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Abstract. We developed a ray casting-based rendering system for the
visualization of geological subsurface models consisting of multiple highly
detailed height fields. Based on a shared out-of-core data management
system, we virtualize the access to the height fields, allowing us to treat
the individual surfaces at different local levels of detail. The visualiza-
tion of an entire stack of height-field surfaces is accomplished in a single
rendering pass using a two-level acceleration structure for efficient ray in-
tersection computations. This structure combines a minimum-maximum
quadtree for empty-space skipping and a sorted list of depth intervals
to restrict ray intersection searches to relevant height fields and depth
ranges. We demonstrate that our system is able to render multiple height
fields consisting of hundreds of millions of points in real-time.

1 Introduction

The oil and gas industry is continuously improving the seismic coverage of sub-
surface regions in existing and newly developed oil fields. During this process,
very large volumetric seismic surveys are generated using the principles of reflec-
tion seismology. The resulting volumetric data sets represent the magnitude of
seismic wave-reflections in the earth’s subsurface. Geologists and geophysicists
use these seismic volumes to create a geological model of the most important
subsurface structures in order to identify potential hydrocarbon reservoirs. Hori-
zons are a fundamental part of the geological model representing the interface
between layers of different materials in the ground. The ever increasing size of
seismic surveys generates extremely large horizon geometries composed of hun-
dreds of millions of points (Figure 1). Traditional rasterization methods cannot
render such data sets in real-time. While horizon surfaces are commonly repre-
sented as height fields, general terrain rendering approaches [1] have not been
adapted to deal with the specific structure of multiple horizon layers.

We developed an efficient ray casting-based rendering system for the out-
of-core visualization of sets of large stacked horizons. Our method employs a
multi-resolution data representation and makes use of a minimum-maximum
quadtree over the tiled horizon height fields to speed up the ray traversal. Sorted
height intervals in the quadtree cells restrict the intersection searches to relevant
horizons and depth ranges. We virtualize the access to the underlying horizon
height fields such that each horizon can be locally treated at different levels of
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Fig. 1: This figure shows three different horizons extracted from a common seis-
mic survey. While the upper most horizon (red) is spatially isolated, the lower
horizons (green and blue) are partially overlapping. The original resolution of
each horizon is 6870× 14300 points.

detail (e. g. occluded horizon parts are represented at a much lower resolution).
Our out-of-core data management system supports geological models consisting
of multiple large height-field data sets, potentially exceeding the size of the
graphics memory or even the main memory. A feedback mechanism is employed
during rendering which directly generates level-of-detail information for updating
the cut through the multi-resolution hierarchies on a frame-to-frame basis.

Our work is motivated by the observation that with increasing screen resolu-
tions and screen-space errors below one pixel, the geometry throughput of current
GPUs is becoming a major performance bottleneck and ray casting techniques
can provide comparable performance for large data sets [2, 3]. However, none
of the existing ray casting-based rendering systems are capable to efficiently vi-
sualize complete stacks of highly detailed, mutually occluding and overlapping
horizons contained in geological models.

The main contributions of our out-of-core stacked height-field ray casting
system include:

• A two-level acceleration structure for fast ray traversal and efficient ray
intersection computations with stacked height fields.

• A single-pass rendering approach, which also generates level-of-detail feed-
back for updating the cuts through the multi-resolution representations of
the height fields.

• A two-level out-of-core data management system, which provides virtualized
access to multi-resolution height-field data.

Our implementation demonstrates that we can render multiple horizons con-
sisting of hundreds of millions of points in real-time on a single GPU. The ray
casting approach also facilitates the integration with volume ray casting, a highly
desirable property in visualization systems for subsurface data.
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2 Related Work

The direct visualization of height-field surfaces using ray casting-based methods
is a very active and well explored field of computer graphics research. Early CPU-
based methods, primarily targeted at terrain rendering applications, were based
on a 2D-line rasterization of the projection of the ray into the two-dimensional
height-field domain to determine the cells relevant for the actual intersection
tests [4–7]. A hierarchical ray casting approach based on a pyramidal data struc-
ture was proposed by Cohen and Shaked [5]. They accelerate the ray traversal
by employing a maximum-quadtree, storing the maximum height-displacement
value of areas covered by its nodes in order to identify larger portions of the
height field not intersected by the ray.

