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WORDGRAPH: Keyword-in-Context
Visualization for NETSPEAK’s Wildcard Search
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Benno Stein and Bernd Froehlich

Abstract—The WORDGRAPH helps writers in visually choosing phrases while writing a text. It checks for the commonness

of phrases and allows for the retrieval of alternatives by means of wildcard queries. To support such queries, we implement

a scalable retrieval engine, which returns high-quality results within milliseconds using a probabilistic retrieval strategy. The

results are displayed as WORDGRAPH visualization or as a textual list. The graphical interface provides an effective means for

interactive exploration of search results using filter techniques, query expansion and navigation. Our observations indicate that, of

three investigated retrieval tasks, the textual interface is sufficient for the phrase verification task, wherein both interfaces support

context-sensitive word choice, and the WORDGRAPH best supports the exploration of a phrase’s context or the underlying corpus.

Our user study confirms these observations and shows that WORDGRAPH is generally the preferred interface over the textual

result list for queries containing multiple wildcards.

Index Terms—Information visualization, visual queries, text visualization, information retrieval, Web n-grams, wildcard search.
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1 INTRODUCTION

The WORDGRAPH is a visual tool for context-sensitive

word choice. It allows its users to check the commonness

of a phrase and to express uncertainties in choosing words

by formulating queries that contain wildcards. The search

results are transformed to a legible and interactive graph

visualization—the WORDGRAPH (see Figure 1). The graph

layers follow the structure of a query, showing one layer for

every literal word and wildcard, which are filled dynami-

cally with the results obtained from NETSPEAK’s retrieval

engine. Search results visualized by the WORDGRAPH can

be interactively explored, refined, and expanded by means

of filter techniques and navigation. Queries are processed

by a scalable retrieval engine called NETSPEAK, which

returns high-quality results within milliseconds using a

probabilistic retrieval strategy. It indexes a corpus of more

than 3 billion word n-grams up to a length of n = 5 words

along with their occurrence frequencies in a large portion

of the Web.

WORDGRAPH’s intended audience is people who have

doubts about how certain phrases are commonly formed.

In particular, second language speakers face difficulties in

this respect, since their innate sense of language—their

sprachgefühl—is often not sufficiently developed. They

might ask themselves how others would formulate a par-

ticular phrase; a piece of information that is generally hard

to come by. NETSPEAK implements a statistical solution

by contrasting alternative phrases based on their absolute
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Fig. 1. The WORDGRAPH visualization (above) and the

textual Web interface (below)
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and relative occurrence frequency. Our working hypothesis

is that choosing more common phrases over uncommon

ones may improve readability, comprehensibility, and writ-

ing style. Obviously, this is not true in general, but as

non-native speakers we found NETSPEAK’s suggestions

immensely helpful in all our daily writing tasks.

A variety of visualizations of relations among words,

phrases or collocations (also called “keywords in context”)

have appeared in recent years, such as the WORDTREE,

PHRASENETS [1], Google Scribe, and AWKCHECKER, to

name only a few. The WORDTREE [2] employs suffix

trees to index text and to visualize the tree starting from

the query word(s). PHRASENETS encode subject-predicate-

object triplets in a directed graph, which are mined from a

text by specifying the predicate and considering subject and

object as wildcards (e.g. ?loves?). Google Scribe [3]

assists authors with writing by suggesting the next word in

a phrase—very similar to AWKCHECKER [4]. Both systems

are (likely to be) based on language model theory.

The WORDGRAPH visualization and the NETSPEAK

engine can be considered as a generalization and a com-

bination of the aforementioned approaches: the WORD-

GRAPH has more complex layout constraints than the

tree layout of the WORDTREE. PHRASENETS visualize

only triplets with a fixed predicate and the force-based

layout limits the phrase legibility. Both tools focus on

corpus exploration instead of being interactive word choice

tools. AWKCHECKER and Google Scribe do not employ

visualizations at all, as they are not intended for ad hoc

wildcard queries.

This paper is an extended version of [5]. The contri-

butions are threefold. First, we present the WORDGRAPH,

a dynamic graph visualization for interactive exploration

of search results for complex keywords-in-context queries.

Secondly, we introduce our new and scalable NETSPEAK

retrieval engine that operates efficiently on a large corpus

of text from the Web. Lastly, we perform a user study

comparing WORDGRAPH visualization and the textual Web

interface, analyze query logs of the NETSPEAK service and

investigate typical retrieval tasks related to choosing words.

2 RELATED WORK

In addition to the aforementioned systems, several other

keyword-in-context tools exist or are being developed.

Viégas and Wattenberg present the Web Seer prototype [6],

which allows one to contrast the query suggestions of the

Google Web search engine for two different queries. The

visualization encompasses two trees whose roots represent

one of the queries each, while the children represent the

suggestions obtained from Google. Shared suggestions are

unified, thus visualizing tree similarity, while edge thick-

ness and node positions tell something about how often

a suggested query has been posed. Paley’s Textarc [7]

visualizes the sentences of a text centrifugal along an ellipse

shape. Frequent words of the text are depicted inside the

ellipse. The legibility of individual phrases is limited with

this approach.

C. Harrison [8] has generated static word graphs from

small portions of the Google n-gram corpus as showcase

examples. However, no means is provided to generate these

visualizations on demand, and it also lacks interaction so

that it can only be viewed as is. Collins et al. [9] visualize

the text produced by automatic machine translation tools in

the form of lattice graphs in order to support translators.

Uncertainties of the tools in choosing the right translation

for a word are represented by alternative paths in the

lattice graph, where the commonness of an alternative, as

determined by the language model underlying the machine

translator, is encoded by size and shade of the nodes and

their edges. Here, however, no manual wildcard queries are

possible. Although our system displays a graph instead of a

tree, the Degree-of-Interest Trees (DOITrees) by Heer and

Card [10] and the SpaceTree by Plaisant et al. [11] provide

some convenient patterns for the navigation of different

levels of detail, supported by animated transitions in huge

tree structures.

