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Abstract 

This paper presents projector-based illumination 
techniques for creating correct occlusion effects for 
optical see-through setups. We project view-dependent 
occlusion shadows onto the real surfaces that are located 
behind virtual objects. This results in a perfect occlusion 
of real objects by virtual ones. We have implemented and 
tested our approach in the context of the Virtual 
Showcase display. We describe hardware extension for 
projecting light into the showcase and present our 
rendering techniques for displaying occlusion shadows 
for single and multi-user environments as well as for 
single and multi-light-projector configurations. We also 
report on the limitations of our system for multi-user 
situations and describe our experiences with a first 
experimental prototype. 
 
1. Introduction 
 

Projection-based augmented reality systems, such as 
the Virtual Showcase [3], share many positive properties 
of projection-based virtual environments. These displays 
provide high resolution, improved consistency of eye 
accommodation and convergence, little motion sickness 
potential, and the possibility of an integration into 
common working environments. One of the main 
challenges for projection-based AR systems as well as for 
head-mounted optical see-through displays is the 
generation of correct occlusion effects between virtual 
and real objects [1]. Additionally shadows of virtual 
objects cast onto real ones and consistent illumination of 
the real and virtual scenery are often difficult to achieve. 

In this paper, we introduce projector-based 
illumination techniques for view-dependent optical see-
through AR displays. This approach has the potential to 
solve all of the above mentioned problems. Here, we 
focus on using projector-based illumination for creating 

correct occlusion effects for mixed reality configurations 
(cf. figure 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Wrong occlusion effects with normal 
illumination (left), occlusion shadow generated 

with projector-based illumination (right), realistic 
occlusion of the real object by the virtual one 

(center). 
 

We have implemented and tested such a system in the 
context of the Virtual Showcase, which consists of a 
horizontal projection screen and a convex half-silvered 
mirror assembly (cf. figure 2). Virtual and real objects can 
be displayed in the same space inside the showcase. 

The original Virtual Showcase used a standard light 
bulb to illuminate real objects. This setup does not 
provide very much control over the lighting situation. By 
using a computer-controlled video-projector as a 
replacement for the simple light bulb, we are able to fully 
control the lighting situation inside the showcase on a per-
pixel basis. 

Our main contribution is a solution to the problem of 
correct occlusion for mixed reality scenarios with view-
dependent optical see-through displays. Our method 
produces correct occlusion effects between virtual and 

 

 

 

 
 

 



 

 

real objects by projecting shadows onto real objects 
located behind virtual ones using projector-based 
illumination.  

 

 
 
Figure 2: Our experimental prototype: The 

Virtual Showcase sits on top of a rear-projection 
screen. The lower half of the truncated pyramid 

configuration consists of four half-silvered 
mirrors. An additional set of full mirrors 

comprise the top half and redirects the light 
beam of a video projector (upper right) into the 

showcase center. 
 
We describe our extended Virtual Showcase hardware 

for projecting these shadows into the showcase (cf. figure 
2) and present rendering techniques for displaying them 
in single and multi-user environments as well as for single 
and multi-light-projector configurations. We also report 
on the limitations and potential extensions of our system 
and describe our experiences with our first setup.  
 
2. Related Work 
 

Kiyokawa et al. [8] present ELMO, an optical see-
through head-mounted display that supports mutual 
occlusion. ELMO uses half-silvered mirrors as optical 
combiners and an additional semi-transparent LCD panel 
in front of the conventional optics. The LCD panel is used 
to selectively block the incoming light on a per-pixel 
basis. This enables virtual objects to occlude real ones. A 
head-attached depth sensor allows them to acquire depth 
maps of the real environment in real time. This makes the 
occlusion of virtual objects by real ones possible. ELMO 
faces a number of problems that are linked to the LCD 
panel: light attenuation caused by the LCD panel, and low 
response time and resolution of the LCD panel. However, 
as the first functioning system of its kind, it effectively 
addresses the occlusion problem of optical see-through 
head-mounted displays. 

Noda et al. [10] present a stationary optical see-
through display that uses a video projector to illuminate 
real objects selectively – not lighting those areas that are 
overlaid by graphics. Noda’s system is strictly limited in 

several points. Firstly a dark surrounding environment is 
required, which constrains the applications possible. 
Secondly view-dependent rendering is not possible. The 
observer’s viewpoint has to match with the center of 
projection of the video projector since the illumination 
pattern is rendered from this point using a normal on-axis 
projection. In this special case no depth information of the 
real environment is required for a correct rendering. 
Lastly stereoscopic rendering is not provided. 

