

Occlusion Shadows:
Using Projected Light to Generate Realistic Occlusion Effects for View-

Dependent Optical See-Through Displays

Oliver Bimber#
Fraunhofer Center for Research in Computer
Graphics, 321 South Main St., Providence,

RI 02903, USA,
oliver.bimber@medien.uni-weimar.de

Bernd Fröhlich
Bauhaus University Weimar

Bauhausstraße 11,
99423 Weimar, Germany,

bernd.froehlich@medien.uni-weimar.de

#now at Bauhaus University Weimar

Abstract

This paper presents projector-based illumination
techniques for creating correct occlusion effects for
optical see-through setups. We project view-dependent
occlusion shadows onto the real surfaces that are located
behind virtual objects. This results in a perfect occlusion
of real objects by virtual ones. We have implemented and
tested our approach in the context of the Virtual
Showcase display. We describe hardware extension for
projecting light into the showcase and present our
rendering techniques for displaying occlusion shadows
for single and multi-user environments as well as for
single and multi-light-projector configurations. We also
report on the limitations of our system for multi-user
situations and describe our experiences with a first
experimental prototype.

1. Introduction

Projection-based augmented reality systems, such as
the Virtual Showcase [3], share many positive properties
of projection-based virtual environments. These displays
provide high resolution, improved consistency of eye
accommodation and convergence, little motion sickness
potential, and the possibility of an integration into
common working environments. One of the main
challenges for projection-based AR systems as well as for
head-mounted optical see-through displays is the
generation of correct occlusion effects between virtual
and real objects [1]. Additionally shadows of virtual
objects cast onto real ones and consistent illumination of
the real and virtual scenery are often difficult to achieve.

In this paper, we introduce projector-based
illumination techniques for view-dependent optical see-
through AR displays. This approach has the potential to
solve all of the above mentioned problems. Here, we
focus on using projector-based illumination for creating

correct occlusion effects for mixed reality configurations
(cf. figure 1).

Figure 1: Wrong occlusion effects with normal
illumination (left), occlusion shadow generated

with projector-based illumination (right), realistic
occlusion of the real object by the virtual one

(center).

We have implemented and tested such a system in the
context of the Virtual Showcase, which consists of a
horizontal projection screen and a convex half-silvered
mirror assembly (cf. figure 2). Virtual and real objects can
be displayed in the same space inside the showcase.

The original Virtual Showcase used a standard light
bulb to illuminate real objects. This setup does not
provide very much control over the lighting situation. By
using a computer-controlled video-projector as a
replacement for the simple light bulb, we are able to fully
control the lighting situation inside the showcase on a per-
pixel basis.

Our main contribution is a solution to the problem of
correct occlusion for mixed reality scenarios with view-
dependent optical see-through displays. Our method
produces correct occlusion effects between virtual and

real objects by projecting shadows onto real objects
located behind virtual ones using projector-based
illumination.

Figure 2: Our experimental prototype: The

Virtual Showcase sits on top of a rear-projection
screen. The lower half of the truncated pyramid

configuration consists of four half-silvered
mirrors. An additional set of full mirrors

comprise the top half and redirects the light
beam of a video projector (upper right) into the

showcase center.

We describe our extended Virtual Showcase hardware

for projecting these shadows into the showcase (cf. figure
2) and present rendering techniques for displaying them
in single and multi-user environments as well as for single
and multi-light-projector configurations. We also report
on the limitations and potential extensions of our system
and describe our experiences with our first setup.

2. Related Work

Kiyokawa et al. [8] present ELMO, an optical see-
through head-mounted display that supports mutual
occlusion. ELMO uses half-silvered mirrors as optical
combiners and an additional semi-transparent LCD panel
in front of the conventional optics. The LCD panel is used
to selectively block the incoming light on a per-pixel
basis. This enables virtual objects to occlude real ones. A
head-attached depth sensor allows them to acquire depth
maps of the real environment in real time. This makes the
occlusion of virtual objects by real ones possible. ELMO
faces a number of problems that are linked to the LCD
panel: light attenuation caused by the LCD panel, and low
response time and resolution of the LCD panel. However,
as the first functioning system of its kind, it effectively
addresses the occlusion problem of optical see-through
head-mounted displays.