Corpora of n-grams are frequently used in natural lan-

guage processing and information retrieval in order to

support computational linguistics [12], such as data-driven

error correction [13] or query segmentation [14]. While n-

grams are usually exploited in a preprocessing fashion or to

fully automate an analysis task, with NETSPEAK we have

been among the first to consider literal n-grams by offering

them directly as search results to the user. To the best of our

knowledge, only the recently published Google Books n-

Gram Viewer goes into a similar direction [15]. This viewer

targets researchers in the humanities who study language

use over time. However, it does not offer wildcard search

capabilities, and its interface requires expert knowledge.

Search engines for linguistics that provide query op-

erators comparable to NETSPEAK include WEBASCOR-

PUS [16], WEBCORP [17], PHRASESINENGLISH [18], and

LSE [19]. Cafarella et al. [20] implement a search en-

gine that allows to formulate parts-of-speech queries. The

aforementioned approaches target linguistics researchers,

for whom scalability as well as performance of the im-

plemented indexes is only of secondary concern. Other

related work can be found in the field of string processing

where researchers study the scale-up of regular expression

search for large text databases [21]. This body of work,

however, aims at full text search, allowing for complete

regular expressions, which brings about various problems

in terms of runtime complexity and space efficiency. Again,

the user of a regular expression search engine is different

from ours. Since NETSPEAK and its visualization target

the casual and average writer, we put strong emphasis

on performance while focusing on a reasonable palette of

search options to formulate queries against a database of

short phrases. These constraints are exploited within our

retrieval algorithms, and we are the first to study efficient

wildcard search on n-gram databases.

3 NETSPEAK

The NETSPEAK text interface provides a straightforward

way to search for phrases [22]. It is designed to conform
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to current and traditional best practices of Web interfaces

for search engines, with an emphasis on simplicity and

minimalism (Figure 1, bottom). It utilizes a query language

that is defined by the grammar shown in Table 1.

A query is a sequence of literal words and wildcard

operators, wherein the literal words must occur in the

expression sought after, while the wildcard operators al-

low specification of uncertainties. Currently five operators

are supported: the question mark, which matches exactly

one word; the asterisk, which matches any sequence of

words; the tilde sign in front of a word, which matches

any of the word’s synonyms; the multiset operator, which

matches any ordering of the enumerated words; and the

optionset operator, which matches any one word from a

list of options. The interface displays the search results for

the given query as a ranked list of phrases, ordered by

decreasing occurrence of absolute and relative frequencies.

This way, the user can be more confident when choosing a

particular phrase by judging both its absolute and relative

frequencies. For example, a phrase may have a low relative

frequency but a high absolute frequency, or vice versa,

which in both cases indicates that the phrase is not the worst

of all choices. Furthermore, the textual Web interface offers

example sentences for each phrase, which are retrieved on

demand when clicking on the plus sign next to a phrase.

This allows users who are still in doubt to get an idea of

the larger context of a phrase.

TABLE 1

EBNF grammar of the NETSPEAK query language.

query = { word | wildcard }51
word = ( [apostrophe] ( letter { alpha } ) ) | ”, ”

letter = ” a ” | ... | ” z ” | ”A ” | ... | ” Z ”

alpha = letter | ” 0 ” | ... | ” 9 ”

apostrophe = ”’ ”

wildcard = ”? ” | ”* ” | synonyms | multiset | optionset

synonyms = ” ~ ” word

multiset = ” { ” word { word } ” } ”

optionset = ”[ ” word { word } ”] ”

The NETSPEAK web service has been publicly available

with a textual interface since 2008. The analysis of 50.000

queries of NETSPEAK’s log files reveals that the average

query length (words or wildcards) was 3.3 tokens (see

Table 2). The most used wildcards are the asterisk and the

question mark (over 90%), the synonym-operator is used in

less than 5% of the queries and optionset as well as multiset

are hardly used. Interestingly, the fraction of queries that do

not contain any wildcards is about 20%, so that in turn, an

almost 80% of the queries do. Queries without wildcards

supposedly only check for the existence or the commonness

of a phrase. More than 70% of the query phrases include

only one wildcard (see Table 3).

An in-depth analysis indicates interesting patterns of user

behavior. Most users interact with NETSPEAK in sessions

(i.e. by posing a series of queries within a certain time

frame). Only 18% of the queries belong to single-query

sessions. We have identified two different session types:

TABLE 2
Relative fractions according to query length (from

NETSPEAK’s query log).

Query Length 1 2 3 4 5 ≥6

Fraction 6.2 % 13.9 % 53.5 % 15.9 % 8.08 % 1.9%

TABLE 3
Relative fractions according to the number of

contained wildcards (from NETSPEAK’s query log).

Wildcards 0 1 2 3 ≥4

Fraction 20.7 % 71.5 % 7.09 % 0.60 % 0.11 %

(1) Bunch of Queries. In this case, a session consists of un-

related queries, where none of the queries have words

or wildcards in common with previous or successive

queries. It appears as if users first write a large chunk

of text and then check those phrases about which they

are uncertain.

(2) Query Refinement Session. In this case, a session

consists of related queries, where queries following

each other are very likely to have words and wildcards

in common. It appears as if a user is working on

a particular phrase, searching for alternatives. This

session type is most common.

The average number of queries per session is 5.6 and the

average duration of a session is about 6.5 minutes. A few

sessions took very long indeed, lasting more than half an

hour. In some of the refinement sessions the users obviously

struggled with a certain phrase and continually exchanged

words and wildcards over a long period of time. Long

refinement sessions are sometimes interrupted by unrelated

queries and then continued later on.

NETSPEAK’s textual interface does not support the con-

cept of sessions. Thus query refinement sessions require the

user to memorize the results of already performed queries

and relate them to each other and to further queries in his

mind. This is a challenging cognitive task and was a strong

motivation for the development of the WORDGRAPH. The

WORDGRAPH interface allows the user to start with a sim-

ple query, which can be visually refined and extended while

the word graph visualization shows animated transitions

between the changing result sets.

4 WORDGRAPH

The WORDGRAPH visualizes the resulting n-grams of a

query in a layered graph (Figure 1, top) and offers interac-

tions with the result set. The nodes of the graph correspond

to the words of the n-grams, and an edge represents the

connection between two subsequent words of an n-gram.