Naemura et al. [9] proposes an approach that is 
technically similar to Noda’s. The conceptual difference, 
however, is that he applies a hand-held video projector as 
a real flashlight to interactively generate shadow effects 
of virtual objects on real surfaces. He does not address the 
occlusion problem of optical see-through displays, but 
focuses on enhancing such interactive mixed reality 
applications by providing additional visual cues through 
shadows. As in Noda’s case no depth information of the 
real objects are needed.   

Head-Mounted Projective Displays, or HMPDs, (such 
as described by Hua et al. [7]) require the observer to 
wear miniature projectors. The projectors beam the 
synthetic images directly onto the surfaces of the real 
objects that are within the user’s field of view. Since the 
observer’s viewing frustum can be optically matched with 
the projection frustum, view-dependent rendering is 
possible while benefiting from a view-independent 
projection (i.e., depth information for real objects is not 
required). However, the real objects’ surfaces have to be 
coated with a retro-reflective material in terms of 
providing stereoscopic rendering, multi-user applications, 
and the usage of such displays within uncontrolled 
illuminated environments. The occlusion problem of 
optical see-through displays is not an issue for HMPDs, 
since the retro-reflective material avoids the problem of 
environment light interfering with the graphical overlays. 

Raskar et al. [12] applies multiple stationary video 
projectors to “lift” the lighting and material properties of 
real objects by projecting colored images onto the real 
objects’ surfaces. His approach provides an auto-
stereoscopic behavior and does not have to deal with the 
occlusion problem since it is not based on the optical see-
through concept. In fact, he faces an inverse problem: His 
method is constrained by the shape and color of the real 
objects. On the one hand, it is not possible to display 
graphics next to a real surface if another real object is not 
located behind the graphics that can serve as display 
surface. On the other hand, the real objects are required to 
have a bright color that diffuses the projected light. Dark 
objects would absorb the light. However, since a view-
dependent rendering is mostly not required1, he can 

                                                 
1 Basic view-dependent illumination effects, such as specular reflection, 
are handled by a skillful distribution of tasks between model-view and 
projection transformations. 



 

 

simply render a textured virtual representation of the real 
scene from the viewpoint of the projector(s). 

 
3. Our Approach 
 

Being an optical see-through display, the Virtual 
Showcase faces the same occlusion problem as head-
mounted displays if conventional illumination is used. 
However, the Virtual Showcase completely encloses the 
contained real artifact, which offers the possibility to fully 
control the lighting situation. Figure 2 shows our 
experimental setup with an additional video-projector for 
illuminating the real content inside the showcase. We 
refer to these projectors as light projectors.  

Our idea is similar to Noda’s [10]. However, our 
approach supports view-dependent and stereoscopic 
rendering for single and multiple users and we do not 
require the illumination being projected from the user’s 
point of view. This requires depth knowledge of the real 
scenery to support both –the occlusion of real objects by 
virtual ones and vice versa. In addition, the Virtual 
Showcase setup does not depend on a dark surrounding, 
since the real artifact is completely enclosed and the 
interior lighting of the Virtual Showcase is fully 
controllable.  

We dynamically generate shadows directly on the real 
objects’ surfaces wherever graphics is overlaid (figure 1). 
These shadows are not directly visible to the observers, 
since they are purposely occluded by the overlaid 
graphics. We call these shadows occlusion shadows. We 
additionally render phantom bodies representing real 
objects which occlude virtual objects behind them. The 
combination of occlusion shadows and phantom bodies 
effectively solves the occlusion problem for optical see-
through displays such as the Virtual Showcase. 

 
4. Rendering Occlusion Shadows 
 

For rendering occlusion shadows the viewpoints of 
each user, the intrinsic and extrinsic parameters of each 
light projector, as well as the virtual and the real scene 
must be known.  

The viewpoints are continuously measured with head-
tracking technology, while the light projectors’ 
parameters are determined only once during a calibration 
phase. Virtual objects can be interactively manipulated 
within the showcase during runtime. 