Enabled by the rapid evolution of powerful programmable graphics hardware,
texture-based ray casting methods implemented directly on the GPU were intro-
duced. The first published approach by Qu et al. [7] still uses a line rasterization
approach similar to the traditional CPU-based approaches. The relief-mapping
[8] methods pioneered by Policarpo et al. [9, 10] employ a parametric ray de-
scription combined with an initial uniform linear search which is refined by an
eventual binary search restricted to the found intersection interval. Considering
that the initial uniform stepping along the ray may miss high-frequency details
in the height field, these methods are considered approximate. While these ini-
tially published GPU-based ray casting algorithms are not utilizing any kind of
acceleration structures, later publications proposed different approaches. Don-
nelly [11] described the use of distance functions encoded in 3D-textures for
empty-space skipping. The drastically increased texture memory requirements
make this technique infeasible for the visualization of large horizon height fields.
Later methods proposed by Dummer [12] and Policarpo et al. [10] exhibit dras-
tically reduced memory requirements. They calculate cone ratios for each cell
to describe empty space regions above the height field allowing fast search con-
vergence during the ray traversal. The very high pre-computation times of these
techniques only allow for the handling of quite small height-field data sets. This
problem is addressed in the subsequent publications by Oh et al. [13] and Tevs
et al. [14]. They build upon the traversal of a maximum-quadtree data structure
on the GPU akin to the algorithm presented by Cohen and Shaked [5]. The idea
of encoding the quadtree in the mipmap hierarchy of the height field results in
very moderate memory requirements.

Visualizing a large height-field data set requires the use of level-of-detail and
multi-resolution techniques to balance between rendering speed and memory
requirements. Hierarchical multi-resolution data representations are traditionally
applied to the visualization of large volumetric data sets [15]. Dick et al. [3] are
able to handle arbitrarily large terrain data sets employing a multi-resolution
quadtree representation of the tiled terrain elevation map. The virtualization of
multi-resolution data representations enables the implementation of rendering
algorithms, which can be implemented such that they are mostly unaware of the
underlying multi-resolution representation of the data set. Kraus and Ertl [16]
describe how to use a texture atlas to store individual image sub-tiles in a single
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texture resource. They use an index texture for the translation of the spatial data
sampling coordinates to the texture atlas cell containing the corresponding data.
Generalized out-of-core texture data virtualization methods were introduced as
a result [17].

Our multi-resolution height-field data virtualization is based on a quadtree
representation of the height-field data sets. The selected quadtree cuts are stored
in a 2D-texture atlas. Additionally, we are using a compact serialization of the
quadtree cut similar to [18] for the translation of the virtual texture sampling
coordinates to the texture atlas cell containing the corresponding data. Further-
more, to update the levels of detail represented through the multi-resolution
hierarchies, we employ a feedback mechanism during rendering similar to the
mechanism described by Hollemeersch et al. [19]. They require a separate ren-
dering pass to write the required level-of-detail feedback information to a lower
resolution target for fast evaluation. Using costly rendering approaches such as
ray casting, this would involve a serious rendering overhead. Our system gen-
erates the feedback information directly during rendering while still allowing to
sub-sample the actual screen resolution.