Consequently, each n-gram of a result set is represented

as a path through the graph. The layers of the graph are

arranged in vertical columns to facilitate reading. Every

column corresponds to one element of the query, which

can be a literal word or a wildcard character, as defined

in Table 1. Multiple occurrences of the same word in a

column are merged into a single node.
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Fig. 2. The query ? waiting * ~response com-

bines one word and three wildcards; the search results
are shown. The WORDGRAPH visualizes n-grams as

paths through the graph, merging multiple occurrences

of a word within a column. Every path can be drawn
individually (split path view, middle) or shared subpaths

can be merged (condensed path view, bottom). The
latter view increases the probability for spurious re-

sults. That is, a path for is waiting for a reply

is shown although this 5-gram is not part of the result
set.

The graph can be drawn in two ways, a split path view

and a condensed path view (Figure 2). The split path view

displays the n-gram paths of a result set independently—

similar to the text view—and reveals the overall complex-

ity of the result set. The condensed path view merges

shared subpaths of different n-grams, which is a compact

abstraction of the result set, where individual n-grams

are no longer directly visible. While merging the paths

significantly enhances overall legibility of large graphs, it

also brings about the problem of spurious results since

more paths can be created than are actually supported by

the result set. However, the condensed path view is the

preferred view in practice, which is why we have developed

several techniques to counter this problem and to allow

users to interactively explore the result set.

While the text interface of NETSPEAK offers no interac-

tion beyond the retrieval of example sentences for a partic-

ular n-gram, the WORDGRAPH provides various means for

exploring the search results, including filter techniques and

support for navigation. Even more importantly, visual query
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Fig. 3. The WORDGRAPH offers several filter opera-

tions: (1) Hovering the mouse above a node highlights

all n-gram paths passing through the node. (2) Select-
ing a node deemphasizes all paths of n-grams that

do not contain the selected word. Multi-selection is
supported. (3) The subgraph filter hides elements that

do not belong to selected paths.

expansion and query modification are supported along with

animated transitions among subsequent result sets.

4.1 Graph Filter

The filter operations allow users to reveal the paths passing

through a certain node, to emphasize certain paths, and to

select a subgraph by specifying a set of nodes (Figure 3).

The filter operations are orthogonal, as in they can be

applied repeatedly in an arbitrary order. Users may also

switch between the condensed path view and the split path

view at any time. Transitions between different views are

animated to facilitate the understanding of the relationships

between the different layouts.

4.2 Horizontal Query Expansion

Since the basis of our retrieval engine is the Google n-gram

corpus, only n-grams up to a length of n = 5 words can be

retrieved. By means of our query expansion technique we

can address this limitation and allow the retrieval of longer

phrases based on those already displayed in WORDGRAPH

(Figure 4). By clicking on the expansion icons shown next

to a word while hovering over it, new queries are con-

structed for all n-grams whose paths go through the word’s

node, using up to four preceding words and appending the

respective wildcard ? or *. The union of the result sets of

all these queries is then integrated into the existing graph

structure, and new columns are added as needed. Every

expansion entails O(k3) new queries, where k denotes an

upper bound on the number of incoming edges of a word in

the WORDGRAPH with k typically being between 4 and 10.



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH 20XX 5

answer ?

*
s ll

without

are

is
while

response

reply

for a
for an

to

for

wai ng

from
your

any

to

all

?

answers ll
without

are

is
while

response

reply

for a
for an

to

for

wai ng

Fig. 4. Query expansion: by clicking on the wildcard

icon next to the word answer, a set of queries is
generated for all n-grams whose paths pass through

this word’s node, complemented by the respective

wildcard. The n-grams retrieved with these queries are
integrated into WORDGRAPH which results in a new

column.

The n-grams formed in this way may be longer than the

n-grams contained in the underlying corpus and thus may

be incorrect or meaningless. Nevertheless, sensible results

have been observed in many cases.

4.3 Vertical Query Expansion

In addition to the horizontal query expansion, we provide

a means to vertically expand the graph (i.e. within a

column) by replacing words by wildcards or wildcards by

other wildcards. We distinguish between operations acting

on a single word and operations that are related to an

entire column (Figure 5). Currently, we offer only the

synonym-operator for word-related query expansion and

the wildcards ? and * for column-related query expansion,

which replace the word or operator in the corresponding

column of the original query. In principle, for both cases all

three operations could be made available. For word-related

expansions the word is replaced by the corresponding

wildcard in all paths through this word. Column-related

query expansion could be transformed simply into word-

related query expansions by applying the chosen wildcard

to each word in the column.

For each expansion the corresponding queries are gener-

ated and the results are integrated into the graph structure.

The word-related operations just add the new n-grams to

the existing structure. Column-related expansions transform

the graph into a new one by removing paths only contained

in the old result set, preserving paths that exist in both sets,

and adding new ones.

Horizontal and vertical query expansion lead towards

visual query specification and modification, which replaces

the common sequence of manually typed-in queries. The

animated transition between the query results visually re-

lates the results of the subsequent queries to each other

instead of simply replacing the previous result set by a

new one.
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Fig. 5. Vertical query expansion. The user starts with a

simple query containing one wildcard (top). In the next
step the query is expanded with synonyms of the word

answer and the query results are being integrated

into WORDGRAPH (middle). The third step changes
a column representing a query word into a wildcard

column (bottom).

4.4 Navigation

The query expansion technique produces word graphs that

have too many columns to fit on the screen. To allow

for navigation, we implemented horizontal panning and

scrolling support by directly dragging the entire graph.

An overview bar at the bottom of the screen (Figure 6)

helps the user to control the horizontal panning and make

it possible to jump immediately to a specific column, which

automatically scrolls into the center of the screen. Columns

which do not fit on the screen appear collapsed on the

overview bar.

Vertical navigation becomes necessary if a column does

not provide sufficient space for the set of retrieved words.

We experimented with two different strategies for dealing

with this case: an explicit focus-and-context approach and

a clipping technique (Figure 7).

