
Finger and Hand Detection for Multi-Touch Interfaces
Based on Maximally Stable Extremal Regions
Philipp Ewerling Alexander Kulik Bernd Froehlich

Bauhaus-Universität Weimar
Bauhausstrasse 11, 99423 Weimar, Germany

philipp.ewerling@gmail.com, kulik@uni-weimar.de, bernd.froehlich@uni-weimar.de

ABSTRACT
We propose a new approach for touch detection on optical
multi-touch devices that exploits the fact that the camera im-
ages reveal not only the actual touch points, but also objects
above the screen such as the hand or arm of a user. Our touch
processing relies on the Maximally Stable Extremal Regions
algorithm for finding the users’ fingertips in the camera im-
age. The hierarchical structure of the generated extremal re-
gions serves as a starting point for agglomerative clustering of
the fingertips into hands. Furthermore, we suggest a heuristic
supporting the identification of individual fingers as well as
the distinction between left hands and right hands if all five
fingers of a hand are in contact with the touch surface.

Our evaluation confirmed that the system is robust against de-
tection errors resulting from non-uniform illumination and re-
liably assigns touch points to individual hands based on the
implicitly tracked context information. The efficient multi-
threaded implementation handles two-handed input from mul-
tiple users in real-time.

Author Keywords
Multi-touch; hand detection; finger detection.

ACM Classification Keywords
H5.2 Information interfaces and presentation: User
Interfaces;

INTRODUCTION
Research and development on multi-touch interfaces has
come up with an ever growing number of multi-touch input
gestures. However, the expressiveness of touch input remains
limited without additional context information. Most existing
hardware platforms assume that all simultaneous touches
belong to the same gesture, hence they support only a single
user. This may be sufficient for small form factor devices
like smartphones. Large touch screens, on the other hand,
can accommodate more than one user and thus require hand
detection at the very least in order to minimize interferences.
It is therefore prudent that input processing should take into
account the fact that input may be induced by different hands

preprint

Figure 1. Detection of multiple hands and fingers. Note that the system
is robust against false positives from contact with the palm of the hand.

or even by different users. If we could additionally distin-
guish individual fingers, the design space of new multi-touch
interaction techniques would be greatly enhanced.

We developed a processing pipeline for multi-touch detection
on large touch screens that detects finger touches, groups fin-
ger touches into hands and distinguishes left from right hands
for full-hand input (Figure 1). Our pipeline is based on the
Maximally Stable Extremal Regions (MSER) algorithm which
has previously been used primarily in stereo image matching
and visual tracking. We use this algorithm to compute a hier-
archy of extremal regions, which in conjunction with a set of
local descriptors forms the basis for fingertip detection. Fin-
gers are assigned to hands using agglomerative hierarchical
clustering of a small subset of touch points provided by the
MSER component tree. Our processing pipeline even per-
forms hand and finger registration for situations in which all
five fingers of a hand are detected.

Our approach is motivated by the observation that the cap-
tured image data of optical multi-touch systems clearly con-
veys the outlines of a hand even if the hand is only hover-
ing above the surface while one or more fingers are touching
the screen. Surprisingly little research exists on how to ex-
ploit this additional context information. Most existing sys-
tems perform simple contact point detection based on image
filtering and thresholding that ignores any further image in-
formation.

Our main contribution is a new approach for multi-touch pro-
cessing based on an adapted version of the well-established
MSER algorithm in combination with on-the-fly clustering
of fingertips into hands. We evaluated our prototypical im-
plementation with four simultaneously interacting users. The
evaluation confirmed the excellent detection of touch points

with over 97% true positives and the reliable assignment of
touch points to individual hands with over 92% true positives
while false positives fall in the range of 1% for both cases.
Initial observations also indicate that our heuristic for finger
and hand registration performs well. However, it is limited to
situations in which all five fingers of one hand are in contact
with the touch surface in a natural hand pose.

Our efficient multi-threaded implementation focuses on im-
age regions containing potential touch points and processes
up to 40 fingertips in less than 10 ms with a total latency of
less than 50 ms on our hardware. While we have implemented
our prototype on a system based on diffuse illumination, the
processing pipeline can also be used with other touch sens-
ing systems that provide some sort of depth map of the region
above the touch screen. Examples include Thinsight[9], the
current Microsoft Surface tabletop device and systems based
on depth-sensing cameras.

RELATED WORK
Diffuse back-illumination is arguably the most widely used
approach to multi-touch finger tracking. Nevertheless, sur-
prisingly little literature can be found on the actual image pro-
cessing. The processing pipeline, described in the following,
is considered the default approach which has been extracted
from prototypes described in the literature and techniques
used in the open-source multi-touch community, namely the
Community Core Vision framework1.

In most setups based on infrared illumination, the detection
accuracy can be negatively affected by ambient infrared light
such as stray sun light. The use of high-frequency modu-
lated light can eliminate this problem almost completely [17].
However, this is not always possible and thus the first step
generally is to remove interfering noise using a background
subtraction and image normalization. In certain cases the
camera image is then filtered such that only objects of a cer-
tain size, typically that of a fingertip, remain. To this end,
band-pass filters are applied (usually Mid-Gauss or Mid-Box).
Given the assumption that in diffuse illumination setups ob-
jects appear brighter the closer they are to the surface, contact
points can now be detected by a simple image thresholding.