Policarpo et al. [10] introduced a method for handling a fixed number of
height fields without any acceleration structure or virtualization in a single ren-
dering pass. They simply move along the ray using a fixed sampling step and
intersect all the height fields at once using vector operations on the GPU, which
works efficiently for at most four height fields encoded in a single texture re-
source. In contrast, we handle each height-field layer as an individual data re-
source. This allows us to represent different parts of a horizon surface at different
local levels of detail (e. g. occluded parts on individual horizons are represented at
much lower resolution). Furthermore, we employ a minimum-maximum quadtree
over the tiled horizon height fields to speed up the ray traversal and use sorted
intersection intervals for the individual horizons to restrict the actual intersection
searches.

3 Out-of-Core Data Virtualization

This section describes our out-of-core data virtualization and rendering system.
We begin with a brief overview of the basic system architecture and the relation-
ships of the most important components followed by a more detailed description
of our resource management and level-of-detail feedback mechanism.

3.1 System Architecture

The foundation of our system is an efficient out-of-core texture management
system which is designed to enable the handling of geological models consisting
of multiple large horizons. The height fields describing the horizon surfaces are
managed as two-dimensional single-channel texture resources by our system.
The main parts of the system include the page cache, the page atlas and the
level-of-detail feedback mechanism (Figure 2).
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Fig. 2: This figures shows an overview of the out-of-core data virtualization and
rendering system. Two large memory resources are maintained, one on the CPU
and one on the GPU - the page cache and page atlas. The image data is main-
tained as quadtree representations using a compact serialization scheme on the
GPU to provide efficient translations of virtual to physical texture coordinates
in the page atlas.

Visualizing height-field data potentially exceeding available graphics and sys-
tem memory resources requires the use of level-of-detail and multi-resolution
techniques to balance between visualization quality and memory requirements.
Hierarchical multi-resolution data representations are traditionally applied for
the visualization of large volumetric data sets [15]. Similar to these approaches,
we use a quadtree as the underlying data structure for the multi-resolution rep-
resentation of the two-dimensional height-field data. All nodes in the quadtree
are represented by tiles or pages of the same fixed size, which act as the basic
paging unit throughout our memory management system.

For each height field we compute and continuously update a cut through its
multi-resolution hierarchy using feedback information gathered during rendering
(Section 3.2). The leaf nodes of these cuts define the actual working set of height-
field pages on the GPU. The cut updates are incrementally performed using a
greedy-style split-and-collapse algorithm, which considers a fixed texture mem-
ory budget [20]. During the update operation, only data currently resident in the
main memory page cache is used and unavailable pages are requested to be asyn-
chronously loaded and decoded from the out-of-core page pool. This approach
prevents stalling of the update and rendering process due to slow transfers from
external page sources.

The height-field data is accessed during rendering through two resources on
the GPU: a single shared large page atlas texture of a fixed size containing the
pages of the current working sets of all height fields, and a set of small textures
representing a serialization of the current quadtree cuts for each height field.
The quadtree cuts are used for the translation of virtual texture coordinates to
the physical sampling location in the shared page atlas.
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(a) Page-ID Feedback Buffer (b) Rendering Result

Fig. 3: This figure shows the results of the level-of-detail feedback mechanism
during rendering. (a) Visualization of the determined page identifiers. (b) Final
rendering based on our height-field ray casting.

3.2 Level-of-Detail Feedback Generation

Two basic approaches exist for generating view-dependent information concern-
ing the required levels of detail of a multi-resolution representation: analytical
methods and direct feedback mechanisms. Analytical methods try to determine
the required levels of detail through view-dependent or data-dependent heuris-
tics. These methods usually exhibit problems to consider occlusions in the data
sets without the application of sophisticated occlusion culling techniques [21].
In contrast, the direct feedback methods typically employ additional rendering
passes to generate information about required level of details for the current
view in off-screen buffers. After transferring these buffers to the system memory,
their contents are analyzed and the derived information is used to inform the
respective multi-resolution update methods. These additional rendering passes
usually use only small off-screen buffers, which are a fraction of the size of the
actual view port, for minimizing read back latency and processing time.