Our focus-and-context technique distorts the font size in

the distal areas of the column, but leaves it unchanged

in the central 80% of the column. This is an important

design decision, since we map the relative frequency of a

word to the font size. With the simple clipping technique

the clipped edges hint at further words located outside of

the visible area just as the focus-and-context technique

does. However, it completely clips edges that connect

clipped words in two subsequent columns. Both techniques

generate overplotting of the edges connecting to the distal

words. The overplotting is more pronounced with the focus-
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Fig. 6. Horizontal navigation: The overview bar at the

bottom of the screen shows the columns of WORD-

GRAPH. Selecting a column moves that column into the
center using an animated transition. Also, the whole

graph can be moved horizontally while columns are
collapsed and expanded as necessary.

and-context technique, which makes it more difficult to

estimate the number of words in the context area (Figure 7).

As a result, we generally prefer the clipping technique over

the focus-and-context technique.

Fig. 7. Vertical navigation: (top) The focus-and-context

approach has an aesthetic appearance. (bottom) The
simple clipping solution results in a clean separation

of the edges connecting to the distal words. The left

images show the initial view, while the right images
show the resulting view after dragging the word do

downwards for shifting the focus on the words in the
upper part of the column.

5 WORDGRAPH LAYOUT DETAILS

This section explains the important design decisions for the

layout and rendering in WORDGRAPH. The central concern

is the legibility of phrases, and hence the placement of

words in subsequent columns is essential. The layout also

needs to reflect properties of individual words (e.g. font,

size, color and opacity, see Figure 8), properties of edges

(e.g. path, color and width) and attributes of n-grams (e.g.

absolute and relative occurrence frequency).

Font Size Brightness OpacityFrequency

min

max

Fig. 8. The accumulated occurrence frequency of

the individual words are mapped by utilizing several

possibilities to visualize the importance of a single word
among all words: (1) the font size, (2) the brightness

of the font color and (3) the opacity of the font color

(not default, because it seems to depend on individual
preference).

The layout process consists of five steps:

(1) Horizontal partitioning of available screen space into

columns.

(2) Vertical ordering within these column;

(3) Exact placement of words.

(4) Drawing of edges between (underscoring) words.

(5) Performing crossing reduction, if possible

5.1 Screen Partitioning and Word Placement

The initial layout of WORDGRAPH evolves from the sub-

mitted query. The longest n-gram returned determines the

number of necessary columns. The width of each column

takes into account font sizes, word lengths and additional

padding, as shown in Figure 10. Within a column, each

word is horizontally centered, except for the first and last

column respectively.

The vertical arrangement can be done in two ways: one

strategy is the top spread ordering (Figure 9, top), which is

similar to the text view. The second strategy is the center

spread ordering, which places words in a column with

decreasing font size, starting from the center and alternating

the placement above and below (Figure 9, bottom). The

latter strategy is preferred since it places the most important

query result in the middle of the screen and facilitates

the tracing of alternative phrases without introducing large

inter-column skips.

For the vertical word placement within a column we ex-

perimented with two possible layouts, shown in Figure 10:

the maximal word spreading uses the entire vertical and

horizontal space of a column for equally distributing the

words; it is independently applied for each column. The

alternative grid-based word placement is more compact and

uses a grid to place the words. The defined cell height for
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frequency: The top spread ordering (top) and the cen-

ter spread ordering (bottom). The relative occurrence
frequency of a word in a column is mapped to its font

size, color and brightness.

all columns depends on the font size of the most frequent

word of all columns. In every column the algorithm starts

from the center and places the words above and below,

aligned to the defined cell height (Figure 10, bottom), which

minimizes the vertical spread from the center. Horizontally

the algorithm is more flexible: in the first and the last

column the words are aligned to the inner padding, while

in the other columns they are centered. We found that

the grid-based vertical partitioning of all columns along

with a minimal spread from the center (Figure 10, bottom)

facilitates the readability of the phrase fragments since it

resembles a printed page.
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Fig. 10. Column layout and word placement in a col-
umn. Maximal word spreading (top). Grid-based word

placement of all columns (bottom).

5.2 Edge Drawing

A path represents an n-gram within the graph structure.

Therefore, it is also a sequence of words connected by

edges. A word only occurs once per column, so many paths

could be incident to a node.

As previously mentioned in section 4, the edges of

WORDGRAPH can be rendered in two different ways (Fig-

ure 2). The condensed path view draws a direct representa-

tion of the graph with at most only a single edge between

words. The split path view shows all n-grams contained

in WORDGRAPH by drawing all the edges of the n-grams

into the graph. Each edge is defined by a cubic Bézier

curve. The start point and end point are located at defined

locations (ports) on the source word and the target word.

The tangents at these points are always horizontal to allow

for a smooth transition from a straight line through the word

into the edge.

The condensed path view places the port for connecting

edges at either end of the baseline of the word. The baseline

of the word itself is drawn such that the line passes below

the word to the other port and continues to an outgoing

edge (Figure 11.1). We found that drawing a continuous line

below the words, which connects incoming and outgoing

edges, significantly contributes to the readability of phrase

fragments. Moreover, interrupting the curves by words is

recognized as a set of single words without meaning rather

than a coherent phrase.

The split path view shows all paths defined by the n-

grams from the search result set at once. The paths are also

drawn in the background of the words such that tracing

of an individual path across multiple columns is fully

supported. Figure 11.2 and 11.3 show two different ways

of vertically arranging the incoming and outgoing edges of

a word. Figure 11.2 attaches the incoming and outgoing

edges of a path to ports at the same vertical position and

avoids crossings behind the word, but introduces additional

crossing outside the word. Alternatively, incoming and

outgoing edges on both sides are attached to appropriate

ports depending on their starting position (Figure 11.3).

In this case edge crossings occur behind the word, which

was generally preferred particularly in combination with

the available interaction techniques.

5.3 Edge Crossing Reduction

Edge crossings between columns are introduced when

merging multiple occurrences of a word in a column. This is

particularly annoying if a node in the upper half of a column

is connected to a node in the lower half of the subsequent

column. For the center spread ordering there is some

potential to minimize the number of edge crossings. Our

approach is inspired by the classical algorithm for drawing

layered graphs which was suggested by Sugiyama [23] for

his barycenter-based layer-by-layer sweep.

