Ray Casting of Trimmed NURBS Surfaces on the GPU

Hans-Friedrich Pabst Jan P. Springer André Schollmeyer Robert Lenhardt Christian Lessig Bernd Fröhlich
Bauhaus University Weimar • Faculty of Media • Virtual Reality Systems Group

IEEE Symposium on Interactive Ray Tracing 2006

Overview

- GPUCAST system
- Framework for single pass ray casting on the GPU
- Generic library: algorithms, data structures
- Type/value transform iterators on the GPU
- Shader metaprogramming
- Scene graph integration
- Publication
- Pabst, Springer, Schollmeyer, Lenhardt, Lessig, Froehlich: Ray Casting of Trimmed NURBS Surfaces on the GPU

Motivation

- Trimmed NURBS surfaces
- CAD standard
- Ray casting
- Direct rendering
- Pixel-accurate

- GPU
- Lots of gigaflops per value

Main Goal

Interactive rendering of trimmed NURBS surfaces using ray casting on commodity hardware.

Motivation

- Trimmed NURBS surfaces
- CAD standard
- Ray casting
- Direct rendering
- Pixel-accurate

- GPU
- Lots of gigaflops per value

Main Goal

Interactive rendering of trimmed NURBS surfaces using ray casting on commodity hardware.

NURBS

- NURBS surfaces provide local and explicit control
- Primitives included, e.g. curve, sphere, cone, cube
- Compact representation

- Continuity between curves and patches
- Trimming allows complex boundaries and topologies

Outline

- Integrate NURBS primitives into hardware graphics pipeline
- Ray-NURBS intersection and accurate trimming on the GPU
- Demonstration
- Results and conclusions

Surface Rendering: Algorithm Overview

Surface Rendering: Algorithm Overview

- Preprocessing
- Create bounding volume (convex hull)
- Send vertices and parametric data

Surface Rendering: Algorithm Overview

- Preprocessing
- Create bounding volume (convex hull)
- Send vertices and parametric data
- For each surface
- Transform convex hull
- Rasterize convex hull

Surface Rendering: Algorithm Overview

- Preprocessing
- Create bounding volume (convex hull)
- Send vertices and parametric data
- For each surface
- Transform convex hull
- Rasterize convex hull
- Compute ray-surface intersection

- Trimming

Surface Rendering: Algorithm Overview

- Preprocessing
- Create bounding volume (convex hull)
- Send vertices and parametric data
- For each surface
- Transform convex hull
- Rasterize convex hull
- Compute ray-surface intersection

- Trimming
- Shading

Numeric Intersection Computation

- Evaluation: $(u v) \rightarrow(x, y, z)$ Solving: $(x, y, z) \rightarrow(u v)$
- Methods: general root finding vs. geometrical context
- Subdivision
- Numerical (iterative)
- Algebraic
- Hybrid

- Newton Iteration
- Only parameters of one step necessary
- Only function values and partial derivatives needed
- Quadratic convergence

Initial Values for the Newton Iteration
Problem: An approximate solution is needed to get a solution
\rightarrow Information about geometrical context can be used

- Two complementary approaches: subdivision and $u v$-texturing
- Motivation: good initial values will result in fast convergence

Subdivision of the Convex Hull

- Quadratically increasing tightness
- Trade-off between ray casting and standard graphics pipeline
- Minimizes number of fragments/rays
- Number of vertices increased
- Adaptive subdivision
- Minimizes number of generated vertices
- Union of all convex hulls
- Approximation of the surface

- Idea: interpolated guess for each ray
- Associate an initial value (vertex attribute) with each vertex

- Complement outer control points
- Mapping parameter range between
- Subdivision-aware
- Subdivsion increases quality
- Problem
- Good heuristic for points of the control mesh
- Invalid for some edges/faces of the convex hull

Trimming: Algorithm Overview

- Ray casting in parameter domain
- Similar to point-in-polygon test
- Bézier form provides exact representation of NURBS curves
- Accurate intersection computation using Bézier Clipping

Bézier Clipping

- Numerical root finding algorithm (subdivision)
- Makes use of the convex hull property

- Transformation into local equidistant coordinate system, invariant with respect to the intersection points

Bézier Clipping (cont.)