Our system employs a direct screen-space feedback mechanism similar to
Hollemeersch et al. [19]. The mechanism works in three stages. First, during
rendering, identifiers for the actual required pages are determined for each pixel
and saved into an off-screen buffer (Figure 3). Then, this buffer is used in an
evaluation step directly on the GPU to generate a list of required pages and
their respective pixel coverage. Finally, this compact list is transferred to the
CPU where the coverage information of the pages is used to prioritize the nodes
of the quadtrees. The page identifiers written to the feedback buffer encode
the actual page position in the quadtree and in a height-field instance. The
advantage of this approach is that a large part of the feedback buffer evaluation
is performed in parallel directly on the GPU and the condensed list is generally
orders of magnitudes smaller than the actual feedback buffer allowing for fast
transfers to the system memory.

The computation of the level-of-detail information during rendering virtual-
ized height fields is a straight forward process. However, the high run-time com-
plexity of the height-field ray casting makes a separate rendering pass infeasible
for feedback generation. For this reason, we generate the feedback information
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directly during rendering. Usually this requires that the feedback buffer is bound
as an additional rendering target to the current frame buffer (a multiple render
target (MRT) setup). This would force the feedback buffer to be the same size as
the used view port. Using direct texture image access functionality provided by
current graphics hardware1, we are able to sub-sample the view port by directly
writing the feedback information to a lower resolution off-screen buffer, thereby
avoiding the traditional MRT setup.

3.3 Height-Field Virtualization

Data virtualization refers to the abstraction of logical texture resources from the
underlying data structures, effectively hiding the physical characteristics of the
chosen memory layout. Our system stores the physical height-field tiles in the
page atlas in graphics memory. In addition, we store a compact serialization of
the quadtree cuts and their parent nodes up to the root node for virtual texture
coordinate translation. The encoding of the quadtrees is similar to the octree
encoding proposed by Lefebvre et al. [18]. Each node in this data structure holds
information regarding where the corresponding page is located in the page atlas,
including scaling information and child node links for inner nodes. This allows
us to choose every level of detail currently available in the associated quadtree
cut.

Translating a virtual texture coordinate into a physical sample coordinate in
the page atlas involves the following steps: first, the required level of detail is
determined for the requested sampling location; then, the quadtree is traversed
from the root node down to the appropriate level resulting in the indirection
information required to transform the initial virtual sampling position to the
physical sampling position in the page atlas. If the appropriate level of detail
is not available in the quadtree cut, the traversal stops at the highest currently
available level and thus returns a lower resolution version of the requested page.
As an extension to this approach, tri-linear data filtering is implemented by
storing the upper and lower bound of the required level of detail for a virtual
sampling position during the quadtree traversal and filtering the two resulting
image samples accordingly. This way, aliasing artifacts can be effectively pre-
vented.

Using the quadtree serialization method for virtual texture coordinate trans-
lation requires a tree traversal, but maintains a very small memory footprint per
height-field data set. Although the traversal routine is benefiting from a good
texture cache performance due to the small size and locality of the quadtree
encoding, the cost of the tree traversal is not negligible. However, each ray typi-
cally samples the same height field tile multiple times and thus caching traversal
information significantly reduces average traversal costs.

1 This functionality is provided through the OpenGL4 EXT shader image load store
extension.
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Fig. 4: This figure shows the construction and traversal of the sorted depth inter-
val list for a single height-field tile. The left image shows the original minimum-
maximum intervals for three horizons. The sorted interval list with associated
horizons is derived from the intersections of the source intervals. The right im-
age shows the ray-intersection search in the successive intervals, resulting in the
found intersection of the ray interval R2 in the interval I3.

4 Ray Casting Stacked Height Fields

Horizon surfaces are derived from a common seismic volume. Thus, the entire
stack of horizon surfaces can be defined as equally sized height fields within the
lateral (x-y) domain of the volume. The access to each height field is virtualized
using our texture virtualization system, which allows us to access the height
values of different height fields at different levels of detail using the same global
texture coordinates.