Knowing the scene and the view transformation lets us 
compute the perspective projection matrix (V ) of the 
corresponding viewpoint that incorporates the model-
view transformation with respect to the scene’s origin 

 

4.1. Light Projector Calibration  
 

Before calibrating a light projector, a geometric 
representation of the real scene is registered to its physical 
counterpart. Then, the two-dimensional perspective 
projections of selected three-dimensional points on the 
real objects’ surfaces are sampled within the light 
projector’s screen space as described by Raskar [12]. The 
three-dimensional fiducials are highlighted on the real 
objects’ surfaces by rendering and overlaying them with 
the Virtual Showcase display – given that the real objects 
have been registered first. A crosshair is then rendered 
into the light projector’s frame buffer. It is aligned with 
the highlighted surface points to measure their 2D 
projections in the corresponding screen space.  

Users interactively browse through the sample points, 
which allows the selection of reasonable calibration areas 
(e.g., those that are clearly visible and are not in the 
shadow of, or occluded by other surfaces). Once an 
appropriate number of samples has been taken, they are 
used as input for a numerical minimization which 
computes the light projector’s intrinsic (vertical field of 
view and aspect ratio in our case) and extrinsic (position, 
optical axis, and up-vector in our case) parameters. We 
applied Powell’s direction set method [11] to solve this 
perspective-n-point (PnP) problem. The result is the 
projector’s perspective projection matrix ( P ) that 
incorporates the correct model-view transformation with 
respect to the scene origin.  

In our case the light frustum of the projector is 
redirected by a planar mirror. Thus we need to incorporate 
the reflection transformation of the mirror. During 
calibration, we reflect the coordinates of the 3D fiducials 
over the corresponding mirror plane before passing them 
into the minimization routine. In this case, P  needs to 
incorporate an additional reflection matrix that reflects the 
scene over the mirror plane during rendering (as described 
in Bimber et al. [4]).  

If multiple projectors are used, the calibration process 
has to be repeated for each projector separately. 

 
4.2. Single Viewpoint 
 

The basic algorithm below illustrates how to render 
occlusion shadows for a single point of view.  

The depth information of both – the real and the virtual 
content have to be known. A shadow mask that contains 
the silhouette of the virtual content is generated (lines 1-
5) which is then perspectively mapped onto the known 
geometry of the real content (lines 6-7). Line 4 renders 
the illumination for the real content into the frame buffer. 
This illumination could be computed with a similar 
BRDF model as described in Raskar et al. [12] – 
producing a correct and matching radiance on real and 
virtual surfaces with respect to virtual light sources. Note 



 

 

that this has not been implemented yet. We just project 
uniformly colored light onto the real surfaces from the 
light projector’s point of view while virtual objects are 
illuminated from the positions of the virtual light sources. 

 
 
 
 
 
 
 
 
 

 
Algorithm 1 

 
Note also that the instruction in line 2 ensures a correct 

occlusion of virtual objects by real ones, as proposed by 
Breen et al. [5]. This is illustrated in figure 3. The 
normalization space correction in line 6 consists of a 
scaling by [0.5,0.5,1.0], followed by a translation of 
[0.5,0.5,0.5] to map from normalized screen space to 
normalized texture space2. 
 
4.3. Multiple Viewpoints 
 

A clear limitation of our method is the following fact: 
If the same real surfaces are simultaneously visible from 
multiple points of view (e.g. for different observers), 
individual occlusion shadows that project onto these 
surfaces are also visible from different viewpoints at the 
same time. 

Considering two observers, for instance, observer A 
might be able to see the occlusion shadow that is 
generated for observer B and vice versa. In addition, the 
shadows move if the viewers are moving, which might be 
confusing. This problem cannot be solved in general with 
our current setup. However, we propose two approaches 
to reduce these effects: 
 

 
 
Figure 4: Occlusion shadows generated for two 

different viewpoints. With graphical overlay 
(left), and without graphical overlay (right).  

                                                 
2 This applies for OpenGL. 

Occlusion shadows generated for other viewpoints are 
the umbral hard-shadows that are cast by the virtual scene 
with a light source positioned at the other viewpoints’ 
locations. We make use of this fact by attaching a point 
light to each viewpoint. This generates correct lighting 
effects on the virtual scene’s surfaces – in addition to 
matching hard-shadows on the real scene’s surfaces (cf. 
figure 4).  