The WORDGRAPH itself consists of columns which form

a horizontally oriented layered graph. Thus, to reduce the

number of crossings, each possible pair of layers can

be treated by fixing one layer and permuting the other
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Fig. 11. Possibilities for edge drawing. The edge
ports are marked as small dots. (1) Condensed path

view: all paths between two words are drawn as a

single edge and the incoming and outgoing edges are
connected by a line passing below the word to improve

readability. (2) Split path view: each path is drawn

independently. Crossings occur in the background of
the words. (3) Split path view: each path is drawn

independently. Crossings occur after the words.

employing a heuristic (often barycentric or median) which

reorders the nodes according to the positions of their

counterparts in the fixed layer. However, in our case, the

order of descending node size away from the center should

not be lost, and therefore the nodes cannot be reordered

arbitrarily.

Edge crossing reduction algorithm. Let G= 〈V,E〉 denote
a WORDGRAPH. We use a layer-by-layer sweep approach

(from left to right) to process the columns of G with respect

to their predecessor. Given the i-th column Vi ⊂ V , with

Vi = (v1, . . . ,vl), its preceding or succeeding column V j,

respectively, as well as the edges Ei j ⊂ E between them.

Presuming the nodes in Vi have already been ordered

according to the center spread layout, say, vc ∈Vi is center

node, our crossing reduction algorithm assigns ranks to the

nodes in Vi. A mapping ranki :Vi →{−⌊l/2⌋, . . . ,⌊l/2⌋} is

set up to map the nodes in Vi onto ranks, where a node’s

rank denotes its distance to the center node vc and the sign

of a node’s rank denotes whether it is above or below vc.

Likewise, rank j assigns ranks to the nodes in V j (Figure 12).

Then, for each pair of equidistant nodes (v,v′) ∈ Vi ×Vi,

where ranki(v) =−ranki(v
′), it is determined whether they

should be swapped within Vi, which is the case if the

SWAP!

SWAP!

2

1

0

-1

-2

1

2

0

-1

(1)

(2)

Fig. 12. Edge crossing reduction between two

columns. Swapping two equidistant nodes might re-
duce the number of crossings (1) or it does not (2).

barycenter of v′ lies above that of v :

∑
{v′,u}∈Ei j

rankj(u) ≥ ∑
{v,u}∈Ei j

rankj(u).

We tested different orders to process the WORDGRAPH

layers using several graphs from queries containing differ-

ent numbers, kinds, and positions of wildcards. Altogether,

we found that the simplest approach to process the layers

from left to right yields the best results on average (mean of

26% crossing reduction). For simple graphs our algorithm

performs only a few swaps. However, for complex graphs

a reduction of crossings of up to 52% was observed.

5.4 Layout Guidelines

Based on our experience with alternative implementations

of the WORDGRAPH interface we derived the following list

of layout guidelines. These guidelines might also be useful

for other word-based visualization approaches.

• Center spread ordering works better than top spread

ordering.

• Implement a vertical grid to align words across differ-

ent columns.

• A minimal vertical word placement starting from the

center is preferable.

• Underlining emphasizes the connectivity of a colloca-

tion and improves legibility significantly.

• In the split path view, drawing edge crossings after

(instead of behind) words gives a less tangled appear-

ance.

• Crossing reduction between subsequent columns im-

proves legibility.

• Animated transitions are essential for filtering opera-

tions, query exploration and navigation.
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6 NETSPEAK’S RETRIEVAL ENGINE

A salient feature of the NETSPEAK phrase search is its

efficiency at web-scale. This section introduces the under-

lying technology to deal with this vast—and still growing—

amount of data.

NETSPEAK combines state-of-the-art data structures with

original retrieval research in order to answer wildcard

queries at the highest possible speed. At its core is a query

processor that is tailored to the following task: Given a

wildcard query q and a set of n-grams D, retrieve those

n-grams Dq ⊆ D that match the pattern defined by q.

The query processor addresses the three steps indexing,

retrieval, and filtering, as illustrated in Figure 13.

rotate about
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the z

on its

the
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an

its own

<empty>

a vertical

Netspeak Retrieval Engine

Retrieval Filtering

Inverted

index µ

Web

n-grams D

∩
w∈q  µ(w) = µq DqDq

^q

Sequential
access

Random
access

Indexing

online

offline

Fig. 13. The NETSPEAK retrieval engine at a glance:

Given a query q the intersection of relevant postlists
yields a tentative postlist µq, which then is filtered and

presented as a ranked list or in graph form. The index

µ exploits essential characteristics that are known a
priori about possible queries and the n-gram set D.

The indexing step is done offline, once before answering

the first query. Let V denote the set of all words found in the

n-grams D, and let Dˆ denote the set of integer references

to the storage positions of the n-grams in D on hard

disk. During indexing, an inverted index µ : V → P(D )̂
is built that maps each word w ∈V to a skiplist µ(w) ⊆Dˆ

comprised of exactly all references to the n-grams in D that

contain w. µ(w) is referred to as posting list or postlist.

Since D is invariant, µ can be implemented as an external

hash table with O(1) access to µ(w). For µ being space-

optimal, a minimal perfect hash function based on the

CHD algorithm is employed [24].

The two online steps, retrieval and filtering, are taken

successively when answering a query q. Within the retrieval

step a tentative postlist µq =
⋂

w∈q µ(w) is constructed; µq is

the complete set of references to n-grams in D that contain

all words in q. The computation of µq is done in order

of increasing postlist lengths. Within the filtering step, a

pattern matcher is compiled on-the-fly from q, and Dq is

formed as a set of references pointing to the matching n-

grams in µq. NETSPEAK exploits the fact that the search

in D described above can be significantly narrowed down

in our application; the following subsections provide an

overview of the developed strategies.