The benefits of exploiting additional information regarding
the association of touch points to individual hands and users
for more expressive multi-touch interaction have been shown
earlier [4, 25, 18, 19, 22, 15, 13]. Most of this research has
been performed using the DiamondTouch system [4]. This
commercially available multi-touch device achieves the asso-
ciation of touch input to respective users by coupling electric
signals from the tabletop through the user’s body to a distinct
receiver for each user. Unfortunately, the system limits the
choice of display components only to front projection and re-
quires the users to remain in physical contact with their re-
ceiver unit. For the purpose of grasp- and posture-recognition
with capacitive touch-sensing devices, Sato et al. recently
proposed a novel technology called Swept Frequency Capac-
itive Sensing [24].

Optical systems for extracting additional context information
have also been proposed. For instance, [3] and [28] use the
1see http://ccv.nuigroup.com/

orientation of the contact area’s bounding ellipse to infer the
relationship between hands and fingers, which requires users
to touch the surface with the finger pad instead of the tip.
Hilliges et al. [7] proposed interleaving common touchscreen
interaction based on diffuse illumination with image acquisi-
tion beyond the surface. Their setup requires the projection
surface to be a high frequency switchable diffuser. Other ap-
proaches utilize an overhead camera for context tracking [5,
14, 12, 8, 15]. Echter at al. proposed an additional ceiling
mounted light source to enable shadow tracking of hands hov-
ering above the input surface [6]. Both approaches require ad-
ditional hardware which thwarts the compactness of the setup
while also causing significant additional processing overhead
to the pipeline [5].

It has been suggested to use a depth sensing camera as an all-
in-one sensor both for touch detection with defined interaction
surfaces and context awareness [29, 11]. Since the same sen-
sor that is exploited for touch sensing covers the entire sur-
rounding area in depth, touch data could directly be associ-
ated with tracked users. A drawback of this concept is that
the relatively low resolution of current depth cameras impede
accurate multi-touch input.

Roth et al. propose attaching small IR-emitting devices to the
users’ hands for cryptographically sound user identification
[23]. This is obviously the most secure implementation of
user tracking for tabletop interaction, but requires the users to
wear an electronic device, which interferes with the walk-up-
and-use paradigm of most tabletop applications.

Proximity sensors embedded to the frame of the tabletop de-
vice may also be used for integrated context tracking at table-
top interaction devices [26, 1]. This approach provides rough
user tracking and even hand distinction for many purposes.
Based on an heuristic, touch points can be assigned to the in-
dividual hands of several users.

With the objective of registering hands and fingertips in opti-
cal multi-touch interfaces, Walther et al. recently proposed a
decision tree to classify fingertip configurations [27]. To the
best of our research and knowledge, their system is currently
unique in providing fingertip registration with less than five
fingers present. However, their approach can only be consid-
ered a starting point for further research as the accuracy of
approximately 80% is still too low for productive use.

PROCESSING PIPELINE
At the core of our processing pipeline lies an algorithm in-
troduced by Matas et al. called Maximally Stable Extremal
Regions that reveals the hierarchical structure of extremal re-
gions in an image. An extremal region is a particular type of
distinguished region and can be defined as a set of connected
pixels that are all either of higher or lower intensity than pix-
els on the region’s outer boundary. Given the fact that objects
in diffuse front illumination setups appear brighter the closer
they get to the surface, the representation of image content
in terms of extremal regions provides two compelling advan-
tages:

• An extremal region only defines a relative relationship be-
tween the contained pixels and those surrounding the re-
gion. Since it is independent from absolute intensity values,

http://ccv.nuigroup.com/

Figure 2. Finger and hand detection with our novel processing pipeline.

it is more robust in the presence of non-uniform illumina-
tion than approaches relying on a global threshold.

• Each extremal region can include further extremal regions,
thereby organizing distinguished image regions in a tree
structure. That structure is later used to reveal relationships
between objects such as grouping contact points belonging
to the same hand.

A processing pipeline usually starts with distortion correction
and illumination correction in order to normalize the cam-
era image. However these steps are considered basic image
processing operations and have therefore been omitted for the
sake of clarity. Our novel processing pipeline (Figure 2) com-
prises the following steps:

1. Region of Interest Detection to reduce the computational
cost of subsequent processing steps

2. Maximally Stable Extremal Regions analysis to create a
hierarchical structure

3. Fingertip Detection

4. Hand Distinction to group all revealed fingertips from the
same hand into clusters

5. Hand and Fingertip Registration if all fingers of a hand
are simultaneously touching the surface and

6. Tracking to follow fingers and hands across multiple
frames

Step 1: Region of Interest Detection
Usually only a limited area of the tabletop surface is utilized
at a time, making it appear as unnecessary overhead to pro-
cess the complete camera image at every frame. Performing a
simple region of interest detection first provides the following
advantages:

• Applying the fingertip detection algorithm only to the rel-
evant image areas that might represent an object or a hand
on or above the surface significantly reduces computational
costs.

• Several resulting regions of interest are independent and
can be processed in parallel, in order to take full advantage
of the threading capabilities of modern CPUs.

As the tabletop surface is illuminated from below, objects
above the surface appear brighter the closer they get to the sur-

face. Hence a simple thresholding operation on the intensity
values seems appropriate in order to reveal regions of interest
in the image. We apply a very small brightness threshold, re-
jecting all pixels less than 2% brighter than the background.
In our setup, hands hovering less than 20 cm above the inter-
action surface are on average 5% brighter than the background
and can thus still be detected. A drawback of this conserva-
tive approach is that illumination changes may erroneously
be interpreted as user interaction. However, this only reduces
the performance advantage of our processing pipeline without
affecting the actual detection accuracy.