Our second approach tries to minimize the interference 
between individual occlusion shadows by ensuring that 
they are generated only on those real surfaces that are 
visible from the corresponding viewpoint. However, since 
the occlusion shadows are finally rendered from the 
viewpoint of the projector, all view-dependent 
computations (e.g., back-face culling and depth buffering) 
are done for this perspective – not for the perspectives of 
the actual viewpoints.  

Figure 5 illustrates a simple example. Here, we assume 
two viewpoints (V1, V2), one light projector (P), and five 
real surfaces (1-5). For V1, surface 1,2 and 5 are 
completely visible, surface 3 is completely invisible, and 
surface 4 is partially visible. For V2, surfaces 2,3,4 and 5 
are completely visible and surface 1 is completely 
invisible. Consequently, surfaces 2, 4 and 5 are (at least 
partially) visible for both viewpoints. 

 

 
Figure 5: Visibility for different points of view. 

 
We want to ensure that the occlusion shadows for each 

viewpoint are generated only on the visible portions of the 
surfaces. However, since different surfaces are visible 
from the perspective of the projector than from the 
perspectives of the viewpoints, the correct appearance of 
real scene has to be determined before it is rendered.  

If algorithm 1 would be simply repeated for every 
viewpoint3, the projective texture of V1 would be 
unnecessarily mapped onto surface 44 and might 
consequently interfere with the texture of V2. Algorithm 
2 explains how we approach this problem. 

Throughout lines 1-12 in algorithm 2, a shadow mask 
is generated for each viewpoint and stored in an 

                                                 
3 And the resulting textures would be color blended appropriately. 
4 Note that surface 3 cannot be illuminated, since it isn’t visible from the 
perspective of the projector. 

1: set projection matrix to V  
2: render real content into depth buffer  
3: render virtual content into stencil buffer 
4: render illumination for real content into 
 frame buffer (previously cleared to black)  
5: transfer frame buffer into texture memory T  
6: set projection matrix to P , set  
  texture matrix to V + normalization space  
 correction, clear frame buffer to black 
7: render real content into frame buffer using  
 projective texture T  



 

 

individual block of the texture memory. All shadow 
masks are then color blended into the final image that is 
projected by the light projector (lines 14-20). To support a 
proper color blending, the first shadow map is rendered 
with a black shadow color and the assigned light color as 
background. It is used to create a base image during the 
first rendering iteration. All subsequent iterations generate 
masks with a black shadow color and a white light color. 
They are color blended (as sources) onto the base image 
(the destination) –e.g. in OpenGL– using 
glBlendFunc(GL_ZERO,GL_ SRC_COLOR). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Algorithm 2 

 
In line 9, the real scene is categorized for each 

viewpoint into fully visible, partially visible and hidden 
triangles. These sets are rendered sequentially in lines 17-
19. Fully visible triangles are texture mapped with the 
corresponding shadow mask and possibly color blended 
with the base image (line 17). Hidden triangles are 
rendered in the light color for the first viewpoint (to 
generate the base image), or are not rendered at all for all 
subsequent viewpoints (line 19). Triangles that are 
partially visible have to be partially texture mapped. To 
realize this without having to apply a time-consuming re-
triangulation, a second shadow mask is generated for each 

viewpoint (lines 10 and 11). Thereby, the original shadow 
mask is modified by rendering all fully visible triangles in 
the current light color on top of it (with the depth test 
disabled). Using this new shadow mask for texture 
mapping the partially visible triangles (line 18) ensures 
that the potential shadow area appears only on the visible 
portions of these triangles. The remaining part is then 
available for occlusion shadows of other viewpoints that 
can see these surface areas. 

An efficient categorization of the triangles is achieved 
by storing and reusing the depth buffer that has been 
produced after line 5 is executed: Several sample points 
on a triangle are mapped from the world coordinate 
system into the screen coordinate system of the 
viewpoint. The calculated z-values of the transformed 
samples are then compared with the corresponding z-
values, stored in the depth buffer. The depth buffer can be 
indexed using the computed x/y-coordinates of the 
transformed sample points. If all sample points have z-
values that are closer to the viewpoint than the indexed 
values in the depth buffer, the triangle is categorized to be 
fully visible. If all points are further away than the 
indexed depth-buffer values, then the triangle is assumed 
to be hidden. If some points are closer and others are 
further away, then the triangle is partially visible.  