6.1 Tailored Indexing

Tailored indexing aims to reduce the filtering effort. The

starting point is the distinction of the NETSPEAK queries

into fixed-length queries and variable-length queries. The

former contain only wildcard operators that represent an

a priori known number of words, while the latter contain

at least one wildcard operator that expands to a variable

number of words. For example, the query fine ? me is

a fixed-length query since only 3-grams in D match this

pattern, while the query fine * me is a variable-length

query since n-grams of length 2, . . . ,n match. Obviously,

fixed-length queries can be answered with less filtering

effort than variable-length queries: simply checking an

n-gram’s length suffices to discard many non-matching

queries. The NETSPEAK query processor first reformulates

a variable-length query into a set of fixed-length queries,

which then are processed in parallel, merging the results.

For example, the aforementioned query fine * me is

reformulated as follows:

fine me

fine ? me

fine ? ? me
...

Since the maximum length of an n-gram in D is small

(n < 8 for many relevant computer-linguistic applications),

the number of fixed-length queries obtained from reformu-

lating a variable-length query is tractable. With k as the

number of variable-length wildcard operators in a query q,

the size of the respective fixed-length query set is in O(nk).
In the following we assume all queries to be fixed-length

queries.

A proper inverted index µ for D enables O(1) access

to n-gram sets that fulfill a certain constraint—usually a

word w that must occur in all n-grams referred by µ(w).
However, by considering also the position of w an even

tighter constraint is imposed. This idea is exploited by the

following index µ :

µ :V × {1, . . . ,n}
︸ ︷︷ ︸

n-gram length

× {1, . . . ,n}
︸ ︷︷ ︸

word position

→ P(D )̂,

where the preimage is the Cartesian product of D’s vo-

cabulary V , the possible n-gram lengths, and the possi-

ble positions of words within n-grams. Given the query

q = fine ? me, the postlist µq is defined as follows:

µq := µ(“fine”,3,0) ∩ µ(“me”,3,2)

µq consists of references to all 3-grams in D that have

“fine” as their first word and “me” as their third word. Since

this is exactly what the query is asking for, the subsequent

step of filtering µq can be omitted.

6.2 Postlist Pruning

Postlist pruning aims to reduce set operations. Let f :D→
N be a function that indicates the occurrence frequencies

of the n-grams in D. Similar to µ , f is implemented as an

external hash table. During the indexing step, each postlist
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µ(w, ·, ·) for some w∈V is sorted in decreasing order of the

occurrence frequencies of the referenced n-grams, which

allows for head pruning and tail pruning.

Head pruning means to start reading a postlist at some

entry within, without compromising the recall. Given a

query q let τ denote an upper bound for the frequencies

of the n-grams in q’s result set Dq, i.e., d ∈ Dq implies

f (d)≤ τ . Obviously, in all postlists that are involved within

the construction of Dq, all entries whose n-gram frequencies

are above τ can safely be skipped. We assess τ as follows:

τ = min
d⊆q

( f (d)),

where d is a maximum, non-terminal n-gram in q. For

example, the query q = sounds fine ? me contains

the two maximum, non-terminal n-grams “sounds fine” and

“me” with the frequencies f (“sounds fine”) = 45817

and f (“me”) = 566617666. Since no n-gram matching q

can have a frequency larger than τ = 45817, all entries

of µ(“sounds”), µ(“fine”), and µ(“me”) whose n-

grams have a higher frequency than τ can be skipped.

To efficiently determine the first entry of a postlist

µ(w, ·, ·), w ∈ q, whose frequency drops below τ , an ad-

ditional meta index µ f is built during the indexing step,

which indexes the postlists of µ . The postlist µ f (w, ·, ·)
comprises entries of the form ( f (d), i), indicating that the

n-gram d referred to at the i-th entry of µ(w, ·, ·) has

frequency f (d). To keep µ f ’s memory footprint small, only

those postlists from µ are indexed that cannot be read

at once into main memory. In addition, only every i-th

entry of a postlist µ(w, ·, ·) is indexed in its corresponding

postlist µ f (w, ·, ·), so that |µ f (w, ·, ·)| = |µ(w, ·, ·)|/i, where
in our case i = 1000.

Up to this point, the retrieval of n-grams matching a

query q is exact—but, not all n-grams that match a query

are of equal importance: NETSPEAK users look for n-grams

that occur frequently on the web. Taking this fact into

consideration, we apply tail pruning on postlists that are too

long to be read at once into main memory. As a result, less

frequent n-grams that might match a given query may be

missed. NETSPEAK employs three tail pruning strategies:

(1) stop after a specified number of matching n-grams has

been found, (2) stop after a specified number of entries

from a postlist has been read, (3) stop after a specified

quantile of a postlist has been read. The last strategy is

used to define word-class-specific pruning heuristics, since

different word classes (stop words, nouns, adverbs, etc.)

have a different impact on the construction of Dq. Section 7

reports on effects of these strategies. On demand, a pruned

search can be resumed in order to retrieve the complete

result set.

7 EVALUATION RESULTS AND DISCUSSION

In this section we provide implementation details and eval-

uate NETSPEAK’s components: we report on experiments

to assess the retrieval performance of our query processor,

conduct a user study, and conclude with a discussion of use

cases for the WORDGRAPH interface.

7.1 Implementations Details

The communication between NETSPEAK’s interfaces and

its retrieval engine is implemented with the Ajax paradigm,

using the lightweight JavaScript Object Notation inter-

change format JSON. The retrieval engine is written in

C/C++ and is deployed at our site, accessible through a

servlet container. The textual Web interface is implemented

using the Google Web Toolkit and it is deployed on the

Google App Engine. The visualization client is a stand-

alone application written in Java, deployed at our site. The

Java scene graph project Scenario is used to manage and

display graphical 2D-elements. Scenario provides conve-

nient methods to handle different kinds of animations [25].

7.2 The Web n-gram Collection

To provide relevant suggestions, a wide cross-section of

written text on the Web is required. Currently, we use the

Google n-gram corpus “Web 1T 5-gram Version 1” [26],

which consists of 42 GB of phrases up to a length of

n = 5 words along with their occurrence frequency on

the web in 2006. This corpus has been compiled from

approximately 1 trillion words extracted from the English

portion of the Web, totaling in more than 3 billion n-grams.