Noda et al. [10] present a stationary optical see-
through display that uses a video projector to illuminate
real objects selectively – not lighting those areas that are
overlaid by graphics. Noda’s system is strictly limited in

several points. Firstly a dark surrounding environment is
required, which constrains the applications possible.
Secondly view-dependent rendering is not possible. The
observer’s viewpoint has to match with the center of
projection of the video projector since the illumination
pattern is rendered from this point using a normal on-axis
projection. In this special case no depth information of the
real environment is required for a correct rendering.
Lastly stereoscopic rendering is not provided.

Naemura et al. [9] proposes an approach that is
technically similar to Noda’s. The conceptual difference,
however, is that he applies a hand-held video projector as
a real flashlight to interactively generate shadow effects
of virtual objects on real surfaces. He does not address the
occlusion problem of optical see-through displays, but
focuses on enhancing such interactive mixed reality
applications by providing additional visual cues through
shadows. As in Noda’s case no depth information of the
real objects are needed.

Head-Mounted Projective Displays, or HMPDs, (such
as described by Hua et al. [7]) require the observer to
wear miniature projectors. The projectors beam the
synthetic images directly onto the surfaces of the real
objects that are within the user’s field of view. Since the
observer’s viewing frustum can be optically matched with
the projection frustum, view-dependent rendering is
possible while benefiting from a view-independent
projection (i.e., depth information for real objects is not
required). However, the real objects’ surfaces have to be
coated with a retro-reflective material in terms of
providing stereoscopic rendering, multi-user applications,
and the usage of such displays within uncontrolled
illuminated environments. The occlusion problem of
optical see-through displays is not an issue for HMPDs,
since the retro-reflective material avoids the problem of
environment light interfering with the graphical overlays.

Raskar et al. [12] applies multiple stationary video
projectors to “lift” the lighting and material properties of
real objects by projecting colored images onto the real
objects’ surfaces. His approach provides an auto-
stereoscopic behavior and does not have to deal with the
occlusion problem since it is not based on the optical see-
through concept. In fact, he faces an inverse problem: His
method is constrained by the shape and color of the real
objects. On the one hand, it is not possible to display
graphics next to a real surface if another real object is not
located behind the graphics that can serve as display
surface. On the other hand, the real objects are required to
have a bright color that diffuses the projected light. Dark
objects would absorb the light. However, since a view-
dependent rendering is mostly not required1, he can

1 Basic view-dependent illumination effects, such as specular reflection,
are handled by a skillful distribution of tasks between model-view and
projection transformations.

simply render a textured virtual representation of the real
scene from the viewpoint of the projector(s).

3. Our Approach

Being an optical see-through display, the Virtual
Showcase faces the same occlusion problem as head-
mounted displays if conventional illumination is used.
However, the Virtual Showcase completely encloses the
contained real artifact, which offers the possibility to fully
control the lighting situation. Figure 2 shows our
experimental setup with an additional video-projector for
illuminating the real content inside the showcase. We
refer to these projectors as light projectors.

Our idea is similar to Noda’s [10]. However, our
approach supports view-dependent and stereoscopic
rendering for single and multiple users and we do not
require the illumination being projected from the user’s
point of view. This requires depth knowledge of the real
scenery to support both –the occlusion of real objects by
virtual ones and vice versa. In addition, the Virtual
Showcase setup does not depend on a dark surrounding,
since the real artifact is completely enclosed and the
interior lighting of the Virtual Showcase is fully
controllable.

We dynamically generate shadows directly on the real
objects’ surfaces wherever graphics is overlaid (figure 1).
These shadows are not directly visible to the observers,
since they are purposely occluded by the overlaid
graphics. We call these shadows occlusion shadows. We
additionally render phantom bodies representing real
objects which occlude virtual objects behind them. The
combination of occlusion shadows and phantom bodies
effectively solves the occlusion problem for optical see-
through displays such as the Virtual Showcase.

4. Rendering Occlusion Shadows

For rendering occlusion shadows the viewpoints of
each user, the intrinsic and extrinsic parameters of each
light projector, as well as the virtual and the real scene
must be known.

The viewpoints are continuously measured with head-
tracking technology, while the light projectors’
parameters are determined only once during a calibration
phase. Virtual objects can be interactively manipulated
within the showcase during runtime.

Knowing the scene and the view transformation lets us
compute the perspective projection matrix (V) of the
corresponding viewpoint that incorporates the model-
view transformation with respect to the scene’s origin

4.1. Light Projector Calibration

Before calibrating a light projector, a geometric
representation of the real scene is registered to its physical
counterpart. Then, the two-dimensional perspective
projections of selected three-dimensional points on the
real objects’ surfaces are sampled within the light
projector’s screen space as described by Raskar [12]. The
three-dimensional fiducials are highlighted on the real
objects’ surfaces by rendering and overlaying them with
the Virtual Showcase display – given that the real objects
have been registered first. A crosshair is then rendered
into the light projector’s frame buffer. It is aligned with
the highlighted surface points to measure their 2D
projections in the corresponding screen space.