Step 2: Maximally Stable Extremal Regions
Maximally Stable Extremal Regions (MSER) is a widely used
blob detection algorithm first described by Matas et al. in
[16]. It robustly detects distinguished regions (i.e. regions
that can be detected in image sequences or multiple views of
the same scene with high repeatability). In their algorithm,
Matas et al. introduced a new type of distinguished region
called a maximally stable extremal region. This concept is an
extension of extremal regions which are defined as follows:

Extremal Region
Given a region R in an image I , this region is called extremal
if and only if all pixels within this region are either of higher or
lower intensity than the pixels on the region’s outer boundary
ΩR:

(∀p ∈ R, ∀q ∈ ΩR | I(xp, yp) < I(xq, yq)) ∨
(∀p ∈ R, ∀q ∈ ΩR | I(xp, yp) > I(xq, yq))

The concept of maximally stable extremal regions addition-
ally includes a stability criterion based on a region’s relative
growth.

Maximally Stable Extremal Region
Be Ri−1, Ri, Ri+1 regions in an image I such that Ri−1 ⊂
Ri ⊂ Ri+1. Region Ri is a maximally stable region if and
only ifRi−1, Ri, Ri+1 are extremal regions and the following
stability property attains a local minimum in i:

s∆(i) =
| Ri+∆ | − | Ri−∆ |

| Ri |

with ∆ defined as a user-defined constant.

Matas et al. describe the detection process of these regions in-
formally as follows (Figure 3). Assume I a gray-level image
thresholded on all possible intensity values i ∈ {0, . . . , 255}
resulting in 256 binary images Bi. B0 contains only black
pixels while in B255 all pixels are white. Hence, when it-
erating through Bi with ascending i, the initial black image
gradually turns into a complete white image with new white
blobs appearing and existing blobs increasing in size. Consid-
ering the connected components from all thresholded images,
each of them corresponds to an extremal region. Furthermore,
each extremal region Ri at intensity threshold i is contained
by exactly one extremal region from each Bj with j > i,
since connected components do not decrease in size with in-
creasing intensity threshold. As a result, extremal regions can
be organized in a tree-like structure where the root node con-
sists of an extremal region that covers the entire image area.

This structure is called a component tree. Their proposed al-
gorithm runs in quasi-linear time with respect to the number
of pixels.

In 2008 Nistér et al. proposed a different algorithm that re-
veals maximally stable extremal regions in true linear time
[21]. Unlike the original algorithm, it does not resemble a
rising waterfront continuously filling holes in the intensity
height image, but rather a flood-fill spreading across the im-
age.

In layman’s terms, the algorithm can be described as pouring
water into a height field that is derived from the brightness
values in the camera image. Water is poured on an arbitrarily
chosen point from which water starts flowing downhill. Once
the lowest point of a sink is reached, water starts filling up.
The filling of a sink would correspond to the growing of a
connected component. Whenever the water surface of the sink
did not notably change in size after filling to a certain amount,
this connected component can be considered stable according
to the above definition. Once a sink is fully filled, water starts
pouring into adjacent sinks. The algorithm is finished after
the whole image has been flooded.

Linear-time algorithm
The algorithm relies on the following data structures that de-
scribe the current state of execution:

• A binary mask marking the already visited pixels

• A priority queue of pixels on the outer boundary of the cur-
rently flooded image region. The queue is prioritized based
on the pixels’ intensities (lower intensities first).

• A stack of components. A component corresponds to a sink
that is currently being filled with water. Therefore a com-
ponent is not always necessarily an extremal region. The
topmost component on the stack corresponds to the cur-
rently considered component. Whenever a sink is filled and
adjacent sinks exist, a new component is pushed onto the
stack and the neighboring sink is explored. Therefore the
maximum stack size is equal to the number of gray levels
in the image, which at most would total 256.

The algorithm proceeds as follows [21].

1. Choose an arbitrary starting point, make it the current pixel
and mark it as visited.

2. Initialize a new component with the current pixel’s intensity
and push it onto the stack.

3. Examine all neighboring pixels of the current pixel and
mark them as visited.

• If the intensity is higher than the current pixel’s intensity,
then the neighboring pixel is added to the priority queue
of boundary pixels.

• If the intensity is lower, then the current pixel is added to
the priority queue and the neighboring pixel is made the
current pixel. Continue with 2.

4. All neighboring pixels of the current pixel have either been
visited or have higher intensity. Therefore accumulate the
component with the current pixel.

5. Retrieve the next pixel from the priority queue.

• If its intensity is equal to the current pixel’s intensity,
continue with 3.

• If its intensity is higher than the current pixel’s intensity,
all components on the stack are merged until the intensity
of the topmost component is greater or equal to the next
pixel’s intensity. Continue with 3.

• If the queue is empty, the algorithm terminates.

Modifications of the algorithm
In order to accelerate the subsequent processing steps, the al-
gorithm has been modified to gather additional information on
extremal regions and their spatial structure during its execu-
tion.

Extension to reveal all extremal regions
The standard algorithm only reveals extremal regions that
are maximal according to the stability criterion. Hence
a number of intermediate extremal regions are being dis-
carded and do not appear in the component tree. However,
these additional regions might convey important informa-
tion as to the spatial relationship among regions that will
be exploited extensively in the hand distinction processing
step. Thus, the algorithm design has been changed in order
to identify all available extremal regions.

Characterization of extremal regions
In order to be able to use the identified regions for fingertip
recognition, a set of local descriptors will be used. Due to
the incremental growth of components, the following fea-
tures can be efficiently computed during execution of the
algorithm.

Intensity statistics
The mean and variance of the intensity distribution char-
acterize the pixel’s intensity values within a component.
During the sequential growth of components through
accumulation of new pixels and merging of existing
components, these statistics can be efficiently computed.