Our rendering approach is based on ray casting. We use a two-level accelera-
tion structure for efficient intersections of a ray with a set of stacked height fields.
A global minimum-maximum quadtree represents the primary structure for fast
empty space skipping and a sorted list of height intervals is associated with each
quadtree node to restrict intersection searches to relevant horizons and depth
ranges. We restrict the size of the resulting quadtree data structure by build-
ing the minimum-maximum hierarchy based on tiled horizon height fields. In
fact, only a cut through this global quadtree is required during rendering, which
is a union of all the multi-resolution cuts of the individual height fields avail-
able on the GPU. The minimum-maximum ranges associated with each node
are generated as the union of the individual ranges of the distinct height fields.
However, we generate a sorted disjoint interval list for each quadtree node, which
associates one or more horizons with each interval as shown in Figure 4.

The ray traversal of the minimum-maximum quadtree is performed in top-
down order in a similar way as described by Oh et al. and Tevs et al. [13, 14].
The minimum-maximum intervals associated with each quadtree node are used
to quickly discard nodes without possible intersections. When reaching a leaf
node in the current cut through the global quadtree, the actual horizons con-
tained in the sorted horizon interval list are intersected. The evaluation order
of the interval list is dependent on the actual ray direction. If the ray is as-
cending in the z-direction, the list is evaluated front-to-back starting with the
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interval with the smallest minimum value, while it is evaluated back-to-front for
descending rays. If an intersection is found during the evaluation of an interval,
it represents the closest height-field intersection and the evaluation process can
be terminated early. In case of intervals associated with multiple horizons, we
successively search all contained horizons for intersections in the appropriate
order (Figure 4). Once a horizon intersection is found, we use the intersection
point to restrict the subsequent searches in the remaining horizons associated
with the interval. Due to the fact that the quadtree nodes represent horizon tiles
containing e. g. 128× 128 height values, we perform a linear search along the ray
within a tile to find a potential intersection interval followed by a binary search
for finding the actual intersection point.

Even though there is no restriction on the tile size used for the construction of
the global minimum-maximum quadtree, using a tile size less than or equal to the
tile size utilized by the virtualization of the height fields allows for optimizations
during the intersection search. Therefore, only a single query for the page atlas
location of an associated height-field tile is required considering that all data
lookups during the intersection search in a tile can be directly taken from this
single atlas page. Thus, traversal costs in the serialized height-field cuts for
localizing the atlas page are amortized over a complete search interval, thereby
significantly reducing the overhead of the virtualization approach.

5 Results

We implemented the described rendering system using C++. OpenGL4 and
GLSL were used for the rendering related aspects and OpenCL for the level-
of-detail feedback evaluation, which is also generated directly on the GPU. All
tests were performed on a 2.8 GHz Intel Core i7 workstation with 8 GiB RAM
equipped with a single NVIDIA GeForce GTX 480 graphics board running Win-
dows 7 x64.

We tested our system with a data set containing a stack of three partly
overlapping horizons provided to us by a member of the oil and gas industry for
public display (Figure 5). The dimensions of each height field defining a horizon
surface are 6870× 14300 points using 16 bit resolution per sample. The chosen
page size for the virtualization of the height fields was 1282, the page atlas size
was 128 MiB and the page cache size was restricted to 1 GiB. The rendering tests
were performed using a view port resolution of 1680× 1050.

Our system is able to render scenes as shown in Figure 5 with interactive
frame rates ranging from 20 Hz to 40 Hz depending on the viewer position and
zoom level. We found that the rendering performance of our ray casting system
is mainly dependent on the screen projection size of the height fields and the
chosen sampling rate. The memory transfers between the shared resources of the
data virtualization system have limited influence on the rendering performance.
The level-of-detail feedback evaluation on the GPU introduces a small processing
overhead below 0.5ms per rendering frame in our testing environment. We chose
a feedback buffer size a quarter of the actual view port resolution (420× 262).