Users interactively browse through the sample points,
which allows the selection of reasonable calibration areas
(e.g., those that are clearly visible and are not in the
shadow of, or occluded by other surfaces). Once an
appropriate number of samples has been taken, they are
used as input for a numerical minimization which
computes the light projector’s intrinsic (vertical field of
view and aspect ratio in our case) and extrinsic (position,
optical axis, and up-vector in our case) parameters. We
applied Powell’s direction set method [11] to solve this
perspective-n-point (PnP) problem. The result is the
projector’s perspective projection matrix (P) that
incorporates the correct model-view transformation with
respect to the scene origin.

In our case the light frustum of the projector is
redirected by a planar mirror. Thus we need to incorporate
the reflection transformation of the mirror. During
calibration, we reflect the coordinates of the 3D fiducials
over the corresponding mirror plane before passing them
into the minimization routine. In this case, P needs to
incorporate an additional reflection matrix that reflects the
scene over the mirror plane during rendering (as described
in Bimber et al. [4]).

If multiple projectors are used, the calibration process
has to be repeated for each projector separately.

4.2. Single Viewpoint

The basic algorithm below illustrates how to render
occlusion shadows for a single point of view.

The depth information of both – the real and the virtual
content have to be known. A shadow mask that contains
the silhouette of the virtual content is generated (lines 1-
5) which is then perspectively mapped onto the known
geometry of the real content (lines 6-7). Line 4 renders
the illumination for the real content into the frame buffer.
This illumination could be computed with a similar
BRDF model as described in Raskar et al. [12] –
producing a correct and matching radiance on real and
virtual surfaces with respect to virtual light sources. Note

that this has not been implemented yet. We just project
uniformly colored light onto the real surfaces from the
light projector’s point of view while virtual objects are
illuminated from the positions of the virtual light sources.

Algorithm 1

Note also that the instruction in line 2 ensures a correct

occlusion of virtual objects by real ones, as proposed by
Breen et al. [5]. This is illustrated in figure 3. The
normalization space correction in line 6 consists of a
scaling by [0.5,0.5,1.0], followed by a translation of
[0.5,0.5,0.5] to map from normalized screen space to
normalized texture space2.

4.3. Multiple Viewpoints

A clear limitation of our method is the following fact:
If the same real surfaces are simultaneously visible from
multiple points of view (e.g. for different observers),
individual occlusion shadows that project onto these
surfaces are also visible from different viewpoints at the
same time.

Considering two observers, for instance, observer A
might be able to see the occlusion shadow that is
generated for observer B and vice versa. In addition, the
shadows move if the viewers are moving, which might be
confusing. This problem cannot be solved in general with
our current setup. However, we propose two approaches
to reduce these effects:

Figure 4: Occlusion shadows generated for two

different viewpoints. With graphical overlay
(left), and without graphical overlay (right).

2 This applies for OpenGL.

Occlusion shadows generated for other viewpoints are
the umbral hard-shadows that are cast by the virtual scene
with a light source positioned at the other viewpoints’
locations. We make use of this fact by attaching a point
light to each viewpoint. This generates correct lighting
effects on the virtual scene’s surfaces – in addition to
matching hard-shadows on the real scene’s surfaces (cf.
figure 4).

Our second approach tries to minimize the interference
between individual occlusion shadows by ensuring that
they are generated only on those real surfaces that are
visible from the corresponding viewpoint. However, since
the occlusion shadows are finally rendered from the
viewpoint of the projector, all view-dependent
computations (e.g., back-face culling and depth buffering)
are done for this perspective – not for the perspectives of
the actual viewpoints.

Figure 5 illustrates a simple example. Here, we assume
two viewpoints (V1, V2), one light projector (P), and five
real surfaces (1-5). For V1, surface 1,2 and 5 are
completely visible, surface 3 is completely invisible, and
surface 4 is partially visible. For V2, surfaces 2,3,4 and 5
are completely visible and surface 1 is completely
invisible. Consequently, surfaces 2, 4 and 5 are (at least
partially) visible for both viewpoints.

Figure 5: Visibility for different points of view.