Image moments
In [10], Hu described a widely used set of shape descrip-
tors based on image moments that are invariant to trans-
lation, rotation and scale. In our algorithm the first of his
7 shape descriptors will be used:

φ1 = ν20 + ν02

where νpq denotes the normalized moment of order (p+
q) with p, q ∈ N (see [20] for a detailed description).

Bounding volumes
Image moment based shape descriptors provide a perfor-
mant yet unintuitive way of describing a region’s shape;
however, it is sometimes useful to find a simpler rep-
resentation based on geometric primitives. Therefore a
region’s shape will be additionally described using the
oriented bounding ellipse. A non-optimal approximation
can easily be derived using image moments of zeroth,
first and second degrees [20].

Step 3: Fingertip Detection

(a) (b) (c)
Figure 3. Visualization of the Maximally Stable Extremal Region algorithm as a rising waterfront(from a to c). On the left hand side of each illustration,
the raw camera image is represented as a height map with the waterfront indicating the level of the current intensity threshold. The isolines on the right
hand side show the outlines of the image at the current and previous threshold levels.

The component tree resulting from the MSER processing
serves as the foundation of the fingertip detection and the fol-
lowing processing steps. This tree structure has two important
properties with respect to its contained extremal regions:

• The darkest and simultaneously largest extremal region
forms the root of the component tree.

• For all child-parent relationships maintains the property
that the child is smaller in size and has brighter intensity
than its parent.

As fingertips in contact with the surface create the brightest
spots in an image, it follows that only leaf nodes of the
component tree can be considered fingertip candidates.

These fingertip candidates are evaluated as follows:

1. Identify the extremal regions that represent the finger of a
fingertip candidate. This applies to all parent regions of
the candidate up to a maximum size and as long as these
do not have siblings (i.e. the candidate region is the only
leaf contained in the parent’s subtree). The largest of these
regions will subsequently be referred to as finger.

2. For each candidate region a feature vector is compiled con-
taining the following properties:

(a) Bounding ellipse of the candidate region.

(b) Bounding ellipse of the finger region.

(c) The maximum value of the first of the seven shape de-
scriptors introduced by Hu for all regions below the fin-
ger region.

(d) The depth of the subtree having the finger region as its
root node.

(e) The maximum relative growth in pixel size of any child-
parent relationship between the candidate and the finger
regions.

(f) The relative growth in pixel size of the finger region with
respect to the candidate region.

(g) The ratio of the intensity ranges of the candidate and fin-
ger regions respectively.

(h) The number of pixels within a defined distance that have
an intensity of less than 10% of the candidate region’s
mean intensity. This feature is based on the observation
that pixels within a fingertip’s contact area are close to a

certain number of background pixels, hence resulting in
a significant intensity fall-off within the vicinity.

Properties 2a, 2b and 2c are used to discard candidate re-
gions that do not exhibit the typical, rounded shape and av-
erage size of fingertips. Using property 2h, the algorithm
is able to discern fingertip contacts from bright regions at
the wrist and palm in case the hand is resting on the surface
during interaction. The remaining properties describe the
characteristic intensity fall-off around the contact area due
to the oblique or vertical finger orientation. They are hence
able to distinguish fingertip contacts from contact areas of
similar size and shape.

3. Calculate a confidence score C using the weighted sum of
the feature vector:

C =
∑
fi

wi · fi (1)

The weights have been chosen such that range differences
between features are compensated for without awarding
any of the features too high of an influence on the final
score. We adjusted these values manually and achieved
convincing results. A machine learning approach would
certainly ease setting up the system under varying condi-
tions.

4. Two thresholds have been defined on the confidence score
to classify candidate regions either as no confidence, low
confidence or high confidence. However, having a high
confidence score in a single frame is not sufficient for a
region to be considered as a fingertip. A temporal hystere-
sis has been implemented that requires a candidate region
to achieve at least once a high confidence and never a no
confidence score in three consecutive frames in order to be
classified as a fingertip. Note that this does not require the
finger to be stationary during these three frames as candi-
dates are continuously tracked while moving.

Step 4: Hand Distinction
In this approach, the grouping of fingertips is robustly estab-
lished solely using the information from the previous process-
ing steps, that is the component tree and the identified contact
points that to a given degree of confidence correspond to fin-
gertips. These fingertips may or may not belong to the same
hand or even the same user. As the respective extremal regions
are leaves in the component tree, they are contained in a num-
ber of regions of higher level until all of them are contained in
the root region. Hence there already exists a spatial clustering

of these regions based on intensity values. Therefore, finger-
tips could simply be grouped gradually while ascending in
the component tree until a homogeneity criterion such as the
maximum distance between fingertips or the maximum size
of the parent region is violated. While that approach gener-
ally works reasonably well, problems arise under certain con-
ditions. In the case of excessive ambient light such as from
stray sun light, the amount of contrast in the camera image
is heavily reduced. However, with reduced contrast less ex-
tremal regions are revealed resulting in a sparse component
tree. That loss of spatial information might lead to an erro-
neous clustering or a dead-lock situation in which too many
fingertips are children of the same region.

Therefore a more robust approach will be presented here that
combines the advantages of the idea described above com-
bined with agglomerative hierarchical clustering. Hierarchi-
cal clustering itself would be unsuited in our scenario because
of its high computational complexity. Tabletop surfaces con-
tinually grow in size, hence enabling the simultaneous inter-
action of multiple users. Due to the large number of resulting
touch points, unaided nearest neighbor clustering would be
highly inefficient for real-time application.