Note that we currently apply these approximation by 
considering the three corner vertices and the center point 
of a triangle. All computations are cached and 
intermediate results are reused for triangles sharing the 
same vertices. 

 
4.4. Multiple Projectors 
 

Due to self occlusion, not all portions of the real 
content can be lit by a single light projector (e.g., surface 
3 in figure 5). A solution to this problem is to increase the 
number of projectors and place them in such a way that 
the projected light is distributed over the real content. A 
set of optimal projector positions can be determined by 
applying Stuerzlinger’s [13] hierarchical visibility 
algorithm. To guarantee a uniform illumination, however, 
surfaces should not be lit by more than one projector at 
the same time. Otherwise, the projected light accumulates 
on these surfaces and they appear brighter than others. 
Note that this effect is not necessarily spurious, since it 
reflects the natural behavior of multiple light sources (i.e., 
the light projectors) that illuminate the same surface. 
Consequently, we propose a solution to this problem that 
can be applied optionally. 

Our method subdivides the geometry of the real 
content into surface portions that are assigned to, and 
finally rendered by an individual light projector. Since 
this subdivision is view-independent, and we assume that 
the parameters of the light projectors and the real content 

1: for all viewpoints i  
2:   if 0=i  then LC=light color 
3:   else LC=1,1,1 
4: set model-view-projection matrix to 

iV  

5:   render real content into depth buffer  
6:   render virtual content into stencil buffer 
7:   render light in LC into frame buffer  
  (previously cleared in 0,0,0)  
8:   transfer frame buffer into texture   
  memory 

iT   

9:   categorize real content into fully visible  
 (

fi∆ ), partially visible (
pi∆ ) and hidden  

 (
hi∆ ) triangles  

10:  render 
fi∆  in LC into frame buffer (depth  

 test disabled) 
11:   transfer frame buffer into texture   
 memory 

vpiT max_+
 

12: endfor 
13: set model-view-projection matrix to P , clear  
 frame buffer in 0,0,0 
14: for all viewpoints i  
15:   if 0≠i  then enable color blending 
16:   set texture matrix to 

iV +        

 normalization space correction   
17:   render 

fi∆  using projective texture 
iT  

18:   render 
pi∆  using projective texture 

vpiT max_+
 

19:   if 0=i  then render 
hi∆  in light color 

20: endfor 



 

 

do not change over time, it can be pre-computed.  
Algorithm 3 describes the off-line subdivision process. 

Each triangle of the real content’s geometry stores the 
following properties:  
• a flag that indicates whether the triangle is fully 

visible (visible), completely hidden (hidden), or 
partially visible (partial) from a projector; 

• the ID of the projector for which the visible flag 
applies (a triangle can be assigned to be fully visible 
by only one projector); 

• a bit string with n bits for n projectors, indicating for 
which projectors the triangle is partially visible (the 
bit positions correspond to the projectors’ IDs). 

 
Note that a triangle’s visibility from a particular view 

point differs from its visibility from a particular light 
projector. In this section, we describe only how to render 
triangles depending on their visibility from the projectors’ 
perspective, while section 4.3 describes this with respect 
to the perspective of the view points. This should not lead 
to confusion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 3 
 

In line 1, all triangles are initialized to be hidden for all 
projectors. Every triangle (

j∆ ) is then evaluated for each 

projector 
iP . The algorithm assigns the following priority 

to the triangles: full visibility overwrites partial visibility, 
and partial visibility overwrites no visibility. Thus, a 
triangle will be assigned to be fully visible from the 
current projector (

iP ) if (lines 4-10): 

(a) it is fully visible from this projector and 
(b) it has been previously assigned to be hidden or 

partially visible from another projector (
kP ) or 

(c) it has been previously assigned to be fully visible 
from another projector, but its projected area is larger 
from the current one. 

 
Whether a triangle is completely hidden, partially 

visible, or fully visible from a specific perspective can be 
computed as described in section 4.3. 

If a triangle is partially visible from the current 
projector and not fully visible by another one (lines 11-
12), then it is assigned to be partially visible. In addition, 
the current projector is recorded in the triangle’s bit string 
by activating the bit that corresponds to the projector’s 
ID. 

Finally, if a triangle is completely hidden from the 
current projector, nothing needs to be done and it remains 
hidden. 