We want to ensure that the occlusion shadows for each

viewpoint are generated only on the visible portions of the
surfaces. However, since different surfaces are visible
from the perspective of the projector than from the
perspectives of the viewpoints, the correct appearance of
real scene has to be determined before it is rendered.

If algorithm 1 would be simply repeated for every
viewpoint3, the projective texture of V1 would be
unnecessarily mapped onto surface 44 and might
consequently interfere with the texture of V2. Algorithm
2 explains how we approach this problem.

Throughout lines 1-12 in algorithm 2, a shadow mask
is generated for each viewpoint and stored in an

3 And the resulting textures would be color blended appropriately.
4 Note that surface 3 cannot be illuminated, since it isn’t visible from the
perspective of the projector.

1: set projection matrix to V
2: render real content into depth buffer
3: render virtual content into stencil buffer
4: render illumination for real content into
 frame buffer (previously cleared to black)
5: transfer frame buffer into texture memory T
6: set projection matrix to P , set
 texture matrix to V + normalization space
 correction, clear frame buffer to black
7: render real content into frame buffer using
 projective texture T

individual block of the texture memory. All shadow
masks are then color blended into the final image that is
projected by the light projector (lines 14-20). To support a
proper color blending, the first shadow map is rendered
with a black shadow color and the assigned light color as
background. It is used to create a base image during the
first rendering iteration. All subsequent iterations generate
masks with a black shadow color and a white light color.
They are color blended (as sources) onto the base image
(the destination) –e.g. in OpenGL– using
glBlendFunc(GL_ZERO,GL_ SRC_COLOR).

Algorithm 2

In line 9, the real scene is categorized for each

viewpoint into fully visible, partially visible and hidden
triangles. These sets are rendered sequentially in lines 17-
19. Fully visible triangles are texture mapped with the
corresponding shadow mask and possibly color blended
with the base image (line 17). Hidden triangles are
rendered in the light color for the first viewpoint (to
generate the base image), or are not rendered at all for all
subsequent viewpoints (line 19). Triangles that are
partially visible have to be partially texture mapped. To
realize this without having to apply a time-consuming re-
triangulation, a second shadow mask is generated for each

viewpoint (lines 10 and 11). Thereby, the original shadow
mask is modified by rendering all fully visible triangles in
the current light color on top of it (with the depth test
disabled). Using this new shadow mask for texture
mapping the partially visible triangles (line 18) ensures
that the potential shadow area appears only on the visible
portions of these triangles. The remaining part is then
available for occlusion shadows of other viewpoints that
can see these surface areas.

An efficient categorization of the triangles is achieved
by storing and reusing the depth buffer that has been
produced after line 5 is executed: Several sample points
on a triangle are mapped from the world coordinate
system into the screen coordinate system of the
viewpoint. The calculated z-values of the transformed
samples are then compared with the corresponding z-
values, stored in the depth buffer. The depth buffer can be
indexed using the computed x/y-coordinates of the
transformed sample points. If all sample points have z-
values that are closer to the viewpoint than the indexed
values in the depth buffer, the triangle is categorized to be
fully visible. If all points are further away than the
indexed depth-buffer values, then the triangle is assumed
to be hidden. If some points are closer and others are
further away, then the triangle is partially visible.

Note that we currently apply these approximation by
considering the three corner vertices and the center point
of a triangle. All computations are cached and
intermediate results are reused for triangles sharing the
same vertices.

4.4. Multiple Projectors

Due to self occlusion, not all portions of the real
content can be lit by a single light projector (e.g., surface
3 in figure 5). A solution to this problem is to increase the
number of projectors and place them in such a way that
the projected light is distributed over the real content. A
set of optimal projector positions can be determined by
applying Stuerzlinger’s [13] hierarchical visibility
algorithm. To guarantee a uniform illumination, however,
surfaces should not be lit by more than one projector at
the same time. Otherwise, the projected light accumulates
on these surfaces and they appear brighter than others.
Note that this effect is not necessarily spurious, since it
reflects the natural behavior of multiple light sources (i.e.,
the light projectors) that illuminate the same surface.
Consequently, we propose a solution to this problem that
can be applied optionally.