Two post-processing steps were applied: case reduction and

vocabulary filtering. For the latter, a white list vocabu-

lary V was compiled and only n-grams whose words appear

in V were retained. V consists of the words found in the

Wiktionary and various other dictionaries, complemented

by words from the 1-gram portion of the Google corpus

whose occurrence frequency exceeds 11 000. After post-

processing, the size of the corpus has been reduced by

about 46%. Table 4 gives an overview.

TABLE 4

Google n-grams before and after post-processing.

Corpus Corpus size After

subset # n-grams Space post-processing

1-gram 13 588 391 177.0 MB 3.75 %

2-gram 314 843 401 5.0 GB 43.26 %

3-gram 977 069 902 19.0 GB 48.65 %

4-gram 1 313 818 354 30.5 GB 49.54 %

5-gram 1 176 470 663 32.1 GB 47.16 %

Σ 3 354 253 200 77.9 GB 54.20 %

7.3 Retrieval Performance Evaluation

To evaluate the retrieval performance of the query pro-

cessor we report on experiments where the retrieval time

for a certain recall is measured, dependent on the query

processor variant. Here, the retrieval time is quantified as

the number of read postlist entries, which is independent

from the implementation or underlying hardware. Recall is

a standard performance measure in information retrieval.

Given an inverted index µ and a query q it quantifies
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whether a document that belongs to the true result set in

fact gets retrieved:

rec(µ ,q) =
∑d ∈̂(µq∩µ∗

q ) f (d)

∑d ∈̂µ∗
q
f (d)

,

where µq contains the retrieval results obtained using one

of the query processing strategies, while µ∗
q contains refer-

ences to all n-grams that actually match the pattern of q.

The measure considers the occurrence frequency f (d) of an
n-gram d in order to give n-grams that are more important

to the user more weight. We compute recall values at

different points during retrieval for a set of 55 702 queries,

averaging the results; the queries originate from the query

logs of NETSPEAK. Figure 14 shows the obtained results.

As can be seen, tailored indexing has a significant impact

on the number of elements to be read in order to achieve

a certain recall. Together with postlist pruning, the amount

of elements to be read is at least one order of magnitude

smaller than with index-based retrieval alone.

Recall
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Fig. 14. Average number of postlist entries read during

query processing in order to achieve a certain recall.

7.4 User Study

We performed a user study to assess the usability of our

system and to learn about the user acceptance and potential

improvements. In particular, we were interested in a com-

parison of the WORDGRAPH interface and the basic textual

interface. Based on feedback from public demonstrations

and a pilot study (described in [5]) we derived our main

hypothesis: Both interfaces perform equally well for basic

keyword-in-context queries using only a single wildcard.

With more than one wildcard, users generally prefer the

visual WORDGRAPH interface.

Ten non-native English speakers with higher English edu-

cation participated in our study. All of them were volunteers

from an English writing course offered by the language

center at the university. None of the participants were

aware of the NETSPEAK web service or the WORDGRAPH

visualization. During a brief introduction of the textual

NETSPEAK interface and the WORDGRAPH interface, the

participants could enter queries and examine the result sets

with the two different interfaces.

The actual study comprised of six pairs of queries. Each

pair consisted of two different queries with similar structure

and the same number of wildcards. There were two pairs

using one, two and three wildcards respectively. The level

of complexity of the queries increased incrementally. The

participants were asked by an instructor to enter one query

of every pair in the textual interface and the other one in

the WORDGRAPH interface, select the most suitable results,

and to assess on a Likert scale how helpful each interfaces

was for the task, from 1 (not helpful at all) to 6 (very

helpful).

The order of interfaces was counter-balanced into two

subgroups. One group requested the first query of a pair

with the NETSPEAK web interface and the second one

with the WORDGRAPH, and vice versa. Each participant

repeated the procedure for each of the six pairs, which

resulted overall in 120 assessed requests, 60 per interface.

During the study the instructor observed and ranked for

each participant how well the WORDGRAPH interaction

patterns were understood. The instructor also noted his

impressions about the usage of the different WORDGRAPH

interaction patterns. Afterwards, the participants were asked

in a questionnaire about the general usage and their com-

ments on limitations and desired improvements with respect

to interaction and layout.

For each level of difficulty a t-test was conducted to

compare the WORDGRAPH interface and the text-interface

(Figure 15). We used an alpha level of .05 for all statistical

tests. For one-wildcard queries both interfaces achieved

similar ratings, the WORDGRAPH interface (M = 4.75,
SE = .20) and for the text interface (M = 4.8, SE = .23),
t(9) = .15, p= .88. For two wildcards, however, the results

indicate a significant preference for the WORDGRAPH

interface (M = 5.55, SE = .21) over the text interface (M =
4.25, SE = .41), t(9) = 2.94, p = .016. An even stronger

preference for the WORDGRAPH was revealed for three

wildcards: (M = 5.5, SE = .23) vs. (M = 3.9, SE = .28),
t(9) = 3.64, p= .005. These results support our hypothesis
of an increasing preference for the WORDGRAPH interface

with an increasing occurrence of wildcards in a query.

The questionnaires reveal that all participants would

like to see WORDGRAPH being provided as an additional

interface for NETSPEAK. Six of them even considered

WORDGRAPH as a substitute for the textual Web interface.

They assessed WORDGRAPH as “very intuitive” with an

average of 5.1 on a scale from 1 to 6. This positive

impression was confirmed by the following observation:

the instructors judged the understanding of the interaction

patterns by the participants with an average of 5.0. The

observation also revealed that seven of the participants

applied the subgraph filter predominately to explore the

response graph instead of using the mouse-over technique.

Only one participant exclusively applied the mouse-over

technique during the tests.

Altogether, the answers from the questionnaire and the

general feedback we gathered during several public pre-

sentations revealed the most appreciated features of the

WORDGRAPH: (1) Fluent result filtering. (2) Starting from
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an overview with the most important information. (3) The

possibility of exploring the response set in detail by suc-

cessive or alternating applications of subgraph filtering.

(4) Finally, the improved legibility of the word sequences

within the graph by following the edges through the nodes:

“It gives the impression of reading from a sheet of lined

paper.”