After all triangles have been assigned, a static shadow 
mask is generated for each projector. Therefore, only the 
fully visible triangles are rendered in a white light color 
on top of a black background – leaving the partially 
visible areas in black. The shadow masks are then read 
into separate blocks of the texture memory. Note that this 
is also part of the off-line pre-computation and has to be 
done only once. However, it is not explicitly outlined in 
algorithm 3.  

During runtime, algorithm 1 (for a single view point) 
or algorithm 2 (for multiple viewpoints) are executed for 
each light projector separately (i.e., on different rendering 
hosts that are connected to a single light projector). The 
only modification to these algorithms is to restrict them to 
render only those triangles that have been assigned to the 
corresponding projector – not the entire real content. This 
affects only the underlying functionality of line 7 in 
algorithm 1, and lines 17-19 in algorithm 2. Note that a 
side effect of our approach is a distributed and potentially 
balanced rendering of the real content between different 
hosts. 

In general, all assigned visible or partially visible 
triangles are rendered as described in algorithm 1 or 
algorithm 2. Partially visible triangles, however, require 
additional treatment: After being rendered for a particular 
projector in the discussed way (see sections 4.2 and 4.3), 
some of the static shadow masks that have been pre-
computed for the other projectors are combined with the 
currently rendered image.  

Technically, this is done exactly as for the multiple 
view points described in algorithm 2 – using projective 
texture mapping (but setting the texture matrix to P  
instead of V ) and color blending.   

If the blending function described in section 4.3 is 
used, white texture portions of these shadow maps do not 
effect the current image while black portions will erase 
the underlying image content. Consequently, previously 
lit portions are erased. 

1: initialize all triangles: ∆  = hidden 
2: for all projectors i  
3:   for all triangles j  

4: if 
j∆  is fully visible from 

iP  

 Α = Area (
iP ,

j∆ ) 

5: if 
j∆ = hidden or 

j∆ = partial or 

6: (
j∆ = visible from 

kP  { ik < } and 
j∆Α < Α )  

7: 
j∆ = visible from 

iP  

8: 
j∆Α = Α  

9: endif  
10: endif 
11: if 

j∆  is partially visible from 
iP  and 

j∆ != visible 

12: then 
j∆  = partial from 

iP  

13: endfor 
14: endfor 



 

 

Specifically, the triangles’ bit strings that indicate the 
set of projectors from which they are partially visible are 
evaluated. We define the following convention: Only the 
static shadow maps of those projectors whose IDs are 
smaller than the ID of the rendering projector have to be 
combined with the current image. Thus, we ensure that 
those portions of the partially visible triangles that have 
already been lit by a projector will be blocked for all other 
projectors.  

Note that if a triangle is still marked as hidden after the 
subdivision, none of the projectors can illuminate it and it 
remains unlit. As long as the virtual light sources are 
located where the light projector is located, this case is 
treated properly. If the virtual light sources are located in 
arbitrary locations, these hidden triangles will potentially 
appear as incorrect shadow regions. 

Figure 5 illustrates a simple example with two 
projectors (P1 and P2), one view point (V), and six real 
surfaces. 

Using algorithm 3, we want to assume that surfaces 1 
and 2 are assigned to be fully visible from P1, while 
surface 3, 5 and 6 are assigned to be fully visible from P2. 
Surface 4 is partially visible from both projectors. 
Consequently, surface 1 and 2 are only rendered from P1, 
and surfaces 3, 5 and 6 are only rendered from P2. P1 
renders surface 4 first and illuminates portion a. Nothing 
else needs to be done for P1. Then P2 renders surface 4 
and portion b is illuminated. Since projectors exist (i.e., 
only P1 in our case) that have previously lit a portion of 
surface 45, the static shadow masks of these projectors are 
blended with the current image.  

 

 
Figure 6: Visibility for different projectors. 

 
In P1’s static shadow mask, the image of portion a 

remains black while surfaces 1 and 2 are outlined in 
white. If mapped and blended into P2’s image using the 
perspective texture transform of P1, portion a is erased in 
P2’s image.  

                                                 
5 This is determined by comparing the projector IDs in the triangle’s bit 
string with the ID of the current projector. 

4.5. Drawing Light and Shadow 
 

Surfaces of real objects for which the geometry is not 
known can be illuminated by manually drawing static 
light and shadow effects into the frame- and stencil-
buffers of the corresponding light projectors. This allows 
the user to paint directly on these surfaces. In figures 
1,3,4 and 7, for instance, the illumination of the base’s 
lower part is static. It has been interactively sketched 
using a simple mouse-based drawing tool. More advanced 
painting techniques (e.g., as described by Bandyopadhyay 
et al. [2]) can be applied to support a more artistic 
expression. 