Our method subdivides the geometry of the real
content into surface portions that are assigned to, and
finally rendered by an individual light projector. Since
this subdivision is view-independent, and we assume that
the parameters of the light projectors and the real content

1: for all viewpoints i
2: if 0=i then LC=light color
3: else LC=1,1,1
4: set model-view-projection matrix to

iV

5: render real content into depth buffer
6: render virtual content into stencil buffer
7: render light in LC into frame buffer
 (previously cleared in 0,0,0)
8: transfer frame buffer into texture
 memory

iT

9: categorize real content into fully visible
 (

fi∆), partially visible (
pi∆) and hidden

 (
hi∆) triangles

10: render
fi∆ in LC into frame buffer (depth

 test disabled)
11: transfer frame buffer into texture
 memory

vpiT max_+

12: endfor
13: set model-view-projection matrix to P , clear
 frame buffer in 0,0,0
14: for all viewpoints i
15: if 0≠i then enable color blending
16: set texture matrix to

iV +

 normalization space correction
17: render

fi∆ using projective texture
iT

18: render
pi∆ using projective texture

vpiT max_+

19: if 0=i then render
hi∆ in light color

20: endfor

do not change over time, it can be pre-computed.
Algorithm 3 describes the off-line subdivision process.

Each triangle of the real content’s geometry stores the
following properties:
• a flag that indicates whether the triangle is fully

visible (visible), completely hidden (hidden), or
partially visible (partial) from a projector;

• the ID of the projector for which the visible flag
applies (a triangle can be assigned to be fully visible
by only one projector);

• a bit string with n bits for n projectors, indicating for
which projectors the triangle is partially visible (the
bit positions correspond to the projectors’ IDs).

Note that a triangle’s visibility from a particular view

point differs from its visibility from a particular light
projector. In this section, we describe only how to render
triangles depending on their visibility from the projectors’
perspective, while section 4.3 describes this with respect
to the perspective of the view points. This should not lead
to confusion.

Algorithm 3

In line 1, all triangles are initialized to be hidden for all
projectors. Every triangle (

j∆) is then evaluated for each

projector
iP . The algorithm assigns the following priority

to the triangles: full visibility overwrites partial visibility,
and partial visibility overwrites no visibility. Thus, a
triangle will be assigned to be fully visible from the
current projector (

iP) if (lines 4-10):

(a) it is fully visible from this projector and
(b) it has been previously assigned to be hidden or

partially visible from another projector (
kP) or

(c) it has been previously assigned to be fully visible
from another projector, but its projected area is larger
from the current one.

Whether a triangle is completely hidden, partially

visible, or fully visible from a specific perspective can be
computed as described in section 4.3.

If a triangle is partially visible from the current
projector and not fully visible by another one (lines 11-
12), then it is assigned to be partially visible. In addition,
the current projector is recorded in the triangle’s bit string
by activating the bit that corresponds to the projector’s
ID.

Finally, if a triangle is completely hidden from the
current projector, nothing needs to be done and it remains
hidden.

After all triangles have been assigned, a static shadow
mask is generated for each projector. Therefore, only the
fully visible triangles are rendered in a white light color
on top of a black background – leaving the partially
visible areas in black. The shadow masks are then read
into separate blocks of the texture memory. Note that this
is also part of the off-line pre-computation and has to be
done only once. However, it is not explicitly outlined in
algorithm 3.

During runtime, algorithm 1 (for a single view point)
or algorithm 2 (for multiple viewpoints) are executed for
each light projector separately (i.e., on different rendering
hosts that are connected to a single light projector). The
only modification to these algorithms is to restrict them to
render only those triangles that have been assigned to the
corresponding projector – not the entire real content. This
affects only the underlying functionality of line 7 in
algorithm 1, and lines 17-19 in algorithm 2. Note that a
side effect of our approach is a distributed and potentially
balanced rendering of the real content between different
hosts.

In general, all assigned visible or partially visible
triangles are rendered as described in algorithm 1 or
algorithm 2. Partially visible triangles, however, require
additional treatment: After being rendered for a particular
projector in the discussed way (see sections 4.2 and 4.3),
some of the static shadow masks that have been pre-
computed for the other projectors are combined with the
currently rendered image.

Technically, this is done exactly as for the multiple
view points described in algorithm 2 – using projective
texture mapping (but setting the texture matrix to P
instead of V) and color blending.

If the blending function described in section 4.3 is
used, white texture portions of these shadow maps do not
effect the current image while black portions will erase
the underlying image content. Consequently, previously
lit portions are erased.