- Compute convex hull intersections with t-axis
- Split curve at $t_{\text {min }}$ and $t_{\max }$ ("clipping")
- Interval contraction driven by clipping and subdivision

Iterative Bézier Clipping
Problem: Subdivision implies recursive processing of sub-intervals

- Only two intervals at a time are needed
- Only one scalar value needed to represent remaining interval

Iterative Bézier Clipping (cont.)

- Favors re-computation over storing values
- Consists of a state machine inside a loop to simulate function calls
- Intersection test takes advantage of Bernstein-Bézier form
- Properties
- Iterative depth-first algorithm
- Enumerates roots in ascending order
"This is the first implementation of a subdivision-like single pass algorithm on current graphics hardware."

Direct Trimming

- Interactive manipulation of existing control points possible
- Complements the direct rendering of surfaces
- Can also be used for trimming triangulated patches

Limitations

- Hardware and tool chain
- Registers, writeable memory
- Compiler, graphics driver, debugging
- Algorithm
- Artifacts (ray-surface intersection)
- Trimming without acceleration data structure
- Large models
- Usually one program per surface
- Limited degree ($\approx 6 \times 6$):

$$
M+2 N \leq 19 \text { with } N \leq M
$$

The Trimmed Utah Teapot

Iteration + Manipulation

Results

Figure	Triangles	Subdivision	FPS_{4}	FPS_{8}	
	3732	1×1	18	15	
Duck	15648	2×2	20	16	
	63602	4×4	20	16	
Teapot	3092	2×2	33	24	
	12698	4×4	36	28	
	51160	8×8	30	25	
Teapot $^{\text {Orient }}$	3092	2×2	22	18	
	12698	4×4	24	19	
	51160	8×8	22	18	
Teapot $^{\text {NV }}$	3092	2×2	18	15	
	12698	4×4	19	16	
	51160	8×8	17	15	

Resolution 1280×1024, screen covering 80% of width, GPU Geforce 7900 GT

Results

Figure	Triangles	Subdivision	FPS_{4}	FPS_{8}	
	3732	1×1	18	15	
Duck	15648	2×2	20	16	
	63602	4×4	20	16	
Teapot	3092	2×2	33	24	
	12698	4×4	36	28	
	51160	8×8	30	25	
Teapot $^{\text {Orient }}$	3092	2×2	22	18	
	12698	4×4	24	19	
	51160	8×8	22	18	
Teapot $^{\text {NV }}$	3092	2×2	18	15	
	12698	4×4	19	16	
	51160	8×8	17	15	

Resolution 1280×1024, screen covering 80% of width, GPU Geforce 7900 GT

Results

Figure	Triangles	Subdivision	FPS_{4}	FPS_{8}	
	3732	1×1	18	15	
Duck	15648	2×2	20	16	
	63602	4×4	20	16	
Teapot	3092	2×2	33	24	
	12698	4×4	36	28	
	51160	8×8	30	25	
Teapot $^{\text {Orient }}$	3092	2×2	22	18	
	12698	4×4	24	19	
	51160	8×8	22	18	
Teapot $^{\text {NV }}$	3092	2×2	18	15	
	12698	4×4	19	16	
	51160	8×8	17	15	

Resolution 1280×1024, screen covering 80% of width, GPU Geforce 7900 GT

Results

Figure	Triangles	Subdivision	FPS_{4}	FPS_{8}	
	3732	1×1	18	15	
Duck	15648	2×2	20	16	
	63602	4×4	20	16	
Teapot	3092	2×2	33	24	
	12698	4×4	36	28	
	51160	8×8	30	25	
Teapot $^{\text {Orient }}$	3092	2×2	22	18	
	12698	4×4	24	19	
	51160	8×8	22	18	
Teapot $^{\text {NV }}$	3092	2×2	18	15	
	12698	4×4	19	16	
	51160	8×8	17	15	

Resolution 1280×1024, screen covering 80% of width, GPU Geforce 7900 GT

Conclusions

- Direct rendering
- Ideal solution for CAD
- Low CPU overhead
- Minimal storage
- Pixel-accurate
- Silhouettes
- Interpenetrations

- Normals
- Future Work
- Reliable ray-surface intersection test
- Trimming acceleration data structure

Conclusions

- Direct rendering
- Ideal solution for CAD
- Low CPU overhead
- Minimal storage
- Pixel-accurate
- Silhouettes
- Interpenetrations
- Normals
- Future Work
- Reliable ray-surface intersection test
- Trimming acceleration data structure

"Higher order primitives will complement triangles as the primary rendering primitive."

The End.

Thank you for your attention.