 
5. Implementation 
 

We use multiple off-the-shelf PCs with hardware-
accelerated graphics boards that are connected via a 
standard local area network.  

Each PC is connected to a single video projector and is 
executing the same render client. While one client drives 
the CRT projector that displays the stereoscopic images, 
an arbitrary number of other clients can be used to control 
the light projectors to render the illumination. All clients 
store an instance of the current scene in their local 
memories. If multiple projectors are used, each client pre-
computes the entire subdivision of the real content’s 
geometry and generates the static shadow masks for all 
projectors, as described in section 4.4. 

A server that continuously receives user data from a 
tracking device represents the beginning of the chain. 
This data is passed to the first client that renders the 
stereo overlays. The client adds information about scene 
changes (e.g., caused by user interaction) to the tracking 
data and passes it to the next client in the chain. Based on 
this information, the client optionally adds additional 
information, passes it to the next client and renders the 
illumination. This is continued until the end of the chain 
is reached.  

The synchronization between the render clients is 
realized in software and integrated into the 
communication protocol. Note that rendering and 
communication are carried out in parallel (i.e., within 
individual threads created by each client) – not causing  
synchronization delays. 

For the experimental setup displayed in figure 2, two 
PCs and two projectors are used. The tracking server is 
running on the same PC as the first render client. The first 
projector is a standard CRT projector rendering the left 
and right eye views of the virtual objects in stereoscopic 
mode. For the optimal setup, the light projectors need to 
project independent occlusion shadows for the left and 
right eye in sync with the scene projection. This would 
require stereo genlock and frame locking between the 
master and client render processes and graphics systems. 



 

 

For our experimental setup, we use a standard DLP 
projector in monoscopic mode as the light projector. The 
occlusion shadows are therefore generated only for an 
idealized viewpoint in-between the left and right eye 
position and we use the same occlusion shadows for both 
eyes. In our case, the stereo disparity for the virtual 
objects is rather small, since the virtual projection plane 
(i.e., the table top surface reflected into the Virtual 
Showcase) is in close proximity to the actual location of 
the virtual objects. This small stereo disparity results in a 
small disparity of the occlusion shadows. In addition, we 
typically defocus the light projector slightly to blur the 
occlusion shadow boundaries. In our experience, we 
found the monoscopic occlusion shadows to work quite 
well and that the disparity errors are hardly visible. In 
addition, the graphics cards are not genlocked, which 
results in slight flicker of the illuminated areas on the real 
objects. 

 
6. Summary and Conclusions  
 

We presented a solution for the problem of generating 
realistic occlusion effects with optical see-through 
displays. We describe an illumination technique that uses 
video projectors to generate view-dependent shadows 
underneath virtual overlays, which are projected directly 
onto the surface of physical objects. We have shown how 
this method can be applied for a single viewpoint and a 
single light projector. We also describe the necessary 
extensions for multiple users and multiple light 
projectors. In addition we discuss the limitations of our 
multi-user approach and suggest two techniques for 
reducing the artifacts. 

The precision of the calibration method described in 
section 4.1 depends on the resolution of the frame-buffer 
that is displayed by the light projector, the distance 
between the projector and the reference surface and its 
orientation with respect to the projector’s image plane. 
Surfaces that are aligned roughly parallel to the 
projector’s image plane (e.g., the base in figures 1,3,4) 
allow us to achieve sub-pixel precision since the fiducials 
can be referenced exactly in the frame-buffer. Surfaces 
that are oriented more perpendicular to the image plane 
(e.g., skull in figure 7) still produce an average precision 
of 1-3 pixels6.  

In addition, an object-based or image-based blurring 
can be applied to reduce the visual effects caused by 
slight registration errors, as described by Fuhrmann et al. 
[6]. Similar effects can be achieved by simply defocusing 
the projectors’ optics – with no computational cost 
involved. We found that small displacements of the 
occlusion shadows are far less noticeable as 

                                                 
6 With a frame-buffer resolution of 1024x768 pixels, and a distance 
between projector and reference surface of approx. 1.5m. 

displacements between real content and virtual overlay. 
This might be due to the fact that one’s focus is on the 
visible overlays and on the real objects, rather than on the 
occlusion shadows that are in general invisible. 