1: initialize all triangles: ∆ = hidden
2: for all projectors i
3: for all triangles j

4: if
j∆ is fully visible from

iP

 Α = Area (
iP ,

j∆)

5: if
j∆ = hidden or

j∆ = partial or

6: (
j∆ = visible from

kP { ik < } and
j∆Α < Α)

7:
j∆ = visible from

iP

8:
j∆Α = Α

9: endif
10: endif
11: if

j∆ is partially visible from
iP and

j∆ != visible

12: then
j∆ = partial from

iP

13: endfor
14: endfor

Specifically, the triangles’ bit strings that indicate the
set of projectors from which they are partially visible are
evaluated. We define the following convention: Only the
static shadow maps of those projectors whose IDs are
smaller than the ID of the rendering projector have to be
combined with the current image. Thus, we ensure that
those portions of the partially visible triangles that have
already been lit by a projector will be blocked for all other
projectors.

Note that if a triangle is still marked as hidden after the
subdivision, none of the projectors can illuminate it and it
remains unlit. As long as the virtual light sources are
located where the light projector is located, this case is
treated properly. If the virtual light sources are located in
arbitrary locations, these hidden triangles will potentially
appear as incorrect shadow regions.

Figure 5 illustrates a simple example with two
projectors (P1 and P2), one view point (V), and six real
surfaces.

Using algorithm 3, we want to assume that surfaces 1
and 2 are assigned to be fully visible from P1, while
surface 3, 5 and 6 are assigned to be fully visible from P2.
Surface 4 is partially visible from both projectors.
Consequently, surface 1 and 2 are only rendered from P1,
and surfaces 3, 5 and 6 are only rendered from P2. P1
renders surface 4 first and illuminates portion a. Nothing
else needs to be done for P1. Then P2 renders surface 4
and portion b is illuminated. Since projectors exist (i.e.,
only P1 in our case) that have previously lit a portion of
surface 45, the static shadow masks of these projectors are
blended with the current image.

Figure 6: Visibility for different projectors.

In P1’s static shadow mask, the image of portion a

remains black while surfaces 1 and 2 are outlined in
white. If mapped and blended into P2’s image using the
perspective texture transform of P1, portion a is erased in
P2’s image.

5 This is determined by comparing the projector IDs in the triangle’s bit
string with the ID of the current projector.

4.5. Drawing Light and Shadow

Surfaces of real objects for which the geometry is not
known can be illuminated by manually drawing static
light and shadow effects into the frame- and stencil-
buffers of the corresponding light projectors. This allows
the user to paint directly on these surfaces. In figures
1,3,4 and 7, for instance, the illumination of the base’s
lower part is static. It has been interactively sketched
using a simple mouse-based drawing tool. More advanced
painting techniques (e.g., as described by Bandyopadhyay
et al. [2]) can be applied to support a more artistic
expression.

5. Implementation

We use multiple off-the-shelf PCs with hardware-
accelerated graphics boards that are connected via a
standard local area network.

Each PC is connected to a single video projector and is
executing the same render client. While one client drives
the CRT projector that displays the stereoscopic images,
an arbitrary number of other clients can be used to control
the light projectors to render the illumination. All clients
store an instance of the current scene in their local
memories. If multiple projectors are used, each client pre-
computes the entire subdivision of the real content’s
geometry and generates the static shadow masks for all
projectors, as described in section 4.4.

A server that continuously receives user data from a
tracking device represents the beginning of the chain.
This data is passed to the first client that renders the
stereo overlays. The client adds information about scene
changes (e.g., caused by user interaction) to the tracking
data and passes it to the next client in the chain. Based on
this information, the client optionally adds additional
information, passes it to the next client and renders the
illumination. This is continued until the end of the chain
is reached.

The synchronization between the render clients is
realized in software and integrated into the
communication protocol. Note that rendering and
communication are carried out in parallel (i.e., within
individual threads created by each client) – not causing
synchronization delays.

For the experimental setup displayed in figure 2, two
PCs and two projectors are used. The tracking server is
running on the same PC as the first render client. The first
projector is a standard CRT projector rendering the left
and right eye views of the virtual objects in stereoscopic
mode. For the optimal setup, the light projectors need to
project independent occlusion shadows for the left and
right eye in sync with the scene projection. This would
require stereo genlock and frame locking between the
master and client render processes and graphics systems.

For our experimental setup, we use a standard DLP
projector in monoscopic mode as the light projector. The
occlusion shadows are therefore generated only for an
idealized viewpoint in-between the left and right eye
position and we use the same occlusion shadows for both
eyes. In our case, the stereo disparity for the virtual
objects is rather small, since the virtual projection plane
(i.e., the table top surface reflected into the Virtual
Showcase) is in close proximity to the actual location of
the virtual objects. This small stereo disparity results in a
small disparity of the occlusion shadows. In addition, we
typically defocus the light projector slightly to blur the
occlusion shadow boundaries. In our experience, we
found the monoscopic occlusion shadows to work quite
well and that the disparity errors are hardly visible. In
addition, the graphics cards are not genlocked, which
results in slight flicker of the illuminated areas on the real
objects.