The idea is to only cluster a small subset of touch points at
a time using agglomerative hierarchical clustering thereby re-
ducing the impact of the polynomial complexity. The spa-
tial clustering provided by the component tree, although erro-
neous at times, can serve as a reasonable input. The outline of
the algorithm is as follows:

1. Traverse the component tree in postfix order. This order-
ing ensures that all children have been processed before the
node itself is processed. For each node do:

• If the node is a leaf node and has been classified with at
least low confidence as a fingertip, create a new cluster
containing this node.

• Otherwise create the current set of clusters from all child
nodes and process these as follows:

(a) Compute the distance matrix among all pairs of clus-
ters of this node using a distance function
d(C1, C2).

(b) Find the pair of clusters C1, C2 with the lowest dis-
tance dC(C1, C2) that still satisfies the distance cri-
terion D(C1, C2, dC).

– If such a pair of clusters exists, merge the two
and continue with 1a

– Otherwise the clustering is finished.

The complete-link (furthest neighbor) distance function is
used in this instance as it takes into account the distance to
the fingertip that is furthest away. It is defined as follows:

dC(C1, C2) = max
u∈C1,v∈C2

d(u, v) (2)

with d being a distance measure. Here Euclidean distance is
used as distance measure. Combining complete link with an
appropriate distance criterion D that places a constraint on

cluster growth has been found to work best to cluster finger-
tips into hands.

D is set to the maximum expected distance between any two
fingertips of the same hand. The maximum distance is usu-
ally the one between the thumb and the little finger. However,
as user interaction using only these two fingers is rather rare,
the criterion has been restricted further based on the combined
number of fingertips in the clusters. The lower the number of
fingertips contained in both clusters, the smaller the maximum
allowed distance is. Hence fingertips that are at an unusually
large distance from each other will only be merged once fin-
gertips in intermediate positions have been found. Therefore
this extension makes the criterion more robust as it alleviates
negative effects of the chosen maximum finger distance as be-
ing considered too large or too small.

As a result of this image analysis, every detected touchpoint
is assigned to a certain parent region that corresponds most
probably to a single hand. The hand distinction is robust un-
til individual hands physically touch each other. In case this
accidentally happens, the problem can be eliminated based
on frame-to-frame coherence. If instead this state of touch-
ing or crossing hands remains present over several frames, all
involved touch events will be assigned to the same cluster.
Given that the situation of touching hands is also very salient
to users and generally not desired during interaction, we con-
sider this to be a minor issue.

As a result of this step, every node in the hierarchical structure
has a unique ID assigned that remains valid until the system
looses track of it. Our system is able to keep track of hovering
hands up to almost 20 cm above the screen due to their rel-
atively large size. Applications allowing the users to choose
between different tools should thus assign the selected inter-
action tool to the parent node that constitutes the hand rather
than the selecting finger in order to keep the association when
the user removes the finger from the screen.

Step 5: Hand and Fingertip Registration
The hand and fingertip registration comprises the following
steps (Figure 4):

1. Order the five fingertips along the hand such that either the
thumb or the little finger comes first.

2. Identify the thumb from the set of fingertips. The finger-
tip registration of the remaining fingertips follows from the
previous ordering.

3. Infer from the fingertip registration whether the considered
fingertips are from a left or right hand.

The first step is crucial as an erroneous ordering cannot be
corrected at later stages of the registration process. Au et al.
for instance propose an angular ordering around the centroid
of the five fingertips [2]. However, the centroid usually de-
viates too much from the perceived center position as the in-
dex, middle, ring and little fingers are generally located very
closely to each other. While this approach is robust if finger-
tips are aligned as an arc on the surface, considering if one of
the fingers is moving (e.g. the index finger performs a slid-
ing gesture downwards), the ordering might swap the thumb
and index fingers. Hence another ordering will be proposed

(a) Initial fingertip posi-
tions of a hand in resting
position.

(b) Fingertip ordering
along shortest path.

(c) Endpoints are identi-
fied as either thumb or lit-
tle finger.

(d) Identify thumb as the
finger furthest away from
the centroid of all five fin-
gertips

(e) Fingertips can now
all be identified given the
thumb (T) and the order-
ing.

Figure 4. Steps of the fingertip registration process. The hand shape and fingertip positions used in the drawing were copied from an actual camera
screen shot of the prototype.

here based on the shortest path along the fingertips which is
computed as follows:

1. Be F the set of all fingertips fi. The set D is defined as the
distances among all possible pairs of fingertips:

{{d(fi, fj), fi, fj} | (fi, fj) ∈ F × F}

with d(fi, fj) denoting the Euclidean distance between fi
and fj .

2. For each fingertip fi assign a unique label L(fi).

3. IterateD in increasing order of d(fi, fj). Be C the set of all
edges forming the fingertip contour. For each pair (fi, fj)
do

• If L(fi) 6= L(fj):

(a) Add (fi, fj) to C.

(b) Assign a common unique label to all fingertips fk
that either fulfill L(fk) = L(fi) or L(fk) = L(fj).

• If | C |= 4:

(a) All fingertips have been included in the contour.
(fi, fj) denotes the pair of fingertips on the contour
that are furthest apart from each other. fi and fj de-
fine the endpoints of the contour which by definition
of the ordering correspond either to the thumb or the
little finger.

The above ordering relies on the assumption that along the
shortest path the thumb and little finger are the two fingertips
that are furthest apart from each other. Since a rather unnat-
ural hand pose would be required to violate that property, it
was deemed a valid assumption for regular use.

The next step in the registration process is to uniquely iden-
tify the thumb. As the previous ordering already reduced the
number of candidate fingertips, the task is equivalent to dis-
tinguishing thumb from little finger. Since the index, middle,
ring and little finger influence the position of the centroid as
mentioned above, thumb and little finger can be distinguished
with respect to their distance to the centroid. The little finger
is the one located closer to the centroid while the thumb is the
one positioned further away.