The rendering algorithm for multiple viewpoints, 
described in section 4.3 can be efficiently applied in 
combination with real objects that physically divide the 
viewing space shared by multiple observers (such as the 
skull in figure 7). In these cases, the interference between 
different occlusion shadows can be minimized or even 
avoided completely since large portions of the surface 
exist that are not necessarily visible for more than one 
observer. Objects such as the wooden base in figures 
1,3,4 on the other hand, consist of large surface portions 
that are likely to be visible from all viewpoints. In these 
cases, our second algorithm becomes less efficient since a 
categorization of the real scene’s geometry is not 
necessary. 

Simply blending all the shadow masks together and 
projecting them onto the real scene results in correct 
occlusion effects but also causes interference between 
different occlusion shadows. However, as mentioned in 
section 4.3, the occlusion shadows that can be perceived 
behave exactly like umbral hard-shadows that are cast by 
the virtual objects onto the real scene. By computing the 
matching illumination on the virtual objects’ surfaces 
using point lights at the positions of the viewpoints 
amplifies this illusion and reduces the interference effect. 

The algorithm for multiple projectors, described in 
section 4.4 avoids the problem that the same portion of 
the real content is illuminated by more than one projector. 
This is achieved by subdividing the real content’s 
geometry and assigning the resulting portions to 
individual projectors. Raskar et al. [12], for instance, 
present a cross-feathering method to merge the images of 
multiple projectors on a pixel-basis, which could also be 
used with our setup. 
 
7. Future Work 
 

Our current prototype has proven that occlusion 
shadows strongly enhance the realistic display of real and 
virtual objects in a shared space. Occlusion shadows 
might also be of use for a variety of other displays that are 
based on the optical see-through concept. Head-attached 
displays including head-mounted displays (HMDs), and 
stationary displays such as projection-based AR devices 
[4] benefit from our method. However, a light 
controllable real environment is a prerequisite for 
displaying a high quality mixed reality scenario. Such an 
environment is implicitly provided by the Virtual  
Showcase. 

For the Virtual Showcase, we are working on new 
optical elements and rendering techniques to reduce the 
number of light projectors necessary to reach almost all 



 

 

surfaces of real objects. Figure 8 illustrates a sketch of a 
potential optical configuration. We optically split up a 
single light frustum into multiple sub-frustums to provide 
a “surround illumination” with a single projector. 
However, this approach also splits the projector’s 
resolution. 

 
 

 
 
Figure 8: Sketch of a possible optical extension 

that splits a single light frustum into multiple 
sub-frustums providing a surround illumination 

with a single projector. 
 
Our approach produces realistic occlusion effects 

between virtual and real objects. For the realistic display 
of mixed reality scenarios, consistent illumination of real 
and virtual objects is of great importance as well. As 
shown by Raskar et al. [12], real objects can be 
consistently illuminated with respect to virtual light 
sources using video projectors if their surface properties 
are known. We plan to apply this technique in the context 
of the Virtual Showcase to achieve a fully consistent and 
high quality display of mixed reality scenarios. 
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Figure 1: A normal illumination causes wrong occlusion effects between real objects and 
virtual overlays (left). Creating an occlusion shadow underneath the overlay prevents the 
light from being diffused on the real object’s surface and transmitted through the optical 
combiner and the graphics (center). Overlaying the graphics over the shadow results in a 

realistic occlusion of the real object by the virtual one (left)7. 
 
 

   
Figure 3: Knowing the depth information of the real content, also allows the occlusion of 

virtual objects by real ones (left). Combining this with our occlusion shadow method 
(center) creates correct mutual occlusion effects between both environments (right). 

 
 

  
Figure 7: This example demonstrates our method in combination with a more complex real 

scene: A physical skull of a mid-cretaceous dinosaur (a Deinonychus) has been 
augmented with virtual muscles and bones (left) – generating occlusion shadows exactly 
underneath the virtual overlays. Covering the skull by a virtual skin (right) leaves most of 

the bone structure in shadow. Only the real teeth are clearly visible. 

                                                 
7 Note that the photographs in this paper have not been touched up. They were taken from the observer’s point of view, but were 
rendered monoscopically. 