6. Summary and Conclusions

We presented a solution for the problem of generating
realistic occlusion effects with optical see-through
displays. We describe an illumination technique that uses
video projectors to generate view-dependent shadows
underneath virtual overlays, which are projected directly
onto the surface of physical objects. We have shown how
this method can be applied for a single viewpoint and a
single light projector. We also describe the necessary
extensions for multiple users and multiple light
projectors. In addition we discuss the limitations of our
multi-user approach and suggest two techniques for
reducing the artifacts.

The precision of the calibration method described in
section 4.1 depends on the resolution of the frame-buffer
that is displayed by the light projector, the distance
between the projector and the reference surface and its
orientation with respect to the projector’s image plane.
Surfaces that are aligned roughly parallel to the
projector’s image plane (e.g., the base in figures 1,3,4)
allow us to achieve sub-pixel precision since the fiducials
can be referenced exactly in the frame-buffer. Surfaces
that are oriented more perpendicular to the image plane
(e.g., skull in figure 7) still produce an average precision
of 1-3 pixels6.

In addition, an object-based or image-based blurring
can be applied to reduce the visual effects caused by
slight registration errors, as described by Fuhrmann et al.
[6]. Similar effects can be achieved by simply defocusing
the projectors’ optics – with no computational cost
involved. We found that small displacements of the
occlusion shadows are far less noticeable as

6 With a frame-buffer resolution of 1024x768 pixels, and a distance
between projector and reference surface of approx. 1.5m.

displacements between real content and virtual overlay.
This might be due to the fact that one’s focus is on the
visible overlays and on the real objects, rather than on the
occlusion shadows that are in general invisible.

The rendering algorithm for multiple viewpoints,
described in section 4.3 can be efficiently applied in
combination with real objects that physically divide the
viewing space shared by multiple observers (such as the
skull in figure 7). In these cases, the interference between
different occlusion shadows can be minimized or even
avoided completely since large portions of the surface
exist that are not necessarily visible for more than one
observer. Objects such as the wooden base in figures
1,3,4 on the other hand, consist of large surface portions
that are likely to be visible from all viewpoints. In these
cases, our second algorithm becomes less efficient since a
categorization of the real scene’s geometry is not
necessary.

Simply blending all the shadow masks together and
projecting them onto the real scene results in correct
occlusion effects but also causes interference between
different occlusion shadows. However, as mentioned in
section 4.3, the occlusion shadows that can be perceived
behave exactly like umbral hard-shadows that are cast by
the virtual objects onto the real scene. By computing the
matching illumination on the virtual objects’ surfaces
using point lights at the positions of the viewpoints
amplifies this illusion and reduces the interference effect.

The algorithm for multiple projectors, described in
section 4.4 avoids the problem that the same portion of
the real content is illuminated by more than one projector.
This is achieved by subdividing the real content’s
geometry and assigning the resulting portions to
individual projectors. Raskar et al. [12], for instance,
present a cross-feathering method to merge the images of
multiple projectors on a pixel-basis, which could also be
used with our setup.

7. Future Work

Our current prototype has proven that occlusion
shadows strongly enhance the realistic display of real and
virtual objects in a shared space. Occlusion shadows
might also be of use for a variety of other displays that are
based on the optical see-through concept. Head-attached
displays including head-mounted displays (HMDs), and
stationary displays such as projection-based AR devices
[4] benefit from our method. However, a light
controllable real environment is a prerequisite for
displaying a high quality mixed reality scenario. Such an
environment is implicitly provided by the Virtual
Showcase.

For the Virtual Showcase, we are working on new
optical elements and rendering techniques to reduce the
number of light projectors necessary to reach almost all

surfaces of real objects. Figure 8 illustrates a sketch of a
potential optical configuration. We optically split up a
single light frustum into multiple sub-frustums to provide
a “surround illumination” with a single projector.
However, this approach also splits the projector’s
resolution.

Figure 8: Sketch of a possible optical extension

that splits a single light frustum into multiple
sub-frustums providing a surround illumination

with a single projector.

Our approach produces realistic occlusion effects

between virtual and real objects. For the realistic display
of mixed reality scenarios, consistent illumination of real
and virtual objects is of great importance as well. As
shown by Raskar et al. [12], real objects can be
consistently illuminated with respect to virtual light
sources using video projectors if their surface properties
are known. We plan to apply this technique in the context
of the Virtual Showcase to achieve a fully consistent and
high quality display of mixed reality scenarios.