Finally the registration of the set of fingertips as belonging
to the left or right hand remains to be done (Figure 5). Be

(a) (b)
Figure 5. Hand registration using the angle between the little finger and
the remaining fingertips with respect to the thumb.

fT , fI , fM , fR and fL the thumb, index, middle, ring and lit-
tle finger respectively. Based on the angle between the the
vectors

−−−→
fT fL and

−−→
fT fI , left and right hand can be easily dis-

tinguished. If that angle is smaller than 180◦, the set of finger-
tips is classified as right hand, otherwise as left hand. In or-
der to make the registration more robust in presence of finger
movement such as the aforementioned sliding down gesture of
the index finger, the vector

−−−−−→
fT fIMR =

−−→
fT fI +

−−−→
fT fM +

−−−→
fT fR

will be used instead of
−−→
fT fI only.

Hence the registration is defined as follows:

|
−−−→
fT fL ×

−−−−−→
fT fIMR | < 0 ⇒ Left Hand

|
−−−→
fT fL ×

−−−−−→
fT fIMR | > 0 ⇒ Right Hand

(3)

where × denotes the cross product of two vectors.

Note that finger and hand identification is only possible if the
hand touches the screen in a relaxed posture with all fingers
in direct contact. However, we consider this feature a mere
add on to our processing pipeline providing robust multi-
touch tracking with finger and hand detection. We believe
that the additional information on involved fingers and hands,
although limited to certain postures, can be beneficial in many
applications like system control (cf. [2]).

Step 6: Tracking
The clustering of fingertips greatly reduces the complexity of
matching fingertips in consecutive frames. Instead of comput-
ing all possible combinations, this step is being accelerated
by only considering fingertips for nearest-neighbor matching
whose containing clusters intersect. The tracking of clusters

is inferred from their contained fingertips. In case finger-
tips have been clustered erroneously, clusters from previous
frames will be merged or split if that condition persists over a
small number of frames. A window of 5 frames has worked
well in our implementation.

EVALUATION AND RESULTS
In a pilot study we tested the limits of the proposed processing
pipeline in terms of execution time and finger detection rate.
Four students (all male, aged 24 - 27) from our research group
were asked to perform multi-touch gestures on the surface.
However they were reminded to not only use common ges-
tures involving a small number of simultaneous touch points
but to also use both hands with randomly changing configura-
tions of fingers touching the surface, hence resulting in a max-
imum number of 40 simultaneous finger touches (and possi-
bly even more evaluated touch points considering that users
were allowed to rest their palm on the surface). We did not
include intensive variability of background illumination as an
independent variable as our laboratory is generally artificially
illuminated. More than 4000 camera frames were captured
during the interaction process that now could be replayed to
the processing pipeline in order to properly measure execution
times and finger detection rate.

Execution Time
As performance is dependent on the number of simultaneous
user actions performed on the surface and surfaces continu-
ously increase in size, processing pipelines have to deal with
an ever increasing number of simultaneous touches. There-
fore, evaluating the detection performance for up to 40 si-
multaneous fingers touching the surface is being considered a
well-suited performance indicator of the processing pipeline.

We evaluated the performance of our algorithm on a machine
with an Intel Core i7-940 CPU (2.93GHz, 4 cores) and 5.8GB
of available memory running Ubuntu Linux 10.04. The cam-
era delivered frames at a resolution of 640 x 480 at 60Hz. The
reported execution times include all steps of the pipeline as
well as required image preprocessing. Measuring was started
just after the image had been loaded into memory and stopped
when all processing and memory clean-up steps had been exe-
cuted. The recorded user interaction was processed five times
and we averaged the corresponding performance measures in
order to minimize the influence of external factors such as the
operating system.

Given the measurements shown in Figure 6, the most impor-
tant result is that even for single-threaded execution, a pro-
cessing performance of at least 60 frames per second was
achieved. Most notably that performance was achieved even
during the simultaneous interaction of 4 users, 8 hands and
up to 40 fingers. Furthermore using four processing threads,
processing time is capped at around 10ms regardless of how
many fingers of the 8 hands simultaneously touch the surface.

Although the performance measurements prove very satisfy-
ing, it is important to keep in mind that this is only a part of
the processing that is performed between a user action and the
corresponding visual feedback. What determines the user’s

0 10 20 30 40
0

5

10

15

Evaluated Fingertips

E
xe

cu
tio

n
Ti

m
e

(m
s)

1 Thread
2 Threads
4 Threads

Figure 6. Execution times with respect to the simultaneous number of
finger touches for different numbers of threads involved in the process-
ing.

impression of responsiveness of our prototype is the end-to-
end latency that stems from the following contributing factors
(values from our prototype in brackets):

• The image acquisition, in particular the exposure time (∼16
ms)

• The transmission of image data from the camera to the
computer (∼16 ms w. a Firewire camera).

• The processing of camera images (∼10 ms w. 10 threads).

• The protocol used to communicate detection results over a
network interface (TUIO2)

• The response of the application software that updates the
display.

Latency introduced by the individual components can also
temporarily vary due to unfavorable process scheduling as a
result of the operating system. We achieved an overall la-
tency of under 60 ms with our prototype. Further improve-
ments can be achieved with a faster camera interface such as
USB3.0 and the impact of the exposure time could be reduced
by pulsing the infrared light. Since the light’s intensity can
be much higher during the pulse, the exposure time could be
significantly shortened. This would additionally reduce the
influence of ambient illumination.