10 Christopher Lux Bernd Fröhlich
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Fig. 5: Horizon stack containing three partially intersecting surfaces. The resolu-
tion of the underlying height fields is 6870× 14300 points. The left image displays
the number of iteration steps required to find the final intersection, with brighter
colors representing larger iteration counts. The middle image shows the quadtree
cuts selected during the level-of-detail evaluation. The left image shows the final
rendering result using a default color map encoding the sample depth in the
generating seismic survey.

We evaluated various tile sizes for the construction of the global minimum-
maximum quadtree ranging from 322 to 1282. The smaller tile sizes exhibited
small improvements of 3-5% in rendering performance under shallow viewing
angles compared to the largest size. However, under steep viewing angles, the
introduced traversal overhead of the larger quadtree data structure resulted in a
slight degradation of performance of 5-8%. The larger potential for empty space
skipping using smaller tile sizes is canceled out by the complexity introduced
by the depth interval list evaluation and the final intersection search in the
height-field tiles. We found that using the same tile size for the global minimum-
maximum quadtree as for the data virtualization results in the best compromise
between data structure sizes on the GPU and rendering performance. Figure 5a
shows that higher iteration counts occur in areas where the ray closely misses
one horizon tile and intersects another one using a 1282 tile resolution. Thus
on the finest level, a ray needs to take an average of about 64 steps to find an
intersection inside a tile assuming that such an intersection exists.

We also experimented with binary searches for finding the horizon intervals
in a quadtree node. However, the limited number of actual depth intervals in our
current data sets made this approach slower than simply searching linearly for
the first relevant interval. For a larger number of stacked horizons, the binary
search for the first relevant interval should improve performance.

Considering the caching of traversal information for the height-field virtu-
alization mechanism during the ray-intersection search in a height-field tile, we
found that an implicit caching mechanism implemented for the virtual data
look ups results in better run-time performance than an explicit mechanism
transforming the ray intersection search to the local coordinate system of the
height-field tile in the page atlas. This allows for a much clearer implementation
of the ray casting algorithm decoupled from the actual multi-resolution data
representation.
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6 Conclusions and Future Work

We presented a GPU-based ray casting system for the visualization of large
stacked height-field data sets. Based on a shared out-of-core data management
system, we virtualize the access to the height fields, allowing us to treat the
individual surfaces at different local levels of detail. The multi-resolution data
representations are updated using level-of-detail feedback information gathered
directly during rendering. This provides a straightforward way to resolve oc-
clusions between distinct surfaces without requiring additional occlusion culling
techniques. The visualization of entire stacks of height-field surfaces is accom-
plished in a single rendering pass using a two-level acceleration structure for ef-
ficient ray intersection searches. This structure combines a minimum-maximum
quadtree for empty-space skipping and a sorted list of depth intervals to restrict
ray intersection searches to relevant height fields and depth ranges. The imple-
mentation shows that stacks of large height fields can be handled at interactive
frame rates without loss of visual fidelity and moderate memory requirements.

The feedback information used to guide the update of the multi-resolution
representations is currently based on a purely texture space level-of-detail metric.
A combination of this approach with screen-space or data-based error metrics for
the tile-based level-of-detail estimation can further improve rendering quality.

Our ultimate goal is a visualization system for subsurface data capable of
interactively visualizing entire geological models. A highly desirable feature of
such a system is the combined rendering of surface geometries and volume data.
Typical geological models in the oil and gas domain can consist of a large num-
ber of highly detailed horizon surfaces and extremely large volume data sets.
Currently no infrastructure exists for the efficient out-of-core management and
rendering of geometry and volume data. Our ray casting-based approach to large
horizon rendering is an important step in this direction, since it facilitates the
efficient integration with multi-resolution volume ray casting.
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