References

[1] Azuma, R. T. A Survey of Augmented Reality. Presence:
Teleoperators and Virtual Environments, vol. 6, no. 4, pp. 355-
385, 1997.

[2] Bandyopadhyay, D., Raskar, R., and Fuchs, H. Dynamic
Shader Lamps: Painting on Real Objects. In proceedings of
IEEE and ACM International Symposium on Augmented Reality
(ISAR’01), pp. 207-215, 2001.

[3] Bimber, O., Fröhlich, B., Schmalstieg, D., and Encarnação,
L.M. The Virtual Showcase. IEEE Computer Graphics &
Applications, vol. 21, no.6, pp. 48-55,2001.

[4] Bimber, O., Encarnação, L.M. and Branco, P. The Extended
Virtual Table: An Optical Extension for Table-Like Projection
Systems. Presence: Tele-operators and Virtual Environments,
vol.10, no. 6, 2001, pp. 613-631.

[5] Breen, D.E., Whitaker, R. T., Rose, E. and Tuceryan, M.
Interactive Occlusion and Automatic Object Placement for
Augmented Reality. Computer and Graphics Forum
(proceedings of EUROGRAPHICS'96), vol. 15, no. 3, pp. C11-
C22, 1996.

[6] Fuhrmann, A., Hesina, G., Faure, F., and Gervautz, M.
Occlusion in Collaborative Augmented Environments. In
proceedings of 5th Eurographics Workshop on Virtual
Environments, pp. 179-190, 1999.

[7] Hua, H., Gao, C., Brown, L., Ahuja, N., and Rolland, J.P.
Using a head-mounted projective display in interactive
augmented environments. In proceedings of IEEE and ACM
International Symposium on Augmented Reality (ISAR’01), pp.
217-223, 2001.

[8] Kiyokawa, K., Kurata, Y. and Ohno, H. An Optical See-
through Display for Mutual Occlusion of Real and Virtual
Environments. In proceedings of IEEE & ACM ISAR 2000, pp.
60-67, 2000.

[9] Naemura, T., Nitta, T., Mimura, A., Harashima, H. Virtual
Shadows – Enhanced Interaction in Mixed Reality
Environments. In proceedings of IEEE Virtual Reality (IEEE
VR’02), pp. 293-294, 2002.

[10] Noda, S., Ban, Y., Sato, K., and Chihara, K. An Optical
See-Through Mixed Reality Display with Realtime Rangefinder
and an Active Pattern Light Source. Transactions of the Virtual
Reality Society of Japan, vol. 4, no. 4, pp. 665-670, 1999.

[11] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and
Flannery, B.P. Numerical Recipes in C - The Art of Scientific
Computing (2nd edition), Cambridge University Press, ISBN 0-
521-43108-5, pp. 412-420,1992.

[12] Raskar, R. Welch, G., Low, K.L., and Bandyopadhyay, D.
Shader Lamps: Animating real objects with image-based
illumination. In Proceedings of Eurographics Rendering
Workshop (EGRW’01), 2001.

[13] Stuerzlinger, W. Imagine all Visible Surfaces. In
Proceedings of Graphics Interface’ 99, pp. 115-122, 1999.

Acknowledgements
The Virtual Showcase project is supported by the European
Union, IST-2001-28610.

Figure 1: A normal illumination causes wrong occlusion effects between real objects and
virtual overlays (left). Creating an occlusion shadow underneath the overlay prevents the
light from being diffused on the real object’s surface and transmitted through the optical
combiner and the graphics (center). Overlaying the graphics over the shadow results in a

realistic occlusion of the real object by the virtual one (left)7.

Figure 3: Knowing the depth information of the real content, also allows the occlusion of

virtual objects by real ones (left). Combining this with our occlusion shadow method
(center) creates correct mutual occlusion effects between both environments (right).

Figure 7: This example demonstrates our method in combination with a more complex real

scene: A physical skull of a mid-cretaceous dinosaur (a Deinonychus) has been
augmented with virtual muscles and bones (left) – generating occlusion shadows exactly
underneath the virtual overlays. Covering the skull by a virtual skin (right) leaves most of

the bone structure in shadow. Only the real teeth are clearly visible.

7 Note that the photographs in this paper have not been touched up. They were taken from the observer’s point of view, but were
rendered monoscopically.