Finger Detection Rate
Measuring the finger detection rate is particularly difficult as
it requires a ground truth as a basis for comparison. In this
case the first 1500 frames from the interaction process were
considered. Given the extensive manual work required to la-
bel all visible fingertips in these camera images, this number
has been further reduced to only consider every fifth frame.
Hence, a total of 300 camera images were analyzed that con-
tained on average more than 21 visible fingertips.

In order to quantify the finger detection rate, two basic mea-
sures are used. Firstly, the number of visible fingertips which
have been correctly detected by the pipeline will be consid-
ered. This measure is usually called the true positive or hit
rate. Secondly, given the total number of detected fingertips,

2Open protocol for tangible multi-touch surfaces, see http://
www.tuio.org

http://www.tuio.org
http://www.tuio.org

how many of these have been falsely considered to be in con-
tact with the surface will be evaluated. This second measure
is usually referred to as false positive rate. We achieved the
following results:

True Positive Rate
Correctly detected fingertips

Total number of visible fingertips
=

6449

6628
≈ 0.973

False Positive Rate
Wrongly detected fingertips

Total number of detected fingertips
=

88

6537
≈ 0.0135

The high true positive rate shows the potential of the pro-
posed pipeline. The false positive rate also seems reasonably
low given the constraints of the prototype, in particular the
significantly uneven illumination (Figure 2). We assume that
the false positive rate as well as the false negative rate could
be further reduced by applying machine learning techniques
to the fingertip detection.

The accuracy of the hand distinction was analyzed as well.
For this purpose, more than 450 camera images were manu-
ally classified which were extracted from the interaction pro-
cess at five frame intervals. The evaluation measured the suc-
cess rate of the hand distinction process, defined as the per-
centage of hands that were correctly clustered. Hand distinc-
tion was regarded as successful if all detected fingertips from
the same hand were attributed to the same cluster. However,
if these fingertips were contained in more than one cluster,
the clustering for this hand was considered invalid. Further-
more, if two hands were erroneously contained in the same
cluster, both were regarded as unsuccessful. The results are as
follows:

Success Rate
Correctly clustered hands

Total number of visible hands
=

2681

2909
≈ 0.922

The hand distinction usually failed in the presence of false
positives from the fingertip detection. Since cluster size was
capped at five fingers, false positives resulted in surpassing
that limit and hence interrupted the merging of clusters. This
in turn reduced the false positive rate of the fingertip detection
step, which would have positive effects on hand distinction in
terms of success rate.

The accuracy of the hand and fingertip registration has only
informally been tested. In total eight students, all male aged
in their mid-twenties, from our research group were asked to
place both of their hands on the surface. While no restric-
tions were imposed on the exact hand posture, the students
were asked to adopt a position that felt natural to them. In
these short tests the hand and fingertips were correctly reg-
istered for all participants. Hence the assumptions used to
infer these properties appear to be reasonable. Although only
a static hand position was tested, it currently seems to be the
most convincing use case in which a gesture is started in this
position allowing proper registration.

CONCLUSION

Figure 7. Close hands can still be differentiated.

We presented a novel processing pipeline for optical multi-
touch surfaces that relies on Maximally Stable Extremal Re-
gions for fingertip detection rather than on simple threshold-
ing. Extremal regions are defined as a relative relationship
between an image region and its border, which renders the
detection robust in the presence of non-uniform illumination.
Furthermore, extremal regions can be organized into compo-
nent trees which represent the spatial relationship among sur-
face contacts and also consider further information of the cap-
tured camera images such as the hand and the arm. The leaf
nodes of these trees are candidates for fingertips, which are
evaluated by a set of image features and an appropriate con-
fidence score. Using the component tree and agglomerative
clustering, fingertips are merged into hands. Hand and fin-
gertip registration for these clusters of fingertips can be per-
formed if all five fingers of a hand are on the touchscreen in a
natural pose.

We found the system to be very stable even in situations where
palms and elbows were resting on the table (Figure 7) since
the detection relies on the identification of the fingertips and
the hand regions. Our evaluation confirms this reliability of
the finger and hand detection with high true positive rates.
While our approach is more computationally intensive than
basic blob detection, our efficient implementation indicates
that it can perform in real-time on current multi-core CPUs.
We believe that advanced touch processing is at the core of
further development in the realm of multi-touch interfaces.
Our results clearly demonstrate novel interaction opportuni-
ties that can be achieved with smarter processing of input data
from multi-touch systems which acquire some sort of depth
information above the surface.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry
of Education and Research (BMBF) under grant 03IP704
(project Intelligentes Lernen). We thank the participants of
our study. We also thank the reviewers of this paper for their
constructive comments.

REFERENCES
1. Annett, M., Grossman, T., Wigdor, D., and Fitzmaurice,

G. Medusa: a proximity-aware multi-touch tabletop. In
Proc. UIST 2011, ACM Press (2011), 337–346.

2. Au, O., and Tai, C. Multitouch finger registration and its
applications. In Proc. OZCHI 2010, ACM (2010), 41–48.

3. Dang, C., Straub, M., and André, E. Hand distinction for
multi-touch tabletop interaction. In Proc. ITS 2009,
ACM Press (2009), 101–108.

4. Dietz, P., and Leigh, D. Diamondtouch: a multi-user
touch technology. In Proc. UIST 2001, ACM Press
(2001), 219–226.

5. Dohse, K., Dohse, T., Still, J., and Parkhurst, D.
Enhancing multi-user interaction with multi-touch
tabletop displays using hand tracking. In Proc. ACHI
2008, IEEE (2008), 297–302.

6. Echtler, F., Huber, M., and Klinker, G. Shadow tracking
on multi-touch tables. In Proc. AVI2008, ACM Press
(2008), 388–391.