Eventually the participants suggested several interesting

aspects for improving the WORDGRAPH interface: (1) Most

users want to be able to request sentence snippets earlier

during the process of exploring the graph and are not

willing to wait until only one phrase remains. (2) In cases

of two or more words with visually similar frequencies

some users would like to see the absolute and relative

frequency numbers on demand. (3) The use of thicker edges

(in combination with the current coloring) for highlighting

a word sequence within the graph was also suggested.

7.5 Use Cases and Experiences

Based on our query log analysis, the session types identified

and the user study, we identified three practical retrieval

tasks related to word choice, which have an increasing level

of difficulty:

(1) Phrase Verification. The most basic retrieval task is

to check whether a given phrase is commonly used.

As mentioned above, almost 20% of all queries come

without wildcards. For this task, the textual interface

is fully sufficient.

(2) Context-Sensitive Word Choice. In this retrieval task a

writer is uncertain about what alternative for a word in

a given phrase is a good choice, or whether there are in

fact any alternatives. This task pertains particularly to

second-language speakers who often translate words

using a dictionary—the exact translation of many

words depends on context. In this respect, NETSPEAK

serves as a context-sensitive thesaurus. Choosing the

correct adverbs and prepositions is also a common

problem. Figure 16 illustrates how NETSPEAK is used

to find the correct collocations between the words

rotate and axis.

Fig. 16. Word choice with NETSPEAK’s Web interface.

The query language of NETSPEAK is powerful in that

it makes it possible to specify rather complex patterns

of n-grams to be retrieved. A user who inserts more

than one wildcard into a query is less confident about

how to write a certain phrase and seeks to generalize

the query in order to cover more of the possible

alternatives. This, in turn, yields a longer list of results

in the textual interface, which may be difficult to

overview and which may not always reveal the true

picture about which words to choose. Figure 16 shows

an example where about appears in three of the n-

grams, which indicates that this word should most

likely follow rotate. The textual Web interface,

however, obscures this fact and the user is forced

to scan the entire result list several times to grasp

the true relationships. By contrast, the WORDGRAPH

visualization for the same query as above provides

an overview at a glance (see Figure 17). This is in

accordance with our user study, which revealed a

preference for the WORDGRAPH interface over the

text interface for queries containing more than one

wildcard.

(3) Exploration. This retrieval task is about writers who

want to explore the typical context of a phrase by

looking at what comes before, after or in between

the phrase’s words. With the NETSPEAK’s textual

interface, this task is limited to exploring a context

of up to four words around a query that comprises,

say, only one word surrounded by asterisks. Only by

means of additional queries, a user may get a broader

view of a phrase’s context, having to keep in mind the

results of all previous queries. With the WORDGRAPH

interface, this task is supported without further ado by

means of the query expansion technique (Figure 4).

The results of additional queries, which can be posed

interactively, are integrated seamlessly into an existing

graph so that users can construct a full picture of a

phrase’s context. This capability of WORDGRAPH is

particularly useful for expert users, including linguists
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Fig. 17. Word choice with the NETSPEAK WORD-

GRAPH.

who investigate the characteristics of language use in

a given corpus.

Remarks. While writing a text, such as a scientific paper,

users often switch back and forth between different retrieval

tasks. Phrase verification is the least observed task, which

is documented by NETSPEAK’s query logs; 80% of the

queries comprise wildcards. There are two common types

of queries: queries asking for the most suitable word in a

given context, and queries asking for the typical context

of a particular word or, more precisely, which common

collocations a particular word has. Thus it is context sen-

sitivity that is most relevant to the users, which is difficult

to express with other commonly available tools. With the

textual Web interface, one typically looks at the top results

and ignores the rest—similar to the use of a Web search

engine. With WORDGRAPH, one explores the results more

thoroughly and discovers relationships between words that

are not apparent in the textual interface. While the latter

often forces a user to formulate a sequence of similar

queries, the former provides an effective means for implicit

query specification, using filter techniques, query expansion

and navigation.

8 CONCLUSIONS AND FUTURE WORK

NETSPEAK answers complex word sequence queries that

are formulated in an expressive query language. The system

is designed for efficiency and allows for real-time querying

of a 42 GB text data base. The result set is explored via

a textual Web interface or the graphical WORDGRAPH

interface. Our analysis shows that the textual interface is

sufficient for phrase verification and the comparison of

related sentences. The WORDGRAPH interface allows an

interactive exploration of the result set and is superior

for word choice problems on complex queries. The layout

of WORDGRAPH focuses on facilitating legibility, which

is achieved by using center spread ordering, grid-based

word placement and underscoring edges. Participants of our

user study describe WORDGRAPH as very intuitive and

appreciate the possibility of graph-based filtering during

explorative analyses.

We see NETSPEAK in combination with its visual inter-

face WORDGRAPH as a great educational tool for improv-

ing the knowledge of a second language. Additional smart

operators for the query language such as antonym wildcards

or semantic constraints (e.g. person names, places, dates

and times) and support for further languages besides En-

glish would broaden the scope of NETSPEAK. An extension

towards domain-specific corpora can help inexperienced

authors to become familiar with the appropriate expressions

and writing style in a specific field.

The interactive WORDGRAPH interface already allows

the user to start with a simple query and visually refine and

extend the query. This process generates queries containing

various wildcards without the user knowing.We believe that

this kind of visual query specification is the right approach

since most users (> 98%) of existing search engines are

not aware of the simplest of search operators [27]. Further

visual query refinement operations could include constraints

to certain word types (e.g. parts-of-speech, location, time,

colors) and recently added operators of the NETSPEAK

retrieval engine.

Individual documents or even entire corpora can be

represented as a wordgraph. An individual node in such a

large wordgraph could represent a single word, a common

collocation or an n-gram of a certain length. The different

levels of granularity allow a trade-off between the number

of nodes and the number of edges in the wordgraph,

which a multi-layered graph could tie together in a single

visualization. These examples illustrate only a fraction of

the untapped potential, which is why we believe that the

wordgraph is one of the most promising tools for semantic

text analytics.
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