory, send over the network to the F'C, and there these
buffers must be fed back into the graphics sub-system. We found
that current graphics hardware can upload color and depth buffers
for a resolution of 1280x 1024 pixels in less than 20 milliseconds,
downloading into the graphics card takes less than 10 milliseconds.
Transferring the data over a switched gigabit network may take up to
120 milliseconds, which is our main bottleneck. However 10 gigabit
network adapters and switches are becoming readily available, which
will reduce the total lag considerably.

9 CONCLUSIONS AND FUTURE WORK

We have introduced multi-frame rate rendering techniques which
optically or digitally combine the results from two asynchronously
running image generators. We have used this approach to assign
interactive parts of a scene to one GPU and rendering the rest of the
scene on the other GPU. This purposely creates a highly unbalanced
load on the image generators to improve the interactivity of the ap-
plication while maintaining the overall visual quality. Our user study
confirms the increased object manipulation performance and reveals
that visual artifacts for the digital image composition technique are
in most cases acceptable or not even recognized. Based on these
observations we believe that our multi-frame rate approach has the
potential to be used in various complex graphics applications, where
the focus is often on interaction with only small parts of the whole
scene.

Our research into multi-frame rate rendering and display methods
is just at the beginning. We have only implemented basic navigation
tools which simply run on the slow client. Since navigation and
object manipulation do happen in sequence only and not in parallel,
this is a possible solution. On the other hand head tracking does
happen in parallel with object manipulation. In our user study sce-
nario head tracking at 10 Hz did not seem to have a strong negative
impact on user performance. The question is which frame rate ratios
between the slow and fast client still provide a usable system and
what are the limits for head-tracked scenarios? The many parameters
of our multi-frame rate rendering techniques need to be investigated
and evaluated in further user studies to identify the best trade-offs be-
tween artifacts, overall visual quality, and interactivity for different
application scenarios.

The recent availability of common off-the-shelf solutions for
single-system multi-GPU configurations makes the implementation
of multi-frame rate rendering methods easier and much more ef-
ficient. In particular a single-system solution allows the use of
a conventional scene graph API instead of distributing the scene
graph to a cluster of graphics nodes. An application would dedicate
one GPU to rendering the non-interactive parts of the scene while
the other GPU handles the interactive parts. The GPUs would run
asynchronously. Frame buffer content should be ideally exchanged
without intermediate transfer through host memory.

Multi-frame rate rendering can be combined with common par-
allel graphics approaches such as Sort-First, Sort-Middle, and Sort-
Last. The possibility of dynamically re-assigning graphics proces-
sors between the sets of fast and slow clients is a great way to trade
interactivity for overall rendering performance on demand.
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