7. Hilliges, O., Izadi, S., Wilson, A. D., Hodges, S.,
Garcia-Mendoza, A., and Butz, A. Interactions in the air:
adding further depth to interactive tabletops. In Proc.
UIST 2009, ACM Press (2009), 139–148.

8. Hirsch, M., Lanman, D., Holtzman, H., and Raskar, R.
Bidi screen: a thin, depth-sensing lcd for 3d interaction
using light fields. In Proc. SIGGRAPH Asia 2009, ACM
Press (2009), 159:1–159:9.

9. Hodges, S., Izadi, S., Butler, A., Rrustemi, A., and
Buxton, B. Thinsight: versatile multi-touch sensing for
thin form-factor displays. In Proc. UIST 2007, ACM
(2007), 259–268.

10. Hu, M. Visual pattern recognition by moment invariants.
Information Theory, IRE Transactions on 8, 2 (1962),
179–187.

11. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D.,
Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,
Freeman, D., Davison, A., and Fitzgibbon, A.
Kinectfusion: real-time 3d reconstruction and interaction
using a moving depth camera. In Proc. UIST 2011, ACM
Press (2011), 559–568.

12. Jota, R., Marquardt, N., Greenberg, S., and Jorge, J. A.
The continuous interaction space: Interaction techniques
unifying touch and gesture on and above a digital
surface. In Proc. INTERACT 2011 (2011), 5–9.

13. Klinkhammer, D., Nitsche, M., Specht, M., and Reiterer,
H. Adaptive personal territories for co-located tabletop
interaction in a museum setting. In Proc. ITS 2011, ACM
Press (2011), 107–110.

14. Leibe, B., Starner, T., Ribarsky, W., Wartell, Z., Krum,
D. M., Singletary, B., and Hodges, L. F. The perceptive
workbench: Toward spontaneous and natural interaction
in semi-immersive virtual environments. In Virtual
Reality (2000), 13–20.

15. Martı́nez, R., Collins, A., Kay, J., and Yacef, K. Who did
what? who said that?: Collaid: an environment for
capturing traces of collaborative learning at the tabletop.
In Proc. ITS 2011, ACM Press (2011), 172–181.

16. Matas, J., Chum, O., Urban, M., and Pajdla, T. Robust
wide-baseline stereo from maximally stable extremal
regions. Image and Vision Computing 22, 10 (2004),
761–767.

17. Moeller, J., and Kerne, A. Zerotouch: an optical
multi-touch and free-air interaction architecture. In Proc.
CHI 2012, ACM Press (2012), 2165–2174.

18. Morris, M. R., Huang, A., Paepcke, A., and Winograd, T.
Cooperative gestures: multi-user gestural interactions for
co-located groupware. In Proc. CHI 2006, ACM Press
(2006), 1201–1210.

19. Morris, M. R., Ryall, K., Shen, C., Forlines, C., and
Vernier, F. Beyond ”social protocols”: multi-user
coordination policies for co-located groupware. In Proc.
CSCW 2004, ACM Press (2004), 262–265.

20. Mukundan, R., and Ramakrishnan, K. Moment functions
in image analysis: theory and applications. World
Scientific Publishing, 1998.

21. Nistér, D., and Stewénius, H. Linear time maximally
stable extremal regions. Computer Vision–ECCV 2008
(2008), 183–196.

22. Ringel, M., Ryall, K., Shen, C., Forlines, C., and Vernier,
F. Release, relocate, reorient, resize: fluid techniques for
document sharing on multi-user interactive tables. In Ext.
Abstracts CHI 2004, ACM Press (2004), 1441–1444.

23. Roth, V., Schmidt, P., and Güldenring, B. The ir ring:
authenticating users’ touches on a multi-touch display. In
Proc. UIST 2010, ACM Press (2010), 259–262.

24. Sato, M., Poupyrev, I., and Harrison, C. Touche:
enhancing touch interaction on humans, screens, liquids,
and everyday objects. In Proc. CHI 2012, ACM Press
(2012), 483–492.

25. Shen, C., Vernier, F. D., Forlines, C., and Ringel, M.
Diamondspin: an extensible toolkit for around-the-table
interaction. In Proc. CHI 2004, ACM Press (2004),
167–174.

26. Teichert, J., Herrlich, M., Walther-Franks, B., Schwarten,
L., and Krause, M. User detection for a multi-touch table
via proximity sensors. Proc. ITS 2008 (2008).

27. Walther-Franks, B., Herrlich, M., Aust, M., and Malaka,
R. Left and right hand distinction for multi-touch
displays. In Proc. Smart Graphics 2011, Springer
(2011), 155–158.

28. Wang, F., Cao, X., Ren, X., and Irani, P. Detecting and
leveraging finger orientation for interaction with
direct-touch surfaces. In Proc. UIST 2009, ACM Press
(2009), 23–32.

29. Wilson, A. D. Using a depth camera as a touch sensor. In
Proc. ITS 2010, ACM Press (2010), 69–72.

	INTRODUCTION
	RELATED WORK
	PROCESSING PIPELINE
	Step 1: Region of Interest Detection
	Step 2: Maximally Stable Extremal Regions
	Extremal Region
	Maximally Stable Extremal Region
	Linear-time algorithm
	Modifications of the algorithm

	Step 3: Fingertip Detection
	Step 4: Hand Distinction
	Step 5: Hand and Fingertip Registration
	Step 6: Tracking

	EVALUATION AND RESULTS
	Execution Time
	Finger Detection Rate

	CONCLUSION
	ACKNOWLEDGMENTS

